23370	(Pages: 3)	Name

SECOND SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

(8 Short questions answerable within 7.5 minutes)
(Answer all questions, each carry weightage 1)

- 1. Explain the numeric data types in python programming.
- 2. What are global variables?
- 3. Write a python program to plot a sine wave from 0 to 2π .
- 4. What are the steps involved for reading a text file in python?
- 5. Explain the process of curve fitting.
- 6. Give the basic differences between initial value and boundary value problems.
- 7. Write a program to create a NumPy array of integers {1, 2, 3, 4, 5}.
- 8. What is a dictionary in python?

 $(8 \times 1 = 8 \text{ weightage})$

SECOND SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

(8 Short questions answerable within 7.5 minutes)
(Answer all questions, each carry weightage 1)

- 1. Explain the numeric data types in python programming.
- 2. What are global variables?
- 3. Write a python program to plot a sine wave from 0 to 2π .
- 4. What are the steps involved for reading a text file in python?
- 5. Explain the process of curve fitting.
- 6. Give the basic differences between initial value and boundary value problems.
- 7. Write a program to create a NumPy array of integers {1, 2, 3, 4, 5}.
- 8. What is a dictionary in python?

 $(8 \times 1 = 8 \text{ weightage})$

(4 essay questions answerable within 30 minutes)
(Answer any two questions, each carry weightage 5)

- 9. Explain the least square curve fitting method for a polynomial of nth degree.
- 10. Using Newton's forward difference formula, derive a general formula for numerical integration and hence establish Simpson's one-third rule.
- 11. Explain the Runge-Kutta method of fourth order. Using this method, evaluate the value of y (0.2) for the function :

$$\frac{\partial y}{\partial x} = 1 + y^2$$
; $x_0 = 0$; $y_0 = 0$.

12. Write a python program to estimate the value of π using Monte Carlo simulation method.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

(7 problems answerable within 15 minutes)
(Answer any four questions, each carry Weightage 3)

- 13. Write a Python program to find the factorial of a number provided by the user.
- 14. Write a Python program to analyse the Fourier series of a triangular wave function.
- 15. The function $y = \sin(x)$ is tabulated below:

$$x y = \sin(x)$$

0 (

 $\pi/4$ 0.70711

 $\pi/2$ 1.0

Find the value of $\sin(\pi/6)$ using Lagrange's interpolation formula.

16. Approximate the area under the curve, $y = \frac{1}{x}$, between x = 1 and x = 5 using the trapezoidal rule with n = 4 sub-intervals.

17. Use Simpson's rule with n = 4 to approximate the integral:

$$\int_0^8 \sqrt{x} \ dx.$$

- 18. Write a short note on Numerov's method in numerical analysis.
- 19. Write a python program to obtain the trajectory of a freely falling body using Euler method.

C 23369	(Pages : 2)	Name

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Physics

PHY 2C 07—STATISTICAL MECHANICS

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

8 Short questions answerable within 7.5 minutes. Answer all questions, each question carries weightage 1.

- 1. Differentiate between μ -space and Γ -space.
- 2. Explain Gibb's paradox.
- 3. A system has three energy levels \in , $2 \in$ and $3 \in$. Determine the partition function
- 4. What do you mean by a grand canonical ensemble and write an expression for the density function?
- 5. State the postulates of equal a priori probability.
- 6. Why is the electronic contribution to the specific heat of a metal vary with temperature at low temperatures?
- 7. How is Bose-Einstein condensation different from the ordinary condensation of a gas in physical space?
- 8. What do you mean by an ideal Fermi Gas?

 $(8 \times 1 = 8 \text{ weightage})$

2 C 23369

Section B

4 essay questions answerable within 30 minutes.

Answer any two questions, each question carries weightage 5.

- 9. Derive Liouville's theorem and explain its consequences.
- 10. Explain microcanonical ensemble. Find the quantum states and the phase space of linear harmonic oscillator.
- 11. Derive Plank's formula for black body radiation using Bose-Einstein statistics. Using the result, deduce Stefan's-Boltzmann law.
- 12. Explain Pauli Para magnetism and obtain the expression for susceptibility.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

7 problems answerable within 15 minutes.

Answer any four questions, each question carries weightage 3.

- 13. The energy of a mole of an ideal gas at constant volume is doubled. How would the total number of available microstates change?
- 14. A composite system has two interacting systems 1 and 2 having thermodynamic probabilities $\Omega_1 = 8 \times 10^{20}$ and $\Omega_2 = 3 \times 10^{19}$,
 - (i) Calculate the individual entropies S_1 and S_2 of the two systems.
 - (ii) Also calculate the total entropy and the thermodynamic probability of the composite system.
- 15. A system in a canonical ensemble is at a temperature of 400 K. If the probability of the system being in a microstate 1 is 3 times the probability of it being in microstate 2, which of the two states has higher energy and by how much?
- 16. Find the condensation temperature for the vapour of Rb^{87} atom at a number density of $n = 2.5 \times 10^{12} \, \mathrm{cm}^{-3}$ treating it as a B.E gas.
- 17. Derive the density matrix for a system in a canonical ensemble.
- 18. The Fermi energy in silver is 5.49 eV. What is the average energy of a free electron in silver at 0K? At what temperature would the molecules of an ideal classical gas have this much average energy?
- 19. The cosmic microwave background radiation (CMBR) has a temperature of ≈ 2.7 K. Find out the wavelength λ_m corresponding to maximum spectral density of the cosmic background radiation. What photon energy corresponds to the maximum U_{λ} ?

C 23368	(Pages : 2)	Name

SECOND SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Physics

PHY 2C 06-MATHEMATICAL PHYSICS-II

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

(8 short questions answerable within 7.5 minutes)
(Answer all questions, each question carries weightage 1.

- 1. How can a function f(z) be expanded where f(z) is singular? Briefly explain.
- 2. Show that three cube roots of unity form an abelian group under multiplication.
- 3. Discuss about the generators of the SU (2) group.
- 4. Using the variation principle discuss the problem on curve of shortest length connecting two points in a plane.
- 5. Explain the role of Lagrange Multipliers.
- 6. Define an integral equation and explain its significance.
- 7. Explain the symmetry property of Dirac-delta function.
- 8. State and provide proof of Cauchy's integral formula.

 $(8 \times 1 = 8 \text{ weightage})$

(4 essay questions answerable within 30 minutes)

Answer any two questions, each question carries weightage 5.

- 9. Obtain the solution to the Poisson's equation using Green's function.
- 10. Show that a twofold homomorphism exists between the group of 2×2 unitary matrices and the SO (3) group.
- 11. Explain the Rayleigh-Ritz variation technique for the computation of approximate solutions to partial differentiation equations.
- 12. Deduce the Cauchy-Reimann condition for a function to be analytic.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

(7 problems answerable within 15 minutes)
(Answer any four questions, each carry Weightage 3)

- 13. Find Laurent series of function $f(z) = \frac{1}{(1-z^2)}$ with centre at z = 1.
- 14. Construct the group multiplication table for the Vierrer group.
- 15. Find the residues of $f(z) = \frac{ze^z}{(z=a)^3}$ at z=a.
- 16. Obtain the eigen functions for Green's function.
- 17. Find the extremals of the functional $\int_{x_0}^{x_1} \frac{{y'}^2}{x^3} dx$.
- 18. Prove that the inverse of the product of two elements of a group is the product of the inverse in reverse order.
- 19. Solve the integral equation $s = \int_{0}^{s} e^{s-t} g(t) dt$.

C 23367	(Pages : 2)	Name

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Physics

PHY 2C 05—QUANTUM MECHANICS-I

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

(8 short questions answerable within 7.5 minutes) (Answer all questions, each carry weightage 1).

- 1. Explain Dirac bra and ket vectors.
- 2. Explain linear vector space.
- 3. Give the basic features of interaction picture.
- 4. State and explain Ehrenfest's theorem.
- 5. Briefly explain addition of angular momenta.
- 6. Explain the properties of Pauli spin matrices.
- 7. Distinguish between symmetric wavefunction and antisymmetric wavefunction.
- 8. What are the applications of quantum harmonic oscillator?

 $(8 \times 1 = 8 \text{ weightage})$

(4 essay questions answerable within 30 minutes) (Answer any two questions, each carry weightage 5).

- 9. Explain what is meant by a Hermitian operator. Show that:
 - (a) The eigen values of a Hermitian operator are real and
 - (b) Eigen functions of a Hermitian operator belongs to different eigen values are orthogonal.
- 10. Discuss the problem of addition if angular momentum in quantum mechanics. Calculate the Clebsch-Gordan co-efficients for $J_1 = \frac{1}{2}$ and $J_2 = \frac{1}{2}$.
- 11. Describe Schrödinger equation for central potentials and hence describe Hydrogen atom.
- 12. Solve the problem of simple harmonic oscillator using operator method.

 $(2 \times 5 = 10 \text{ Weightage})$

Section C

(7 problems answerable within 15 minutes) (Answer any four questions, each carry weightage 3).

- 13. If $[A, L_x] = [A, L_y] = [A, L_x] = 0$. What is the value of $[A^2, L^2]$?
- 14. Show that the expectation value of the momentum P for a bound state of a one particle system is zero for a stationary state.
- 15. Show that the zero-point energy of a linear harmonic oscillator is a manifestation of the uncertainty principle.
- 16. Prove that the spin matrices S_x matrix and S_y have $\pm \frac{h}{2}$.
- 17. The position of an electron is measured with an accuracy of 10^{-6} m. Find the uncertainty in the electron's position after 1 s. Comment on the result.
- 18. Show that the expectation value of an observable, whose operator does not depend on time explicitly, is a constant with zero uncertainty.
- 19. For Pauli's matrices, prove that (i) $\left[\sigma_x, \sigma_y\right] = 2i\sigma_z$. (ii) $\sigma_x \sigma_y \sigma_z = i$.

C 23156	(Pages: 2)	Name

* ` * *	
Reg. No	

SECOND SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2017 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries weightage 1.

- 1. What is the different input methods used in python?
- 2. Define syntax. Discuss the syntax of while loop.
- 3. Briefly discuss the different functions used for creating arrays in python.
- 4. How can we save and restore a python file?
- 5. What is meant by curve fitting?
- 6. Discuss trapezoidal rule for numerical integration.
- 7. Define eigen values and eigen vectors.
- 8. Briefly discuss Euler method for solving ordinary differential equations.
- 9. Discuss Fourier transform.
- 10. Write a short note on logistic maps.
- 11. What are packages? Give examples.
- 12. How can we compute the inverse of a square matrix in python?

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any two questions.

Each question carries weightage 6.

- 13. Write an essay on operators used in python. Discuss operator precedence in python language.
- 14. Illustrate Fourier series. Write python program to generate square wave and sawtooth wave using this technique.

- 15. Explain interpolation and also obtain Newton's forward interpolation formula.
- 16. With suitable flow chart and program, discuss the motion of a body falling in viscous medium.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

Answer any four questions. Each question carries weightage 3.

- 17. What are functions? How can we define and call a function? Give one example,
- 18. Write programs to draw a circle which satisfies the equation:

1.
$$x^2 + y^2 = a^2$$
.

2.
$$x = a\cos(t)$$
 and $y = a\sin(t)$.

19. By using Newton's backward interpolation formula, find the value of y for x = 34 from the following data:

$$x$$
 30 35 40 45 50 y 15 18 21 24 27

- 20. Given $dy/dx = 1 + y^2$ where y = 0 when x = 0. Find y (0.2), y (0.4) and y (0.6) using fourth order Runge Kutta method.
- 21. With Suitable flow chart, discuss the motion of a body under central force.
- 22. Obtain Simpson's one third rule of numerical integration.

99	155	
4 0	TOO	

(Pages: 2)

la	me.	•••••	•••••	•••••	•••••	•••••	••••	•••
•			•••••		•••••		••••	•••

Reg. No.....

V

SECOND SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CUCSS)

Physics

PHY 2C 07—STATISTICAL MECHANICS

(2017 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all **twelve** questions. Each question carries 1 weightage.

- 1. Define chemical potential. How can it be connected to number of microstates (Ω) ?
- 2. Explain the importance of the factor $\frac{1}{n!}$ in the enumeration of number of microstates. Illustrate your answer with an example.
- 3. What is Ensemble? What is the advantage of ensemble formulation of statistical mechanics
- 4. State and explain Virial theorem
- 5. Derive the partition function of an ideal gas.
- 6. Distinguish between Bosons and Fermions.
- 7. Explain Slater determinant.
- 8. Find the number of ways for arranging n fermions in g states $(g \gg n)$.
- 9. Define g-function. Show that $Z \frac{\partial}{\partial z} g_v(z) = g_{v-1}(z)$.
- 10. Show that Raleigh Jeans formula follows from Planks radiation law under low frequency conditions
- 11. Explain Landau diamagnetism.
- 12. Free electron gas at room temperature is a completely degenerate Fermi system-Verify.

2 C 23155

Section B

Answer any **two** questions. Each question carries 6 weightage.

- 13. Explain Gibb's Paradox. How is it resolved?
- 14. Considering a system as a member of canonical ensemble find the most probable number of systems occupying an energy state E_r . Hence derive the partition function for the system.
- 15. Define and explain density matrix. Derive an equation of motion for density matrix. What is its importance?
- 16. Discuss the thermodynamics of ideal Fermi gas at finite, low tempertures (strongly degenerate)

 $[2 \times 6 = 12 \text{ weightage})$

Section C

Answer any **four** questions. Each question carries 3 weightage.

- 17. Assuming that entropy S and statistical factor Ω are arbitrarily related as $S = f(\Omega)$, show that additive nature of S and multiplicative nature of Ω necessarily require that $S = k \ln \Omega$.
- 18. Show that the density fluctuations in grand canonical ensemble is of the order of $(1/\sqrt{N})$ where N is the number of particles in a system.
- 19. 4 particles are to be accommodated in 10 single particle states of equal energy. Calculate the number of ways of distribution if the particles obey i) Fermi-Dirac Statistics; ii) Bose-Einstein Statistics; and iii) Maxwell Boltzman Statistics.
- 20. Show that Bose Einstein condensation involves latent heat.
- 21. Derive Stefan's law from Plank's radiation formula.
- 22. Calculte Fermi energy and Femi temperature for electron gas at relativistic energy.

	99	1	E	1
U	23	T	ี่ย	4

(Pages: 2)

Name	
Reg. No	

SECOND SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Physics

PHY 2C 06—MATHEMATICAL PHYSICS—II

(2017 to 2018 Admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all **twelve** questions. Weightage 1 each.

- 1. Check the function $f(z) = \sin z$ is holomorphic or not.
- 2. What is meant by a harmonic function? Write an example.
- 3. Show that the set of all $n \times n$ unitary matrixes forms a group under matrix multiplication.
- 4. Write any two applications of Group theory in Physics.
- 5. What is Fermat's principle in connection with calculus of variations?
- 6. Write one application of constructing the geodesics on a curved surface.
- 7. What is the storekeeper's control problem?
- 8. Consider a differential equation y'(x) = f(x, y) with $y(x_0) = y_0$. Write an equivalent integral equation.
- 9. What is the meaning of the property G(x, s) = G(s, x) of Green's function?
- 10. Write two properties of one dimensional Green's function.
- 11. Write two physical quantities which can be expressed as a complex number.
- 12. The set of complex numbers $G = \{1, i, -1, -i\}$ under multiplication. Write the multiplication table for this group.

2 C 23154

Part B

Answer any **two** questions. Weightage 6 each.

- 13. Derive Cauchy's Integral formulae.
- 14. What are the properties of a group? Write the group of symmetry transformations of an equilateral triangle.
- 15. Explain the method of Lagrangian multipliers in the calculus of variations. Also describe the example of cylindrical nuclear reactor.
- 16. Describe the Neumann series way of solving integral equations.

 $(2 \times 6 = 12 \text{ weightage})$

Part C

Answer any **four** questions. Weightage 3 each.

- 17. Prove the relation between greens function and Dirac delta function.
- 18. Find the first four terms of the Taylor series expansion of the complex variable function $f(z) = 1 / \{(z-3)(z-1)\}$ about z = 4. Find the region of convergence.
- 19. Write three examples of groups, and explain how they form the specific group.
- 20. Show that the demand electric field energy be minimum leads to Laplace's equation.
- 21. Write any three standard integral transforms and their reverse transforms.
- 22. Find the Green's function corresponding to a linear oscillator using standard boundary conditions.

C 23153	(Pages: 2)	Name

SECOND SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Physics

PHY 2C 05—QUANTUM MECHANICS—I

(2017 to 2018 Admissions)

Time: Three Hours Maximum: 36 Weightage

Section A

(Total 12 questions each answerable within 5 minutes)
Answer all questions, each carries weightage 1.

- 1. What is a Hilbert space?
- 2. Prove that for a Hermitian operator, all of its eigen values are real and the eigen vectors corresponding to different eigen values are orthogonal.
- 3. Show that the expectation value of an operator that does not depend on time and that commutes with the Hamiltonian is constant in time.
- 4. What is a wave packet? Give the physical interpretation.
- 5. Evaluate [J_, J_].
- 6. Distinguish between Schrodinger and Heisenberg pictures of time development.
- 7. What are Spherical Harmonics? How is the Spherical Harmonics related to Legendre polynomials?
- 8. The first excited state of isotropic Harmonic oscillator is three fold degenerate. Justify the statement.
- 9. What is slater determinant?
- 10. Show that rotational symmetry implies the conservation of angular momentum.
- 11. What is differential scattering cross section? What is its unit?
- 12. Under what conditions is the Born approximation for scattering problem is valid? Justify your answer.

 $(12 \times 1 = 12 \text{ weightage})$

2

(4 Essay questions, each answerable within 30 minutes)
Answer any two questions, each carries weightage 6.

- 13. Find the solution of the time-independent Schrödinger equation and energy for the particle of mass m confined to move inside a one dimensional infinitely deep potential well.
- 14. Discuss on the eigen functions and eigen values of L_z and L^2 .
- 15. Discuss the solutions of radial part of the Time-independent Schrodinger equation for the hydrogen atom.
- 16. Illustrate the method of partial waves for elastic scattering with respect to spherically symmetric potential.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

(6 Problem questions, each answerable within 15 minutes) Answer any four questions, each carries weightage 3.

- 17. Evaluate the commutator [x, p] and show that it is representation independent.
- 18. Show that the transformation matrix which connects two complete and orthonormal bases is unitary.
- 19. Show that Poisson bracket of any pair of classical variables can be obtained from the commutator between the corresponding pair of quantum operators by dividing it by i.
- 20. Find the matrix elements of the operator J_v for j = 1.
- 21. Find the energy and wave function for the ground state of Helium atom.
- 22. Calculate the differential cross section for coulomb potential for the first Born approximation.