\mathbf{D}	13	11	9

(Pages: 2)

Nam	e	•••••	•••••	• • • • • • •	••••••	••••••

Reg. No....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Electronics

ELS 1C 04—ADVANCED DIGITAL SYSTEM DESIGN

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions. Each question carries weightage 2.

- 1. Explain Shanon's Expansion theorem.
- 2. Find the octal designation of the numbers
 - (i) 359₁₀.
- (ii) 166.375₁₀.
- 3. Explain unateness property of threshold functions.
- 4. Write a short note on pulse mode sequential circuits.
- 5. Describe Mealy machine with an example.
- 6. Differentiate Programmable Array Logic (PAL) and Programmable Logic Array (PLA).
- 7. Explain different types of FPGA.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Each question carries weightage 3.

- 8. (a) Simplify the function F = A'B'C'D' + A'BC'D + A'BCD + ABCD using K-map.
 - (b) Explain dynamic hazards in logic circuits.
- 9. Realize a full adder circuit using AND-OR gates. Then implement it using half adders also.
- 10. Identify if the function F $(w, x, y, z) = \sum (0,1,3,5,8,10,11,12,13,15)$ is symmetric. Express the function in symmetric notation.
- 11. Explain various steps involved in the design of fundamental mode sequential circuits.
- 12. Write a short note on essential hazards in sequential circuits.
- 13. Write a PALASM program to implement 4 bit counter with synchronous clear.
- 14. Write a short note on Actel ACT2 family.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries weightage 5.

- 15. (a) Design a circuit to transform a BCD 4-bit code into a 7-segment display and derive the expression for decoding.
 - (b) Explain static hazard free design of logic circuits.
- 16. (a) Briefly explain various properties of threshold functions.
 - (b) Simplify the function $f(a, b, c, d) = \sum_{m} (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$ using McClukey method.
- 17. Realize the given circuits using PAL:
 - (i) Binary multiplier.
 - (ii) Full adder.
- 18. Describe Xilinx XC3000 series Input/Output block.

 $(2 \times 5 = 10 \text{ weightage})$

D 13118	(Pages: 2)	Name

Reg.	No	 	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Electronics

ELS 1C 03-MODERN DIGITAL AND OPTICAL COMMUNICATION

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A (Short Answer Type)

Answer any **four** questions. Each question carries a weightage of 2.

- 1. Describe MAN.
- 2. What is Protocol?
- 3. What is data link layer? Explain its working.
- 4. What is a multiple access protocol?
- 5. Explain the functions of application layer.
- 6. What is self phase modulation?
- 7. Describe WDM.

 $(4 \times 2 = 8 \text{ weightage})$

2

Section B (Short Essay Type)

Answer any four questions.

Each question carries a weightage of 3.

- 8. What is LAN? What are it functions?
- 9. What is transport layer and network layer responsible for?
- 10. What are the different protocols works at each of the layers in OSI Model?
- 11. What are the different type of networking / internetworking devices?
- 12. What is quantum limit in optical communication?
- 13. Explain the Erbium-doped fiber amplifier with its block diagram.
- 14. What are the types of optical switch?

 $(4 \times 3 = 12 \text{ weightage})$

Section C (Long Essay Type)

Answer any two questions.

Each question carries a weightage of 5.

- 15. Differentiate between ISO model and TCP/IP model.
- 16. What is Transmission media? Explain bounded and unbounded media.
- 17. Write notes on:
 - a) BER Calculation;
 - b) Quatum limit; and
 - c) Power penalities.
- 18. What is optical amplifier? Explain the working of Raman amplifier.

 $(2 \times 5 = 10 \text{ weightage})$

D 13117	(Pages: 2)	Name

Reg.	No	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Electronics

ELS 1C 02—MICROCONTROLLER BASED SYSTEM DESIGN

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

SectionA (Short Answer type)

Answer any four questions.

Each question carries a weightage of 2.

- 1. What are tristate devices? How are they useful in microcontrollers?
- 2. Explain how does the status of EA pin affect the access to internal and external program memory.
- 3. What are interrupts? List the interrupts in 8051 microcontroller.
- 4. Write a short note on Timers in 8051 microcontroller.
- 5. What is a digital to analog converter?
- 6. 'void setup and void loop must be included in every Arduino sketch'. Give reasons.
- 7. Write a short note on Raspberry Pi OS.

 $(4 \times 2 = 8 \text{ weightage})$

Section B (Short Essay Type)

Answer any four questions.

Each question carries a weightage of 3.

- 8. Explain the memory organization of 8051 microcontroller.
- 9. Write a program to get the data from Port 0 and send it to Port 1.
- 10. What is RS232 standards? Describe the RS232 handshaking signals.
- 11. Explain the modes of Timer in 8051 microcontroller.
- 12. How do you interface a stepper motor with 8051 microcontroller?
- 13. What is a sketch? Explain the different areas in an Arduino GUI IDE?
- 14. Explain the GPIO pins in the RaspberryPi board.

 $(4 \times 3 = 12 \text{ weightage})$

Section C (Long Essay type)

Answer any two questions.

Each question carries a weightage of 5.

- 15. Draw and explain the functional block diagram of 8051 microcontroller.
- 16. Write a program to transmit the data "YES" serially at 9600 baud, 8- bit data, 1 stop bit.
- 17. Explain the interfacing of a hex keyboard with necessary circuit diagram and algorithm.
- 18. With the help of a neat diagram explain various parts of a Raspberry Pi.

 $(2 \times 5 = 10 \text{ weightage})$

D 13116	(Pages: 4)	Name

Rog	No			

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Electronics

ELS 1C 01—APPLIED MATHEMATICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section / sub part / sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer **four** questions.

Each question carries a weightage 2.

- 1. Find the root of the equation $x^3 5x + 1 = 0$ which lies between 2 and 3 using bisection method up to two decimal places in four stages.
- 2. Given $Y' = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0. Find y for x = 0.1 by Euler's method.
- 3. Solve the linear programming problem. Minimize, 4a + 5b + 6c, subject to the constraints, $a + b \ge 11$, $a b \le 5$, c a b = 0, $7a \ge 35 12b$, $a \ge 0$, $b \ge 0$, $c \ge 0$. Show the feasible region in the graph.
- 4. What are the axioms of probability? What is the probability of selecting 3 spade cards from a pack of 52 cards?

- 5. An urn contains 5 red and 10 black balls. Eight of them are placed in another urn. What is the probability that the latter contains 2 red and 6 black balls?
- 6. Find the eigen values of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.
- 7. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & -1 & 2 \\ -1 & -2 & 5 & 4 \end{bmatrix}$. What is the rank and nullity of A?

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Each question carries weightage 3.

- 8. Evaluate $\sqrt{28}$ using Newton Raphson method up to four decimal places.
- 9. Find the root of the equation $f(x) = x^3 x 1$ using Secant method.
- 10. Apply Runge-Kutta fourth order method to find an approximate value of y when x = 0.2 given that Y' = X + Y and y = 1 when x = 0.
- 11. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using:
 - (i) Trapezoidal rule;
 - (ii) Simpson's 1/3 rule; and
 - (iii) Simpson's 3/8 rule.

12. Four jobs are to be done on four different machines. The cost of producing i^{th} job on the j^{th} machine is given below:

	Machines					
		M_1	M_2	M_3	M_4	
	J_1	15	11	13	15	
Jobs	${ m J}_2$	17	12	12	13	
	J_3	14	15	10	14	
	${ m J}_4$	16	13	11	17	

Assign the jobs to different machines so as to minimize the total cost

- 13. (a) State Baye's Theorem.
 - (b) Consider a test to detect a disease that 0.1 % of the population have. The test is 99 % effective in detecting an infected person. However, the test gives a false positive result in 0.5 % of cases. If a person tests positive for the disease what is the probability that they actually have it?
- 14. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y+z \\ y-z \end{bmatrix}$. Determine the matrix of

linear transformation T with respect to ordered basis.

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ of } R^3 \text{ and } Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ of } R^2.$$

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries weightage 5.

15. Solve the system of equations using Gauss-Seidel iteration method:

$$10x_1 - 2x_2 - x_3 - x_4 = 3$$

$$-2x_1 + 10x_2 - x_3 - x_4 = 15$$

$$-x_1 - x_2 + 10x_3 - 2x_4 = 27$$

$$-x_1 - x_2 - 2x_3 + 10x_4 = -9.$$

16. Using simplex method:

Maximize
$$Z = 107x_1 + x_2 + 2x_3$$

subject to the constraints:
$$14x_1 + x_2 - 6x_3 + 3x_4 = 7$$

 $16x_1 + \frac{1}{2}x_2 - 6x_3 \le 5$, $3x_1 - x_2 - x_3 \le 0$, $x_1, x_2, x_3, x_4 \ge 0$.

- Explain Geometric Distribution. What are its properties? 17. (a)
 - (b) The lifetime risk of developing a hereditary disease is about one in 78 (1.28 %). Let X is the number of people you ask until one says he or she has the disease. X has a geometric

distribution X G
$$\left(\frac{1}{78}\right)$$

- (i) What is the probability that you ask 10 people before one says he or she has the disease?
- (ii) What is the probability that you must ask 20 people?
- (iii) Find the mean and standard deviation of X.
- 18. (a) Let V be the set of all vectors of the form (x_1, x_2, x_3) in \mathbb{R}^3 satisfying:

(i)
$$x_1 - 3x_2 + 2x_3 = 0$$
; and

(ii)
$$3x_1 - 2x_2 + x_3 = 0$$
 and $4x_1 + 5x_2 = 0$.

(b) State and prove Rank nullity Theorem.