nam	e
	•
Reg.	No

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(Pages: 2)

(CUCSS)

Electronics

TE4E03—TELEMATICS

(2010 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Explain analog twisted pair loop as subscriber loop.
- 2. What is ISDN? What are its advantages?
- 3. What is meant by inter-exchange signalling? What are the different types?
- 4. What are the differences between ISDN and ATM?
- 5. What is meant by a switched network? Explain with a schematic diagram.
- 6. What is cross point complexity in a recursively constructed non-blocking network? Calculate the cross point complexity of a 100 × 100 point recursively rearrangeably non- blocking network.
- 7. Explain the performance measures of routing.
- 8. Explain a Clos network with a block diagram.
- 9. Write short notes on TST switches.
- 10. What are the limitations of a cross bar switch? How can these problems be overcome?
- 11. What is the purpose of dynamic routing? What are its advantages?
- 12. Explain the signalling in a local telephone exchange.
- 13. Explain time switching with an example.
- 14. State and explain Clos Theorem.

Part B

Answer any seven questions.

Each question carries 2 weightage.

- 15. Draw and explain the functional architecture of BISDN.
- 16. Explain the circuit switching in a telephone network with a schematic diagram. What are the different steps in circuit switching? Explain.
- 17. Explain ATM virtual connections.
- 18. Explain the concept of alternate routing.
- 19. Explain in-channel signalling and common-channel signalling.
- 20. Explain Equivalent Random Theory method to estimate the traffic blocking.
- 21. Model a traffic process in telephone network and derive the blocking probability and utilization.
- 22. Explain a 3- stage Close network with a schematic block diagram.
- 23. State and prove Slepian Duguid theorem.
- 24. Explain blocking, strictly nonblocking and rearrangeably non-blocking switching network. How these conditions are achieved?

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Explain the call processing in a telephone network. What is the role of switches in call processing? Explain.
- 26. Explain the Jacobaeus method for alternate path routing using a three stage Close network.
- 27. Draw a 4×4 crossbar network. Explain the mechanism to be used for controlling the individual crosspoints.
- 28. Explain the cost criteria for switching.

C 22541	(Pages : 2)	Name
	3	

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS4E03E—ADVANCED SENSORS

(2020 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. What are the different parts of an inductance transducer? Explain with a diagram.
- 2. Explain the working principle of resistive transducers.
- 3. Write short notes on photovoltaic cells.
- 4. What is a smart sensor? How does it work? List the applications.
- 5. Explain the solar irradiation measurement using pyranometer.
- 6. What are the characteristics of radiation sensors? Explain.
- 7. Explain the IEEE 1451.4 communication standard for smart sensor interface.

 $(4 \times 2 = 8 \text{ weightage})$

Reg. No.....

Part B

Answer any four questions.

Each question carries 3 weightage.

- 8. Explain the principle of the basic capacitance transducer.
- 9. Explain the construction and working of semiconductor strain gauge with neat diagram.
- 10. Explain how the wind speed is measured using anemometer.
- 11. Explain the role of sensors in home appliances with a specific example.
- 12. Explain a microwave sensing system with a neat block diagram. What are the applications of microwave sensors?
- 13. Write a note on vision sensors.
- 14. What is meant by thermoelectric effect? Explain any one transducer that is based on this.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 5 weightage.

- 15. Explain the various types of temperature transducers.
- 16. Explain the odour and taste sensing in the food processing industry.
- 17. Explain the diflerent sensors and their functions used in automotives.
- 18. Explain the construction and the working principle of intrinsic and extrinsic fiber optic sensors.

C 22540	(Pages: 2)	Name
		,

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Electronics

ELS 4E 03 D-MICROWAVE ELECTRONICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

Covid Instructions are not applicable for Pvt/SDE students (April 2021 session)

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. List any four applications of microwaves.
- 2. Define cutoff wavelength of a rectangular waveguide.
- 3. Define characteristic impedance of a transmission line.
- 4. Why impedance matching is required?
- 5. List the important advantages and disadvantages of IMPATT diode.

- 6. Define half power beamwidth.
- 7. Define radiation intensity of an antenna.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries 3 weightage.

- 8. Explain group velocity and phase velocity of a waveguide.
- 9. Write a note on scattering parameters.
- 10. What is a transmission line? What are different types of transmission lines commonly used?
- 11. With a sketch, explain the difference between standing waves and travelling waves.
- 12. Explain the construction and working principle of varactor diode.
- 13. Write the advantages and disadvantages of a microstrip antenna.
- 14. How microwave measurements differ from low frequency measurements?

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 15. How are waveguides different from normal two wire transmission lines? Discuss the similarities and dissimilarities.
- 16. A lossless transmission line with $Zo = 50 \Omega$ is 30 m long and operates at 2 MHz. The line is terminated with a load $Z_L = 60 + j40 \Omega$. If wave velocity, u = 0.6c on the line.

Find:

- (a) The reflection co-efficient.
- (b) The standing wave ratio.
- (c) The input impedance.
- 17. Explain Gunn Effect. Why are Gunn devices called diode? Give the types of materials used for Gunn diode.
- 18. List and explain important parameters of antenna.

C 22537	(Pages : 2)	Name

Reg.	No

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Electronics

ELS 4E 03 A-MEMS AND NEMS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

Covid Instructions are not applicable for Pvt/SDE students (April 2021 session)

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any four questions.

Each question carries 2 weightage.

- 1. What are the materials used in MEMS technology?
- 2. Explain dry and wet etching.
- 3. Explain about MEMS sensors.
- 4. Explain torsion bar actuators.
- 5. Explain vibratory gyroscope.

- 6. What are the principles behind the actuation using thermal forces?
- 7. What are the different applications of comb drive devices?

 $(4 \times 2 = 8 \text{ weightage})$

Section B

Answer any four questions.

Each question carries 3 weightage.

- 8. What are the different architectures of MEMS?
- 9. Explain the process of photolithography.
- 10. What are the various types of packaging in MEMS?
- 11. Explain LIGA-like fabrication technology.
- 12. What is LPCVD?
- 13. Explain about nano structure dynamics in MEMS
- 14. Explain about quantization.

 $(4 \times 3 = 12 \text{ weightage})$

Section C

Answer any two questions.

Each question carries 5 weightage.

- 15. Explain wave function theory.
- 16. Explain about surface micro machining.
- 17. Explain about piezo electric effect. Briefly describe the design of actuators using pizo electric crystals.
- 18. Explain the micro system fabrication processes.

C 22536	(Pages : 2)	Name

TO . NY	
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS 4E02E—FIBER OPTIC INSTRUMENTATION

(2020 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. Explain the propagation of light in optic fiber.
- 2. A step-index fiber has a core index of refraction of $n_1 = 1.425$. The cut-off angle for light entering the fiber from air is found to be 8.50°.
 - (a) What is the numerical aperture of the fiber?
 - (b) What is the index of refraction of the cladding of this fiber?
 - (c) If the fiber were submersed in water, what would be the new numerical aperture and cut-off angle?
- 3. Define BER. What are the factors that affect BER? Explain.
- 4. Explain the working of optical switches.
- 5. Explain the modulation bandwidth of LED.

- 6. Explain the principle of white light LED. Draw its output characteristics.
- 7. Explain the working of CCD detector.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Each question carries 3 weightage.

- 8. Explain the TE and TM modes in step index fiber.
- 9. What is dispersion? Explain different types of dispersion.
- 10. Explain the working of Raman amplifier with a block diagram.
- 11. Explain the coherent optical QPSK transmitter with block diagram.
- 12. Explain the concept of radio over fiber system with a block diagram.
- 13. Explain the construction and working of a solar cell with a neat diagram.
- 14. Explain the principle of WDM with neat diagrams.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 15. Explain the ray model in optic fibers. Also explain meridional and skew rays and the paths in optic fiber.
- 16. Explain the measurement of longitudinal fiber properties using OTDR technique.
- 17. Explain the working of: (i) Quantum cascade laser; and (ii) Micro-cavity laser.
- 18. Explain the different optical receiver configurations with necessary diagram.

	22535	
\mathbf{C}	44000	

(Pages: 2)

Name

n .	NT
Keg.	No

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS 4E 02D—VERILOG PROGRAMMING

(2019 Admissions onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

2 weightages each.

- 1. Explain port declarations in verilog.
- 2. Draw the DC characteristics of cmos inverter.
- 3. Define keyword and identifiers in verilog.
- 4. Why nmos tranistor is selected as pull down transistor?
- 5. Explain Case statement in verilog.
- 6. Explain the use of always statement in verilog.
- 7. Explain wire and reg in verilog.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions.

3 weightages each.

- 8. Explain lambda based design rule.
- 9. Explain lexical tokens in verilog.
- 10. Write the Verilog code to implement a T flip-flop.
- 11. Explain about dynamic hazards.
- 12. Explain blocking and non blocking statements in Verilog with examples.
- 13. Explain Structural modeling in verilog.
- 14. Write Verilog code to implement half subtractor.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any two questions.

5 weightages each.

- 15. Explain MOS capacitance models in detail.
- 16. Write the Verilog code to implement 4 bit down counter.
- 17. Explain structural and behavioral modelling in Verilog with examples.
- 18. Write Verilog code to implement 4 bit serial in parallel out shift registers and its testbench.

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS4E02B—DIGITAL IMAGE PROCESSING

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any **four** questions. Each carries 2 weightage.

- 1. What are the important applications of image processing?
- 2. Give some of the image acquisition techniques.
- 3. What do you mean by HSI model?
- 4. What is the importance of Hadamard transform?
- 5. What are the various methods of histogram processing?
- 6. What is a contra-harmonic filter? Mention its applications.
- 7. What is the importance of Weigner filter?

 $(4 \times 2 = 8 \text{ weightage})$

Reg. No.....

Part B

Answer any **four** questions. Each carries 3 weightage.

- 8. Give a brief description of various mathematical and logical operations on a digital image.
- 9. Discuss the basic gray level transformations for a digital image.
- 10. Give a short note on KL Transform and its properties.
- 11. Explain the image restoration model and how degradation function is estimated?
- 12. Explain how a geometric mean filter can be used to eliminate the noise in a digital image.
- 13. Explain the basic region based segmentation techniques employed in image processing.
- 14. Briefly explain the various matching techniques employed in image recognition.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each carries 5 weightage.

- 15. Explain the human visual perception.
- 16. Explain the properties of wavelet transform. Explain how wavelet transform is used in image processing.
- 17. What are the various noises affecting an image and explain how these noises can be eliminated using filters.
- 18. Explain how multilayer perceptron can be used as a classifier.

22532 (Pages : 2) Name	22532	(Pages : 2)	Name
-------------------------------	-------	-------------	------

Rag	No
ILCE.	11U

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS 4E 02A—CRYPTOGRAPHY AND NETWORK SECURITY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

2 weightage each.

- 1. What is Steganography?
- 2. Define Hash function.
- 3. What is PGP?
- 4. Define Masquerade attack.
- 5. What is Feistel Cipher?
- 6. Write a note on S/MIME content types.
- 7. What is Arbitrated Digital Signature?

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions.

3 weightage each.

- 8. Write a note on Security mechanisms.
- 9. Define Elliptic Curve Cryptography.
- 10. Explain Rotor Machine.
- 11. Define Public key Distribution scenario using public key Authority.
- 12. Explain Symmetric cipher model.
- 13. Illustrate OSI Security Architecture.
- 14. Encrypt the message 'MY NAME IS ATUL' with the keyword 'PLAYFAIR EXAMPLE' using Playfair cipher.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. 5 weightage each.

- 15. Illustrate DES algorithm.
- 16. Depict in detail about PGP random number generator.
- 17. Explain in detail about Encapsulating security Payload.
- 18. Give a brief description about types of firewalls.

	22	K 2	1	
\mathbf{C}		บบ	T	

(Pages: 2)

Nam	e	
Reg.	No	

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Electronics

ELS 4C 12—ROBOTICS

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. What is inverse kinematics problem?
- 2. Discuss robot trajectory planning.
- 3. Discuss the working principle of Range sensors.
- 4. Explain the concept of triangulation technique.
- 5. Define degree of freedom.
- 6. Explain the concept of optical flow.
- 7. What is meant by gripper? Explain.

 $(4 \times 2 = 8 \text{ weightage}))$

Part B

Answer any four questions.

Each question carries 3 weightage.

- 8. Write homogenous transformation matrices for rotation in 3D.
- 9. Explain the working principle of visual sensors.
- 10. Discuss the anatomy of Robot and explain the important parts of a robot with a neat sketch.
- 11. Define and explain a geometric Jacobian.
- 12. Explain the various capabilities and limitations of the robot languages.
- 13. What are the important steps in Robotic vision?
- 14. What are the requirements and challenges of end effectors?

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 5 weightage.

- 15. Explain the role of image segmentation in robotic vision.
- 16. What are the uses of sensors in robot? Give examples and explain any one.
- 17. a) Explain the industrial applications of Robots.
 - b) Explain (i) Mobile robots; and (ii) Micro robots.
- 18. What is the role played by control systems in the functioning of Robots?