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CHAPTER 1

INTRODUCTION

1.1 Introduction

Geometric stable(GS) laws is well suited for modeling heavy-tailed

phenomena. Modeling and predicting the behavior of �nancial asset returns

has attracted attention of numerous researchers over the years. Bachelier(1900)

proposed normal distribution to model stock returns. His main idea came from

the Central Limit Theorem: normal distribution provides good approximation

for sum of independent, identically distributed random variables with �nite

variance. Since the price change Y over a given period of time can be regarded

as the sum of changes Xi over shorter periods (that is, monthly change =

sum of daily changes), the distribution of Y can be approximated by normal

law under the assumption of independence, identical distribution, and �nite

variance of Xi's.

Further studies, however, revealed that empirical distributions of �nancial

data had more kurtosis (�fatter tails�) than that predicted by the normal
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Chapter 1. Introduction

approximation. It is not unusual for a stock price to have a relatively large

jump, which is not consistent with the normal hypothesis. In response to

these �ndings, Mandelbrot(1963b) and Fama(1965) proposed symmetric stable

distributions for modeling asset returns.

Stable distributions provide approximations for sums of independent and

identically distributed(i.i.d.) random variables that have heavy tails, and thus

seemed appropriate for modeling leptokurtic data. However, a number of

recent studies, showed inconsistencies with the Paretian stable model, and

alternatives to the stable laws have been proposed for modeling asset returns.

Extending the stability concept of Mandelbrot, Mittnik and Rachev (1993)

considered other distributions, stable with respect to various operations (e.g.,

minimum, maximum, random summation). Fitting these alternative stable

distributions to the stock-index data, they found that the Weibull distribution,

which arises in geometric summation(summation variable follows geometric

distribution)scheme, dominated all other alternative stable laws.

Geometric stable distributions approximate geometric random sums of i.i.d.

random variables, which naturally arise in a variety of applied problems and

are particularly appropriate in modeling heavy tailed phenomena. In �nance,

it was observed that the number of �individual e�ects� that produce a price

change during a period of time is random. Namely, if T is the (random) number

of transactions in one day, and Xi's represent price changes between successive

transactions, then

Y =
T∑
i=1

Xi (1.1)

represents the daily price change of a particular stock or commodity. If T has

a geometric distribution and if T is large, then (appropriately normalized) sum

2



Chapter 1. Introduction

(1.1) can be approximated by a geometric stable law.

The objective of this research work is to study on geometric stable

distributions and their extensions. The study mainly focus on inference,

circular modeling, univariate and multivariate extensions and autoregressive

models of additive structure.

1.2 Review of Literature

Now we consider some basic concepts along with a review of distributions

used in the forthcoming chapters.

1.2.1 Self decomposability

De�nition 1.2.1. A charactristic function ϕ is self-decomposable if for every

a ∈ (0, 1), there exists a characteristic function ϕa such that ϕ(t) = ϕ(at)ϕa(t),

∀t ∈ R

The corresponding distribution is said to belong to class L

De�nition 1.2.2. A charactristic function ϕ is semi self-decomposable if for

some a ∈ (0, 1), there exists a characteristic function ϕa such that ϕ(t) =

ϕ(at)ϕa(t), ∀t ∈ R

1.2.2 Autoregressive Processes

A time series is a set of observations xt, each one being recorded at a speci�c

time t. A discrete time series is one in which the set T0 of times at which

observations are made is a discrete set, for example, observations are made at

�xed time intervals. Continuous time series are obtained when observations

are recorded continuously over some time interval.

3



Chapter 1. Introduction

When we analyse a time series using formal statistical methods, we view

the collection of observations {Xn, n = 1, 2, · · · } as a particular realization

of the stochastic process {Xk}. Hence a complete description of a time

series, observed as a collection of n random variables at arbitrary time points

t1, t2, · · · , tn is provided by the joint distribution function F (x1, x2, · · · , xn) =

P (Xt1 ≤ x1, Xt2 ≤ x2, · · · , Xtn ≤ xn). A special class of time series, is

stationary time series. If the joint probability distribution of {Xt} at any

set of times t1, t2, · · · , tn is same as the joint probability distribution at times

t1 + k, t2 + k, · · · , tn + k, where k is an any arbitrary shift in time, then {Xn}

is called a strictly stationary time series.

An autoregressive time series model of order p ≥ 1, abbreviated as AR(p),

is de�ned as

Xn = ρ1Xn−1 + ρ2Xn−2 + · · ·+ ρpXn−p + ϵn

where {ϵn} is a sequence of independent and identically distributed random

variables, and ρ1, ρ2, · · · , ρp are constants.

AR(1), autoregressive process of order 1, is obtained as

Xn = ρXn−1 + ϵn

and ρ must satisfy the condition |ρ| < 1 to ensure the stationarity of the

process.

1.2.3 Non-Gaussian autoregressive models

Classical time series analysis is based on the normality assumption of the error

variable. But there are many occasions in which the time series are non-normal.

We have later witnessed the emergence of many non Gaussian autoregressive

processes in discrete time. The fact is that many naturally occurring time

4



Chapter 1. Introduction

series are non Guassian. Consider the linear additive autoregreessive equation

Xn = ρXn−1 + ϵn, n = 0,±1,±2, . . . , |ρ| ≤ 1 (1.2)

where {ϵn} is i.i.d. and ϵn is independent of {Xn−1, Xn−2, . . . } . Lawrance(1978)

derived the gamma and the Laplace solution of equation (1.2). Gaver and

Lewis (1980) obtained the exponential solution. Jayakumar(1997) developed

autoregressive model using semi α−Laplace as marginal distribution. For more

details see, Andel(1983), Dewald and Lewis(1985), Sim(1993), Seetha Lekshmi

and Jose(2006).

1.2.4 Angular observations and related measures

Circular data arise in various ways. The two main ways correspond to the two

principal circular measuring instruments, the compass and the clock. Typical

observations measured by the compass include wind directions and directions

of birds. Data of similar type arise from measurements by spirit level or

protractor. Typical observations measured by the clock include the arrival

times(on a 24-hour clock) of patients at a casualty unit in a hospital. Data of

a similar type arise as times of year(or times of month) of appropriate events.

A circular observation can be regarded as a point on a circle of unit radius,

or a unit vector (that is, a direction)in the plane. Once an initial direction

and an orientation of the circle has been chosen, each circular observation can

be speci�ed by the angle from the initial direction to the point on the circle

corresponding to the observation.

Circular data arises in di�erent �elds such as earth sciences, meteorology,

biology and image analysis. In meteorology, wind directions provide a natural

source of circular data. A distribution of wind directions may arise either

as marginal distribution of the wind speed and direction or as a conditional

5



Chapter 1. Introduction

distribution for a given speed. Other circular data arising in meteorology

include the times of day at which thunderstorms occur and the times of year

at which heavy rain occurs. In earth science, spherical data arise readily as the

surface of the earth is approximately a sphere. For example, in estimation of

relative rotations of tectonic plates, the points on the earth's surface considered

to be the observations. In biology, studies of animal navigation lead to circular

data. The incidents of onsets of a particular disease(or of deaths due to the

disease) at various times of year provides circular data in the medicine �elds.

For more details see, Mardia and Jupp(2000).

A circular distribution is a probability distribution whose total probability

concentrated on the circumference of a unit circle. Since such a distribution is

a way of assigning probabilities to di�erent directions or de�ning a directional

distribution, the range of a circular random variable Θ, measured in radians,

may be taken to be [0, 2π] or [−π, π]. A continuous circular probability

density function f(θ) exists and has the following basic properties: (i)

f(θ) ≥ 0;∀θ(ii)
∫ 2π

0
f(θ)dθ = 1 and (iii)f(θ) = f(θ + 2kπ) for any integer

k. The distribution function F (θ) can be de�ned over any interval (θ1, θ2) by

F (θ2)− F (θ1) =
∫ θ2
θ1
f(θ)dθ. If an initial direction and orientation of the unit

circle have been chosen(generally 00 and anticlockwise orientation), then F (θ)

is de�ned as F (θ) =
∫ θ
0
f(θ)dθ.

The characteristic function of a circular random variable Θ having

distribution function F (θ) is de�ned by

Φ(t) = E[eitΘ] =

∫ 2π

0

eitθdF (θ).

6



Chapter 1. Introduction

Since Θ is a periodic random variable having the same distribution as Θ+2π,

the characteristic function of such a random variable has the property,

Φ(t) = E[eitΘ] = E[eit(Θ+2π)] = eit2πΦ(t)

Hence eit2π = 1, whenever there is a Φ(t) with |Φ(t)| ̸= 0. This suggests that

for circular random variables the characteristic function needs to be de�ned

only for integer values. Therefore, the characteristic function of a random angle

Θ is the doubly-in�nite sequence of complex numbers Φ(p) : p = 0,±1,±2, · · ·

given by

Φ(p) = E[eipΘ] =

∫ 2π

0

eipθdF (θ), p = 0,±1,±2, · · · (1.3)

= ρpe
iµ0p (1.4)

Let us write Φ(p) = αp + iβp; Then

αp = E(cos(pΘ)) and

βp = E(sin(pΘ))

The complex numbers Φ(p) : p = 0,±1,±2, · · · are the Fourier coe�cients of

F (see, Feller (1971)). It is possible to write

dF (θ) ∼ 1

2π

∞∑
p=−∞

Φ(p)e−ipθ

If

∞∑
p=1

αp
2 + βp

2 <∞, (1.5)

7



Chapter 1. Introduction

then the random variable Θ has a density f which is de�ned almost every

where by

f(θ) =
1

2π

∞∑
p=−∞

Φ(p)e−ipθ. (1.6)

Equation (1.6) can be written as

f(θ) =
1

2π

1 + 2
∞∑
p=1

[αp cos(pθ) + βp sin(pθ)]

 (1.7)

and the distribution function is given by

F (θ) =
1

2π

θ + 2
∞∑
p=1

[αp sin(pθ) + βp(1− cos(pθ))]/p

 (1.8)

The pth trigonometric moment of Θ is the same as Φ(p). When p = 1,

Φ(1) =α1 + iβ1

=ρ1e
iµ01

where

µ0
1 =µ = arctan(

β1
α1

) is the mean direction and

ρ1 =ρ =

√
α1

2 + β1
2 is the mean resultant length.

The circular variance is given by, V0 = 1− ρ

The circular standard deviation is given by, σ0 =
√

−2log(1− V0)

The coe�cient of skewness is given by, ζ01 = β̄2
(1−ρ)3/2 .

The coe�cient of kurtosis is given by, ζ02 = ᾱ2−ρ4
(1−ρ)2 .

8
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1.2.5 Generalized von Mises distribution

An angular random variable Θ is said to follow the Generalized von Mises

distribution over (0, 2π] if its probability density function is

f(θ) =
1

2πG0(δ, κ1, κ2)
exp{κ1 cos(θ − µ1) + κ2 cos 2(θ − µ2)},

for 0 ∈ [0, 2π), µ1 ∈ [0, 2π), µ2 = [0, π), δ = µ1 − µ2 mod (2π), κ1, κ2 > 0 ,

where G0(δ, κ1, κ2) =
∫ 2π

0
exp{κ1 cos θ + κ2 cos 2(θ + δ)}dθ

We write Θ ∼ GvM(µ1, µ2, κ1, κ2, δ)

1.2.6 Wrapped distributions

Circular distributions can be obtained by wrapping distributions on the real

line around unit circle. In general, if X is any random variable on the real line,

with probability density function g(x), and distribution function G(x), we can

obtain circular random variable Θ by de�ning

Θ ≡ X mod (2π).

The probability density function of Θ, f(θ), is obtained by wrapping g(x)

around the circumference of a unit circle and summing up the overlapping

points:

f(θ) =
∞∑

k=−∞

g(θ + 2πk), 0 ≤ θ ≤ 2π.

The cumulative distribution function is

F (θ) =
∞∑

k=−∞

[G(θ + 2πk)−G(2πk)].

The probability density function f(θ) of the random variable θ, which has a

period 2π, can be written as an in�nite sum of sine and cosine functions on

9



Chapter 1. Introduction

the interval [0, 2π). That is,

f(θ) =
1

2π

1 + 2
∞∑
p=1

[αp cos(pθ) + βp sin(pθ)]


where αp and βp are de�ned by

αp =

∫ 2π

0

cos(pθ)dF (θ), and

βp =

∫ 2π

0

sin(pθ)dF (θ)

1.2.7 Wrapped variance Gamma distribution

An angular random variable Θ is said to follow the wrapped variance gamma

distribution over (0, 2π] if its probability density function is

f(θ) =
γ2λ exp{β(θ − µ)}
√
πΓ(λ)(2α)λ−

1
2

∞∑
m=−∞

exp{βm2π}Kλ− 1
2
(α|θ + 2mπ − µ|)

|θ + 2mπ − µ|λ− 1
2

for θ ∈ [0, 2π), α > 0, β > 0, 0 ≤ |β| < α, λ > 0, 0 ≤ |µ| < α, γ =
√
α2 − β2 >

0 where Kλ(.) is the modi�ed Bessel function of the third kind. We write

Θ ∼ WvG(µ, λ, α, β, γ)

1.2.8 In�nite divisibility

A random variableX is said to be in�nitely divisible if for every positive integer

`n', X can be written as

X
d
= Xn,1 +Xn,2 + · · ·+Xn,n

where Xn,1, Xn,2, · · · , Xn,n are independently and identically distributed

random variables. Thus the distribution function F (x) of X, is said to be

in�nitely divisible if for every positive integer 'n', there exists a distribution

10



Chapter 1. Introduction

function Fn(x) such that

F (x) = Fn(x) ∗ · · · ∗ Fn(x)︸ ︷︷ ︸
n times

which implies that F (x) is the n-fold convolution of Fn(x). Equivalently, a

characteristic function Φ(t) of a random variable X is said to be in�nitely

divisible if for every positive integer 'n', there exists a characteristic function

ϕn(t) such that

ϕ(t) = (ϕn(t))
n.

For more details, see, Laha and Rohatgi (1979). Analogous to this, an

angular random variable Θ (and its probability distribution) is said to be

in�nitely divisible if for every positive integer `n', there exist identically and

independently distributed angular random variables Θ1,Θ2, · · · ,Θn such that

Θ
d
= Θ1 +Θ2 + · · ·+Θn mod (2π).

Equivalently, if the characteristic function of Θ, ϕp, can be factored as

ϕp = (ϕ̃p)
n, for every n ≥ 1

where ϕ̃p is a characteristic function of Θ1, then Θ is said to be in�nitely

divisible (see, Mardia (1972)).

1.2.9 Stable distributions

A random variable X is said to have a stable distribution if it has a domain

of attraction, that is, if there is a sequence of independent and identically

distributed random variables Y1, Y2, . . . and sequences of positive numbers {dn}

and real numbers {an} such that
∑n

i=1 Yi
dn

+ an
d→ X. Stable distribution best

11



Chapter 1. Introduction

described by its characteristic function(see, Samorodnitski and Taqqu(1994)).

The random variable X is said to have a stable distribution if there are

parameters 0 < α ≤ 2, σ > 0,−1 ≤ β ≤ 1, and µ real such that its

characteristic function, ϕ(t) has the following form:

ϕ(t) = exp{−σα|t|αωα,β(t) + iµt} (1.9)

with

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1.

The parameter α is the index of stability and

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

1.2.10 Geometric in�nite divisibility

The concept of geometric in�nite divisibility was introduced by Klebanov et

al.(1984). A random variable X is said to be geometrically in�nitely divisible

if

X
d
=

Np∑
i=1

X(i)
p (1.10)

where Np is a geometric random variable with probability mass function

P (Np = k) = (1− p)k−1p, k = 1, 2, · · · , p ∈ (0, 1); (1.11)

12
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X
(i)
p , i = 1, 2, · · · are independent and identically distributed random variables

and Np and X
(i)
p (i = 1, 2, · · · ) are independent. The relation (1.10) is

equivalent to

ψ(t) =
∞∑
k=1

ϕ(t)k(1− p)k−1p

=
pϕ(t)

1− (1− p)ϕ(t)

where ψ(t) and ϕ(t) are the characteristic functions of X and X
(i)
p respectively.

The class of geometric in�nite divisible distributions is a proper subclass of

in�nitely divisible distributions. Klebanov et al.(1984) established that a

distribution function F with characteristic function ψ(t) is geometric in�nite

divisible if and only if exp{1 − 1
ψ(t)

} is in�nitely divisible. Distributions

such as exponential and Laplace are examples of geometric in�nite divisible

distributions. For more details (see, Klebanov et al.(1984), Mohan et al.(1993),

Fujita(1993) and Pillai(1990))

Jammalamadaka and Kozubowski (2003) de�ned the concept of geometric

in�nite divisibility of an angular random variable. An angular random variable

Θ is said to be geometrically in�nitely divisible if there exist independent and

identically distributed angular random variables Θ1,Θ2, · · · ,Θn such that

Θ
d
= Θ1 +Θ2 + · · ·+ΘNp mod (2π)

where Np has the geometric distribution (1.11) and Np and Θi are independent.

1.2.11 Geometric stable distributions

Geometric stable distributions arise as limiting class in the random summation

scheme, when the number of terms is geometrically distributed. Let Np be a

13
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geometric random variable with mean 1/p:

P (Np = k) = p(1− p)k−1, k = 1, 2, . . .

Let Y,X1, X2, . . . be a sequence of independent and identically distributed

random variables independent of Np. If there exist deterministic a = a(p) >

0 and b = b(p) ∈ ℜ such that

a(p)

Np∑
i=1

(Xi + b(p))
d→ Y, as p→ 0, (1.12)

(see, Kozubowski(1994)), we say that the limiting random variable Y (and its

distribution)is geometric stable(GS). Mittnik and Rachev(1991) obtained the

one-to-one correspondence between characteristic functions of geometric stable

and stable distributions: Y is geometric stable if, and only if, its characteristic

function ψ has the form

ψ(t) = E(exp itY ) = (1− log ϕ(t))−1,

where ϕ(t), the characteristic function of the stable distribution, has the

expression as de�ned in (1.9). Therefore, the characteristic function, ψ(t)

of the geometric stable distribution has the following representation:

ψ(t) = [1 + σα|t|αωα,β(t)− iµt]−1 (1.13)

with

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1,

where α(0 < α ≤ 2) is the index of stability, β(−1 ≤ β ≤ 1) is the skewness

parameter, and µ ∈ ℜ and σ ≥ 0 control location and scale, respectively.
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The most important parameter is the index α, determining the tails of a

geometric stable law. In the special case α = 2, all moments of Y exist,

and the distribution is not heavy tailed. For α < 2 the variance is in�nite, and

the mean is �nite only if 1 < α < 2.

Strictly geometric stable distributions have the characteristic function

ψ(t) = [1 + λ|t|α exp(−iπατ sign(t)/2)]−1

where 0 < α ≤ 2, λ > 0, and |τ | ≤ min(1, 2/α− 1)

1.2.12 Normal-Laplace Distribution

The normal-Laplace distribution was introduced by Reed and Jorgensen

(2004), as the convolution of independent normal and Laplace random

variables. Normal-Laplace distribution is a distribution which (in its

symmetric form) behaves somewhat like the normal distribution in the middle

of its range, and like the Laplace distribution in its tails.

A Normal-Laplace (NL) random variable X with parameters µ,σ2,α and β

can be represented as

X
d
= Y +W (1.14)

where Y and W are independent random variables with Y following normal

distribution with mean µ and variance σ2 and W following an asymmetric

Laplace distribution with probability density function,

f(w) =


αβ
α+β

eβw, for w ≤ 0,

αβ
α+β

e−αw, for w > 0,
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where −∞ < µ <∞,σ2 > 0,α > 0 and β > 0.

The probability density function of X can shown to be

g(x) =
αβ

α + β
ϕ(
x− µ

σ
)

[
R

(
ασ − x− µ

σ

)
+R

(
βσ +

x− µ

σ

)]

where R(z) = 1−Φ(z)
ϕ(z)

is the Mill's ratio where Φ(z) and ϕ(z) are the cumulative

distribution function (c.d.f.) and the probability density function of standard

normal distribution.

We shall refer to this as the Normal-Laplace distribution and write X ∼

NL(α, β, µ, σ2) to indicate that X follows this distribution.

A closed-form expression for the c.d.f of NL(α, β, µ, σ2) can be obtained as

G(x) = Φ(
x− µ

σ
)− ϕ(

x− µ

σ
)
βR
(
ασ − x−µ

σ

)
− αR

(
βσ + x−µ

σ

)
α + β

Since a Laplace random variable can be expressed as the di�erence between

two exponentially distributed variates, a NL(α, β, µ, σ2) random variable, X

can be expressed as

X
d
= µ+ σZ + E1/α + E2/β (1.15)

where E1, E2 are independent standard exponential random variables and Z

is a standard normal random variable, independent of E1 and E2.

From the representation (1.14), it follows that the characteristic function of

NL(α, β, µ, σ2) is the product of the characteristic functions of its normal and

Laplace components. Precisely it is

ϕX(t) =
αβ exp(iµt− t2σ2

2
)

(α− it)(β − it)
(1.16)
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It is clear that as σ → 0, the distribution tends to an asymmetric Laplace

distribution, and as α, β → ∞, it tends to a normal distribution. If only β →

∞, the distribution is that of the sum of independent normal and Exponential

components and has a fatter tail than the normal distribution in its upper tail.

In this case the probability density function is

g1(x) = αϕ(
x− µ

σ
)

[
R

(
ασ − x− µ

σ

)]
.

If only α → ∞, the distribution exhibits extra-normal variation only in the

lower tail and the probability density function is

g2(x) = βϕ(
x− µ

σ
)

[
R

(
βσ +

x− µ

σ

)]

NL(α, β, µ, σ2) probability density function can be represented as a mixture

of the above probability density functions as

g(x) =
β

α + β
g1(x) +

α

α + β
g2(x)

The symmetric NL distribution arises when α = β, with probability density

function

g(x) =
α

2
ϕ(
x− µ

σ
)

[
R

(
ασ − x− µ

σ

)
+R

(
ασ +

x− µ

σ

)]

Reed and Jorgensen(2004) also introduced a generalized normal-Laplace

distribution, which is useful in �nancial applications for obtaining an

alternative stochastic process model to Brownian motion for logarithmic prices,

in which the increments exhibit fatter tails than the normal distribution. Reed

(2007) developed Brownian-Laplace motion for modelling �nancial asset price

returns.
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1.2.13 Mittag-Le�er distribution

The function Eα(z) =
∑∞

k=0
zk

Γ(1+αk)
was �rst introduced by Mittag-Le�er

in 1903. Many properties of the function follow from Mittag-Le�er integral

representation

Eα(z) =
1

2πi

∫
C

tα−1et

tα − z

where the path of integration C is a loop which starts and ends at −∞ and

encircles the circular disc |t| ≤ z
1
α . Pillai(1990a) proved that

Fα(x) = 1− Eα(−xα) =
∞∑
k=1

(−1)k−1xkα

Γ(1 + kα)
, x ≥ 0, 0 < α ≤ 1

are distribution functions, having Laplace transforms ψ(t) = (1 + tα)−1, t >

0. He called Fα(x), for 0 < α < 1, a Mittag-Le�er distribution. The

Mittag-Le�er distribution is a generalization of the exponential distribution,

since for α = 1, we get exponential distribution. Mittag-Le�er distributions

can also be used as waiting-time distributions as well as �rst-passage time

distributions for certain renewal processes.

Pillai(1985) developed α−Laplace distribution with characteristic function

given by (1 + |t|α)−1, 0 < α ≤ 2. This distribution is also known as

Linnik distribution. Jose et al.(2010) introduced generalized Mittag-Le�er

distribution and developed �rst order autoregressive processes with generalized

Mittag-Le�er marginals. A random variable with support over (0,∞) is said

to follow the generalized Mittag-Le�er distribution with parameters α and β

if its Laplace transform is given by

ψ(t) = (1 + tα)−β, 0 < α ≤ 1, β > 0, t > 0. (1.17)
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The cumulative distribution function corresponding to (1.17) is given by

Fα,β(x) =
∞∑
k=0

(−1)kΓ(β + k)xα(β+k)

k!Γ(β)Γ(1 + α(β + k))

It easily follows that when β = 1, we get Pillai's Mittag-Le�er distribution.

When α = 1, we get the gamma distribution. When α = 1, β = 1 we get

the exponential distribution. This family may be regarded as the positive

counterpart of Pakes generalized Linnik distribution characterized by the

characteristic function

(1 + |t|α)−β, 0 < α ≤ 2, β > 0.

(see, Pakes(1998)).

1.2.14 Geometric Mittag-Le�er distribution

The geometric exponential distribution(GED (µ))introduced by Pillai(1990b)

has Laplace transform given by

[
1 + log(1 + µt)

]−1

Pillai (1990b) developed renewal processes with geometric exponential as

waiting time distribution. Geometric exponential distribution can be extended

to obtain the geometric gamma distribution denoted by GGD(µ, λ)whose

Laplace transform is [
1 + λ log(1 + µt)

]−1
.

19



Chapter 1. Introduction

We say that a random variable X on [0,∞) has the geometric Mittag-Le�er

distribution and write X
d
= GML(α) if it has the distribution function

Fα(x) =
∞∑
k=0

(−1)k

k!

∫ ∞

0

Γ(k + t)xα(k+t)e−t

Γ(t)Γ(1 + α(k + t))
.

The Laplace transform of Fα(x) is

ϕα(t) = E(e−tX) =
1

1 + log(1 + tα)
, 0 < α ≤ 1, t > 0.

Note that α = 1, we get the geometric exponential distribution having density

function

g(x) = e−x
∫ ∞

0

e−txt−1

Γ(t)
dt

(see, Jayakumar and Ajitha(2003)). Jose et al.(2010) introduced geometric

generalized Mittag-Le�er distributions having the Laplace transform

(1 + tα)−β, 0 < α ≤ 1, β > 0.

and discussed the applications in various areas like astrophysics, space sciences,

meteorology, �nancial modeling and reliability modeling. Seetha Lekshmi and

Jose(2006) introduced geometric Pakes generalized Linnik distribution and

studied its properties. A random variable X on (−∞,∞) is said to follow

geometric Pakes generalized Linnik distribution and write X
d
= GPGLD(α, λ)

if it has the characteristic function

1

1 + λ log(1 + |t|α)
, 0 < α ≤ 2, λ > 0.

If λ = 1, geometric Pakes generalized Linnik distribution reduces to geometric

α-Laplace distribution.
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1.2.15 Multivariate Laplace distributions

Multivariate Laplace distribution is an important stochastic model that

accounts for asymmetry and heavier than Gaussian tails, while still ensuring

the existence of the second moments. A d-dimensional random vector X ∈ ℜd

is said to follow multivariate symmetric Laplace laws, with parameter Σ if it

has the characteristic function

ϕ(t) =
1

1 + 1
2
t′Σt

,

where t ∈ ℜd,Σ is a dxd nonnegative de�nite matrix(see, Kotz et al.(2001)).

Asymmetric Laplace laws can be de�ned in various equivalent ways, which

we express in the form of their characterizations and representations. Their

signi�cance comes from the fact that they are the only distributional limits for

(appropriately normalized) random sums,

X(1) +X(2) + . . .+X(Np) (1.18)

of independent and identically distributed random vectors (r.v.'s) with �nite

second moments, where Np has geometric distribution with the mean 1/ p

(independent of X(i) 's):

P (Np = k) = p(1− p)k−1, k = 1, 2, . . .

and p converges to zero (see, Mittnik and Rachev (1991)). Since the sums such

as (1.18) frequently appear in many applied problems in biology, economics,

insurance mathematics, reliability, and other �elds, asymmetric Laplace

distributions should have a wide variety of applications. In particular this class

seems to be suitable for modeling heavy-tailed asymmetric multivariate data
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for which one is reluctant to sacri�ce the property of �niteness of moments.

A random vector Y ∈ ℜd is said to have a multivariate asymmetric Laplace

distribution, if its characteristic function is given by

ψ(t) =
1

1 + 1
2
t′Σt− iµ′t

,

where µ ∈ ℜd and Σ is a dxd non negative de�nite symmetric matrix(see,

Kozubowski and Podgórski(2000))

Multivariate extension of the normal-Laplace distribution of Reed and

Jorgenson(2004), namely multivariate normal-Laplace distribution, introduce

in Jose and Manu(2014)as the convolution of multivariate normal(with

parameters η and T ) and multivariate asymmetric Laplace (with parameters

µ and Σ). The ch.f of multivariate normal-Laplace distribution is given by

exp{it′η − 1

2
t′T t}

[
1 +

1

2

(
t′Σt

)
− iµ′t

]−1

, t,µ,η ∈ ℜp,T > 0,Σ > 0.

1.3 Slash Distributions

Kafadar(1988) proposed slash normal distribution, which is a heavy tailed

alternative to the normal distribution. Wang and Genton(2006) generalized

the univariate slash normal distribution to multivariate slash normal and

introduced multivariate skew slash distribution. The standard slash normal

distribution is obtained as the distribution of the ratio Y = X
U1/q , where X

is a standard normal random variable, U is an independent uniform random

variable over the interval (0,1) and q > 0. As q → ∞, we get the standard
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normal distribution. For q = 1, it has the probability density function,

f(y, 1) =


ϕ(0)−ϕ(y)

y2
, x ̸= 0,

ϕ(0)
2
, x = 0,

where ϕ(.) is the probability density function of standard normal distribution.

Tan and Peng(2005) have introduced slash Student's t and skew slash

Student's t distributions and studied their properties. Its probability density

function is,

f(y;m, q) =

∫ 1

0

u1/qf(yu1/q;m)du

where f(.) denotes the probability density function of the Student's t

distribution with m degrees of freedom.

The slash distributions are widely used in simulation studies and robust

procedures for statistical analysis.

1.4 Objectives of the Study

The present study has been undertaken with the following objectives:

1. To introduce generalization of univariate geometric stable distributions

and study its properties

2. To develop estimation procedures for parameters of geometric stable and

generalized geometric stable distributions.

3. To introduce distributions related to geometric stable distributions and

develop autoregressive time series models using these distributions.

4. To introduce normal-geometric stable models and its g.i.d versions and

to derive autoregressive time series models.
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5. To introduce circular versions of new models and study the properties.

6. To extend the models to multivariate case viz multivariate generalized

geometric stable and multivariate generalized normal geometric stable

distributions, study their properties and to develop related processes.

7. Apply the distributions to real data sets and compare the performances

of new models.

1.5 Summary of the Present Work

The thesis is organized into seven chapters. Chapter 1 is introductory which

gives preliminary concepts to the topic of research such as self-decomposability,

geometric in�nite divisibility, circular data, wrapped distributions, stable

distributions etc. The concepts of time series and non-Gaussian autoregressive

models are discussed. We also consider Gaussian non-Gaussian distributions.

Recents works on geometric stable laws are presented.

In Chapter 2, we study the geometric stable distributions and its properties.

Representation of geometric stable variate is developed for simulation. We

derived the moments of the log-transformed GS random variable. Distribution

of weighted sum of independent geometric stable variables is obtained.

Estimation of geometric stable parameters based on log-moments is done.

Asymptotic normality of the estimates are discussed. We introduced a

generalization of geometric stable(GGS) distributions and its distributional

properties are studied. Histograms for di�erent parametric values are

presented. The special cases of GGS distributions mentioned. The absolute

and signed fractional order moments of GGS random variables are derived.

Generalized strictly geometric sable studied and �rst order autoregressive

process of its g.i.d versions developed. Moments of the log-transformed
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GGS variables and weighed sums of GGS independent random variables are

derived. We also extended the parameter estimation of geometric stable

disributions based on log-moments to the the parameters of GGS distributions

and a simulation study conducted to check the performance of the estimation

techniques. We here further extended the GGS distributions to generalized

normal geometric stable distributions(GNGS) and studied its properties.

Geometric GGS distributions(GeoGGS) introduced in Chapter 3 and

discussed its di�erent properties. First order autoregressive process with

GeoGGS marginals developed and extended it to kth order. We also introduced

Geometric GNGS distributions(GeoGNGS) and its properties are discussed.

Autoregressive time series models with GeoGNGS marginals developed.

Circular distributions studied in Chapter 4. Wrapped versions of

GGS (WGGS))distributions introduced and di�erent measures including

trigonometric moments derived. The problem of estimation of parameters

is considered. WGGS distributions further generalized to wrapped generalized

normal geometric stable(WGNGS) distributions. A representation of

WGNGS derived and its in�nite divisibility property is also established.

Di�erent measures including trigonometric moments and other parametrs are

derived. The maximum likelihood procedure developed for the estimation of

parameters.

Chapter 5 is devoted to multivariate extensions. A multivariate

generalization of GGS distributions introduced and its properties discussed. A

representation of multivariate GGS random vector is presented. Multivariate

slash generalized geometric stable distributions is introduced. The multivariate

geometric generalized geometric stable distributions introduced and its

properties are studied. First order autoregressive process with multivariate
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GeoGGS marginals derived and extended it to kth order. Multivariate GNGS

introduced and its properties studied. Multivariate slash GNGS introduced.

Multivariate geometric GNGS distributions introduced and its properties

are studied. First order autoregressive process with multivariate GeoGNGS

marginals is derived

Applications of new models in various context discusses in Chapter 6.

Recommendations are presented in Chapter 7.

The results of this thesis have been presented in various National and

International conferences and have been published/ submitted for publication

of research papers in National/ International journals which are listed below.

Papers Presented in National/International Conferences

1. 'q-Geometric Stable Distributions and Processes' in the International

Conference on Statistics for Twenty-�rst Centuary-2015 (ICSTC-2015)

organized by the Department of Statistics, University of Kerala,

Trivandrum, Kerala, India during 17-19, December 2015.

2. 'A Generalization of Mittag-Le�er Distributions and Related Processes'

in the National Conference on Advances in Statisical Sciences and Annual

Conference of the Kerala Statistical Association held in the Department

of Statistical Science, Kannur University, Kerala, India during 17-18,

February 2017.

3. 'Density Parameter Estimation of Skewed Geometric stable

Distributions' in the National Seminar on Innovative Appproches in
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Statistics organized by the Department of Statistics, St. Thomas'College

(Autonomous), Thrissur, Kerala, India during 15-17 February 2018.

4. 'Wrapped Generalized Geometric Stable Distributions' in the National

Seminar on Recent Trends in Statistical Science(RTSS-2019) and 40th

Annual Conference of Kerala Statistical Association organized by the

Department of Statistics, University of Kerala, Trivandrum, Kerala,

India during 07-09 March, 2019.

Publications

1. K. Jayakumar and T. Sajayan(2020). On Estimation of Geometric

Stable Distributions, Journal of the Indian Society for Probability and

Statistics21, 329�347.

2. T. Sajayan and K. Jayakumar(2022). A pathway model of Mittag-Le�er

distributions and related processes, Far East Journal of Theoretical

Statistics 65, 55-70.

3. K. Jayakumar and T. Sajayan(2022). Wrapped Generalized Geometric

Stable Distributions with an Application to Wind Direction, Far East

Journal of Theoretical Statistics, accepted.
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CHAPTER 2

PARAMETRIC ESTIMATION AND

UNIVARIATE GENERALIZATION

OF GEOMETRIC STABLE

DISTRIBUTIONS

2.1 Introduction

The Geometric stable distributions best described by its characteristic

function. The characteristic function ψ(t) of a GS(α, β, σ, µ) random variable

U is

ψ(t) = (1 + σα|t|αωα,β(t)− iµt)−1 (2.1)
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stable distributions

with

ωα,β(x) =


1− iβ sign(x) tan(πα/2), if α ̸= 1,

1 + iβ (2/π) sign(x) log |x|, if α = 1,

(2.2)

and

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

(2.3)

where α(0 < α ≤ 2) is the index of stability, β(−1 ≤ β ≤ 1) is the skewness

parameter, and µ ∈ ℜ and λ ≥ 0 control location and scale, respectively.

The most important parameter is the index α, determining the tails of a

geometric stable law. In the special case α = 2, all moments of Y exist,

and the distribution becomes asymmetric Laplace.

The geometric stable random variable U has the representation

U =


µZ + Z

1
αX, if α ̸= 1,

µZ + ZX + σZβ(2/π) log(σZ), if α = 1,

(2.4)

where X ∼S(α, β, σ, 0)(see, Samorodnitski and Taqqu(1994)), Z is unit

exponential with distribution FZ(x) = 1 − exp(−x), x > 0, and X and Z

are independent. We write U ∼GS(α, β, σ, µ). Note that the characteristic

function of the random variable X having stable distribution S(α, β, σ, µ) is

ϕ(t) = exp{−σα|t|αωα,β(t) + iµt} (2.5)
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stable distributions

with ωα,β(x) and sign(x) as in (2.2)and (2.3) respectively, where 0 < α ≤ 2, σ >

0,−1 ≤ β ≤ 1, and µ ∈ ℜ. Mittnik and Rachev(1991) showed the one-to-one

correspondence between characteristic functions of geometric stable and stable

distributions: Y is geometric stable if, and only if, its characteristic function

ψ has the form

ψ(t) = E(exp itY ) = (1− log ϕ(t))−1 (2.6)

where ϕ(t) is the characteristic function of the stable variable X as de�ned in

(2.5).

Mittag-Le�er and Linnik distributions are the two special cases of

geometric stable laws, studied extensively in recent years(see, Jayakumar

and Pillai(1993), Kozubowski(2001) and Jayakumar et al .(2010)). Its

generalizations and applications to �nancial data are studied by di�erent

authors.

In the section below we present a representation for simulation geometric

stable random variable

2.2 Simulation of GS distributions

The most widely used technique of simulation of random variables is the

inversion method. It is based on the following fact: if a random variable

Y has distribution function F , then

Y
d
= F−1(U),
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stable distributions

where F−1 is a function inverse to the distribution function F and U is a

uniform random variable on (0,1). In the above representation of geometric

stable random variable, we should simulate the stable random variable X to

simulate the geometric stable random varaible U . The inversion method is not

suitable in the case of stable laws since there is no analytic expressions for F

of stable laws, except for few special cases.

However, we can represent a stable random variable as a function of two

independent random variables (uniform and exponential) (see, Chambers et

al.(1976)). Then, via the representation of geometric stable laws given by

(2.4) we should be able to express a geometric stable random variable U as

follows(see, Kozubowski and Rachev(1994)):

U =


µZ + (Z/L)

1
αLσHαβ(π(S − 1

2
)), α ̸= 1,

µZ + σZKαβ(π(S − 1
2
), L) + σZβ(2/π) log(σZ), α = 1,

(2.7)

where Z, L and S are independent with Z, L ∼ exp(1) and S ∼ U(0, 1) .

Hαβ(x) and Kαβ(x, y) are de�ned as

Hαβ(x) =
sin[α(x− c)]

(cosx)1/α
(cos[x− α(x− c)])

1−α
α , x ∈ (−π

2
,
π

2
), (2.8)

with

c = c(α, β) =


−β.(1

2
π)K(α)/α, if α < 1,

β.(1
2
π)K(α)/α, if α > 1,

where K(α) = min(α, 2− α), and

Kαβ(x, y) =
2

π

(
(
1

2
π + βx) tanx− β log(

1
2
πy cosx
1
2
π + βx

)

)
, y > 0, x ∈ (−π

2
,
π

2
).

(2.9)
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In the present chapter, we focus on properties of the geometric stable

distributions and the problem of estimation of its parameters. A representation

of geometric stable variate for the purpose of simulation developed. We

derive the moments of the log-transformed geometric stable random variable.

Distribution of weighted sum of independent geometric stable variables

developed. Based on the moments of log-transformed variable and weighted

sum property, we developed an estimation technique for the parameters

of geometric stable distributions. Asymptotic normality of parameters is

discussed.

2.3 Moments of the log-transformed geometric

stable random variable U ′

We derive the log-moments of the random variable U in (2.4). Applying

the log-transformation to the mixture representation (2.4) for the case µ =

0 and α ̸= 1, we obtain

U ′ =
1

α
Z ′ +X ′ (2.10)

where U ′ = log|U |, Z ′ = log(Z), andX ′ = log|X|

It is straight forward to show the following non-central moments of the

random variable Z ′:(see Cahoy(2013))

E(Z ′) = −C, E(Z ′2) = C2 +
π2

6
= C2 + ψ1

E(Z ′3) = −C3 − Cπ2

2
− 2ζ(3), E(Z ′4) = C2(C2 + π2) +

3π4

20
+ 8Cζ(3)

where C = 0.57721566 · · · = −ψ0, ψ1 =
π2

6
, ζ(3) = 1.2020569 . . .

Here C is the Euler's constant and ψ0 is the digamma function evaluated
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at 1. The functions ψ1, ψ2 are the �rst and second di�erentials of ψ(τ) (or

polygamma ) evaluated at 1, and ζ(τ) is the Riemann zeta function. The

following are the log-moments of the random variable X ∼ S(α, β, σ, 0) (see

Kuruo§lu(2001)):

L1 = E(X ′) = ψ0

(
1− 1

α

)
+

1

α
log

∣∣∣∣ γ

cos θ

∣∣∣∣ (2.11)

L2 = E(X ′ − L1)
2 = ψ1

(
1

2
+

1

α2

)
− θ2

α2
(2.12)

L3 = E(X ′ − L1)
3 = ψ2

(
1− 1

α3

)
(2.13)

where γ = σα and θ = arctan(β tan(απ
2
)).

Taking expectation of (2.10) and using the above moments, we get the mean

and variance

L′
1 = E(U ′) = −C+

1

α
log

∣∣∣∣ κ

cos θ

∣∣∣∣ and L′
2 = V(U ′) =

π2

α23
+
π2

12
− θ2

α2
.

(2.14)

A similar calculation yields the third central moment as

L′
3 = E(U ′ − L′

1)
3 = ψ2

(
1− 3

α3

)
. (2.15)

Note that higher order moments L4
′, L5

′, . . . can be calculated in a similar

manner.

2.4 Weighted Sums of Independent GS Variates

Let Yk ∼ GS(α, β, σ, µ) be independent geometric stable variates that are

identically distributed. Then the distribution of a weighted sum of these

variables with the weights ak can be derived using a set of S(α, β, σ, 0) random
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variables Xk. De�ne T =
∑
akXk and Yk = µZ + Z

1
αXk. Then

T =
n∑
k=1

akXk ∼ S

α,∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,
n∑
k=1

|ak|ασ, 0

 ,

where x⟨p⟩ = sign(x)|x|p (see, Kuruo§lu(2001)) and Z ∼ exp(1) and is

independent of Xk. Then,

∑
akYk =

∑
ak

(
µZ + Z

1
αXk

)
=

 n∑
k=1

akµ

Z + Z
1
α

 n∑
k=1

akXk


∼ GS

α,∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,
n∑
k=1

|ak|ασ,
n∑
k=1

akµ

 .

This provides a convenient way to generate sequences of independent

geometric stable random variables with µ = 0, β = 0, or with zero values

for both µ and β(except when α = 1). We call these the centered, deskewed

and symmetrized sequences, respectively:

Yk
C = Y3k + Y3k−1 − 2Y3k−2

∼ GS

(
α,

[
2− 2α

2 + 2α

]
β, [2 + 2α]σ, 0

)
, (2.16)

Yk
D = Y3k + Y3k−1 − 21/αY3k−2

∼ GS
(
α, 0, 4σ, [2− 21/α]µ

)
, (2.17)

Yk
S = Y2k − Y2k−1 ∼ GS (α, 0, 2σ, 0) . (2.18)
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Using such sequences, we may apply methods for symmetric variates to skewed

variates and we may apply skew-estimation methods for centered variates to

noncentered variates, with the e�ective loss of some sample.

2.5 Estimation for GS(α, β, σ, µ) distributions

We discuss in this section the issue of parameter estimation of geometric

stable laws. Kozubowski(1999) proposed an estimation procedure for the

parameters of geometric stable distributions based on empirical characteristic

function. The draw back of the method include the lack of optimality

properties for estimators, and possible di�culties with choosing the required

constants. We utilizes here the concept of Cahoy(2013)for estimation, where

the method of moments, based on moments of log-transformed random variable

for the estimation of parameters Mittag-Le�er distributions. Here we use the

moments of the random variable U ′ de�ned in Section 2.3 for the estimation of

parameters of geometric stable laws. Equating the sample moments and actual

moments, we may readily solve for the characteristic exponent α using the L′
3

and θ from L′
2 by substituting estimate of α. The estimate of γ obtained

from L′
1 by substituting both the estimate of α and θ. However estimation

based on higher order moments is not a good practice. We therefore adopt the

centro-symmetrization procedure; therefore we solve for α using L′
2. This α

estimate may then be used to solve the L′
2 of the skewed process for the skew

parameter β. Similarly, L′
1 is solved for σ.

The resulting estimators may be summarised as follows:

Logarithmic estimator for α: Apply centro-symmetrization as given by

equation (2.18) to the observed data to obtain transformed data.
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Estimate L2
′ for the transformed data and hence, estimate

α̂ =

 3

π2

(
L2

′ − π2

12

)−1/2

. (2.19)

Logarithmic estimator for β: Assume an estimate of α is available and

that data with µ = 0 has been obtained, by centering as given by equation

(2.16). Estimate L2
′ for the data, and hence

|θ| =

α2

(
π2

12
− L2

′

)
+
π2

3

1/2

. (2.20)

Estimate β using β = tan θ
tan(απ/2)

. Since we have applied centering, it is

necessary to transform the resulting β by dividing by 2−2α̂

2+2α̂

Logarithmic estimator for σ: As for β estimate, we assume data with µ =

0. Estimate L1
′ for this data, and hence

γ̂ = cos(θ) exp
{
α
(
L1

′ + C
)}

(2.21)

and hence

σ̂ = (γ̂)1/α̂.

Since, we apply centering, transform the resulting σ by dividing 2 + 2α̂

to obtain the actual estimate of σ.
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2.6 Interval estimation for GS(α, β, σ, µ)

distribution

We study the limiting distribution of our estimator α̂ and σ̂ from the

geometric stable distribution GS(α, 0, σ, 0) for α ̸= 1. If we let

L̂1
′ = µ̂U ′ =

1

n

n∑
j=1

Uj
′ and L̂2

′ = ˆσU ′2 =
n∑
j=1

(
U ′
j − U

)2
/n,

then, the standard two dimensional central limit theorem implies, as n → ∞,

the following convergence,

√
n

 L̂1
′ − L1

′

L̂2
′ − L2

′

 d→ N


 0

0

 ,

 L2
′ L3

′

L3
′ L4

′ − L2
′2


 ,

where L1
′, L2

′, L3
′, L4

′ are the moments de�ned in section 2.3.

Now to show the asymptotic normality of the estimators, we use Cramer's

theorem (see, Ferguson(1996)). Let

g(L1
′, L2

′) = g(µU ′ , σU ′
2) = exp(L1

′ + C).
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Then the gradient becomes ġ(L1
′, L2

′) =

 exp(L1
′ + C)

0

. This implies that

√
n(σ̂ − σ)

d→ N(0, σσ
2) where

σσ
2 =ġ(L1

′, L2
′)
′

 L2
′ L3

′

L3
′ L4

′ − L2
′2

 ġ(L1
′, L2

′)

=

(
π2

3α2
+
π2

12

)
exp(2(L1

′ + C))

=

(
π2

3α2
+
π2

12

)
σ2.

Similarly,
√
n(α̂− α)

d→ N(0, σα
2), where

σα
2 =

(
−12π

(12L2
′ − π2)3/2

)2 (
L4

′ − L2
′2
)

=
144π2

(12L2
′ − π2)3

(
L4

′ − L2
′2
)
.

The above expression for σα
2 obtained by substituting

g(L1
′, L2

′) =
2π√

12L2
′ − π2

and

ġ(L1
′, L2

′) =

 0

−12π
(12L2

′−π2)3/2

 .

Therefore, we have shown that our estimates are normally distributed

(asymptotically unbiased) as the sample size n goes large. Consequently, we

can approximate the (1− ϵ)% con�dence interval for α and σ as α̂± zϵ/2

√
σ̂α

2

n

and σ̂ ± zϵ/2

√
σ̂σ

2

n
respectively, where

σ̂σ2 =

(
π2

3α̂2
+
π2

12

)
σ2
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and

ˆσα2 =
144π2

(12L2
′ − π2)3

(
L̂4

′ − ˆ
L2

′2
)
,

zϵ/2 is the (1 − ϵ/2)th quantile of the standard normal distribution, and 0 <

ϵ < 1.

2.7 Generalized geometric stable distributions

Now we introduce and study, a new class of distributions called generalized

geometric stable(GGS) distributions.

De�nition 2.7.1. A random variable V is said to have generalized geometric

stable distribution GGS(λ, α, β, σ, µ) if there are parameters 0 < α ≤ 2, λ >

0,−1 ≤ β ≤ 1, σ > 0, and µ real such that its characteristic function, ϕ(t) has

the following form:

ϕ(t) = [1 + σα|t|αωα,β(t)− iµt]−λ (2.22)

where

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1.

and

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

Special cases: GGS laws becomes geometric stable laws when λ = 1.

For β = 0 and µ = 0 it becomes generalized Linnik (see Pakes(1998))and

Linnik if λ = 1, β = 0 and µ = 0. Generalized Mittag-Le�er (see Jose

et al .(2010))distributions, which are GGS with λ ̸= 1, 0 < α < 1, σ =
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σ[cos(πα
2
)]1/α, β = 1 and µ = 0.

Detailed list of special cases of GGS laws is presented in the Table 2.1.

Distribution Charcteristic function Parametric values

Geometric Stable [1 + σα|t|αωα,β(t)− iµt]−1 0 < α ≤ 2, λ = 1,−1 ≤ β ≤ 1,
σ > 0, µ ∈ R

Generalized Linnik [1 + σα|t|α]−λ 0 < α ≤ 2, λ > 0, β = 0,
σ > 0, µ = 0

Linnik [1 + σα|t|α]−1 0 < α ≤ 2, λ = 1, β = 0,
σ > 0, µ = 0

Generalized Asymmmetric [1 + σ2|t|2 − iµt]−λ α = 2, λ > 0, β = 0,
Laplace σ > 0, µ ∈ R

Generalized Symmmetric [1 + σ2|t|2]−λ α = 2, λ > 0, β = 0,
Laplace σ > 0, µ = 0

Asymmmetric Laplace [1 + σ2|t|2 − iµt]−1 α = 2, λ = 1, β = 0,
σ > 0, µ ∈ R

Symmetric Laplace [1 + σ2|t|2]−1 α = 2, λ = 1, β = 0,
σ > 0, µ = 0

Generalized Mittag-Le�er [1 + σα(−it)α]−λ 0 < α < 1, σ = σ[cos(πα2 )]1/α,
β = 1 and µ = 0, λ > 0

Mittag-Le�er [1 + σα(−it)α]−1 0 < α < 1, σ = σ[cos(πα2 )]1/α,
β = 1 and µ = 0, λ = 1

Gamma [1− µit]−λ α = 1, σ = 0,
β = 1 and µ > 0, λ > 0

Exponential [1− µit]−1 α = 1, σ = 0,
β = 1 and µ > 0, λ = 1

Table 2.1: Special cases of GGS laws.

Theorem 2.7.1. Let X be a GGS(1
δ
, α, β, δ

1
ασ, δµ) random variable, we write

X ∼ DeS(δ, α, β, σ, µ). Then X becomes S(α, β, σ, µ) with characteristic

function given in (1.9), as δ → 0.

Proof. Since X ∼ GGS(1
δ
, α, β, δ

1
ασ, δµ)),

ϕX(t) =
[
1 + δσα|t|αωα,β(t)− iδµt

]− 1
δ

Therefore,

lim
δ→0

ϕX(t) = lim
δ→0

[
1 + δσα|t|αωα,β(t)− iδµt

]− 1
δ

= exp{−σα|t|αωα,β(t) + iµt}.
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Proposition 2.7.2. Let V∼ GGS(λ, α, β, σ, µ) and X ∼S(α, β, σ, 0). Then

V =


µW +W

1
αX, if α ̸= 1,

µW +WX + σWβ(2/π) log(W ), if α = 1,

(2.23)

where W is gamma distributed with scale parameter 1 and shape parameter λ

and is independent of X.

Proof. Case 1: α ̸= 1

ϕV (t) = E[eitV ]

= EwE[e
itV |W = w]

= EwEX [e
it(µw+w

1
αX)|W = w]

= Ew[e
itµwEX [e

i(tw
1
α )X ]]

= EW [eitµwe−σ
α|tw

1
α |αωα,β(tw

1
α )]

= EW [e−wσ
α|t|αωα,β(t)+itµw]

= EW [e−(σα|t|αωα,β(t)+itµ)w]

= [1 + σα|t|αωα,β(t)− itµ]−λ.
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Case2: α = 1

ϕV (t) = E[eitV ]

= EW [eit(µW+WX+σWβ(2/π) log(W ))]

= EW [eit(µW+σWβ(2/π) log(W ))EX [e
i(tW )X ]]

= EW [eit(µW+σWβ(2/π) log(W ))e−|σtW |ωα,β(tW )]

= EW [eit(µW+σWβ(2/π) log(W ))e−|σtW |[1+iβ(2/π)sign(tw) log |tw|]]

= EW [eitµW−σ|t|W−iβσ|t|W (2/π)sign(t) log |t|]

= EW [eW{itµ−σ|t|−iβσ|t|(2/π)sign(t) log |t|}]

= [1− itµ+ σ|t|+ iβσ|t|(2/π)sign(t) log |t|]−λ

= [1 + σ|t|(1 + iβ(2/π)sign(t) log |t|)− itµ]−λ

= [1 + σ|t|ωα,β(t)− itµ]−λ.

For the purpose of simulation, we derived the representation of GGS

random variable using (2.23). Then we have the random variable U having

GGS distribution admits the representation:

U =


µW + (W/L)

1
αLσHαβ(π(s− 1

2
)), if α ̸= 1,

µW +WσKαβ(π(s− 1
2
), L) + σWβ(2/π) log(σW ), if α = 1,

(2.24)

where Hαβ(x) and Kαβ(x, y) are as de�ned in (2.8) and (2.9) respectively and,

W , L and S are independent with W ∼ G(1, λ), L ∼ exp(1) and S ∼ U(0, 1).
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Figure 2.1: Histograms of GGS(λ = 1, 5, 50) for α = 1.2, σ = 2, β = 0 and
µ = 1(top) and for α = 1, σ = 2, β = 0 and µ = 1 (bottom).

The Figure 2.1 shows the histograms of simulated data of 2850 observations

drawn from GGS distributions for di�erent values of λ viz λ = 1, 5, 50. The

top row panels shows histograms for α ̸= 1(that is, α = 1.2) and bottom panels

for α = 1, for �xed β = 0, σ = 2, µ = 1. It captures the variations of the model

especially peakedness, for the values of λ.

2.7.1 Limits of random sums:

Recall that geometric stable distributions are the only possible (weak)

limiting distributions of (normalized) geometric random sums (1.10) as p →

0. A similar result holds true for the GGS distributions under Negative

Binomial(NB) random summation. Let Np,λ be an NB random variable with

parameters p ∈ (0, 1), λ > 0, so that

P (Np,λ = k) =
Γ(λ+ k)

Γ(λ)Γ(k + 1)
pλ(1− p)k−1, k = 1, 2, . . . . (2.25)

43



Chapter 2. Parametric estimation and univariate generalization of geometric

stable distributions

and let Y,X1, X2, . . . be a sequence of independent and identically distributed

GGS random variables independent of Np,λ and there exist deterministic a =

a(p) > 0 and b = b(p) ∈ ℜ such that

a(p)

Np,λ∑
i=1

(Xi + b(p))
d→ Y, as p→ 0. (2.26)

2.8 Moments of generalized geometric stable

distributions

Here we derived the absolute and signed fractional order moments of GGS

random variable V

Theorem 2.8.1. Let V ∼ GGS(λ, α, β, σ, 0). Then for α ̸= 1

E|V |q =
Γ(λ+ q

α
)

Γλ

Γ(1− q
α
)

Γ(1− q)

∣∣∣∣ γ

cos θ

∣∣∣∣ qα cos( qθ
α
)

cos( qπ
2
)

(2.27)

for q ∈ (−1, α) ∩ (−λ
α
,∞) where γ = σα and θ = arctan(β tan(απ

2
))

Proof. Since, V = W
1
αX where W and X are independent random variables

de�ned in (2.23). Therefore

E|V |q =E[W
1
αX]q

=E[W
q
α ]E[X]q

=
Γ(λ+ q

α
)

Γλ

Γ(1− q
α
)

Γ(1− q)

∣∣∣∣ γ

cos θ

∣∣∣∣ qα cos( qθ
α
)

cos( qπ
2
)

Here we used the fact that E[W
q
α ] =

Γ(λ+ q
α
)

Γλ
for q ∈ (−λ

α
,∞) and EXq =

Γ(1− q
α
)

Γ(1−q)

∣∣ γ
cos θ

∣∣ qα cos( qθ
α
)

cos( qπ
2
)
for q ∈ (−1, α) (see, Kuruo§lu(2001))
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Special case: Let λ = 1, β = 1, σ = σ(cos(πα
2
))

1
α , then we get

EV q =
qσqπ

αΓ(1− q) sin( qπ
α
)
,

this is the qth fractional moment of the Mittag-Le�er random varaible

ML(α, σ)

Theorem 2.8.2. Let V ∼ GGS(λ, α, β, σ, 0). Then, for α ̸= 1

E[V <q>] =
Γ(λ+ q

α
)

Γλ

Γ(1− q
α
)

Γ(1− q)

∣∣∣∣ γ

cos θ

∣∣∣∣ qα sin( qθ
α
)

sin( qπ
2
)

(2.28)

for q ∈ [(−1, α) ∪ (−2,−1)] ∩ [(−λ
α
,∞)]

Proof.

E[V <q>] = E[sign(V )|V |q]

= E[sign(W
1
αX)|W

1
αX|q]

= E[sign(X)W
q
α |X|q]

= E[W
q
α ]E[sign(X)|X|q]

= E[W
q
α ]E[X<q>]

=
Γ(λ+ q

α
)

Γλ

Γ(1− q
α
)

Γ(1− q)

∣∣∣∣ γ

cos θ

∣∣∣∣ qα sin( qθ
α
)

sin( qπ
2
)
,

here we used the result E[X<q>] =
Γ(1− q

α
)

Γ(1−q)

∣∣ γ
cos θ

∣∣ qα sin( qθ
α
)

sin( qπ
2
)
for q ∈ (−1, α) ∪

(−2,−1)(see, Kuruo§lu(2001))
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2.9 Generalized strictly geometric

stable(GStGS) distribution

Generalized strictly GS distributions have the characteristic function

ψ(t) = [1 + σα|t|α exp(−iπαβ sign(t)/2)]−λ,

where 0 < α ≤ 2, σ > 0, λ > 0 and |β| ≤ min(1, 2/α− 1).

2.9.1 Self decomposabilty

Consider the characteristic function of GStGS distribution

ψX(t) = [1 + σα|t|α exp(−iπαβ sign(t)/2)]−λ.

Then,

ψX(t)

ψX(at)
= ψa(t) =

[
aα + (1− aα)

1

1 + σα|t|α exp(−iπαβ sign(t)/2)

]λ

where ψa(t) is the characteristic function of the λ-fold convolutions of random

variables Un de�ned in (2.33). Hence GStGS distribution is self-decomposable.

2.9.2 AR(1) model with GStGS marginals

The �rst order GStGS autoregressive process(GStGSAR(1))is constituted by

{Xn, n ≥ 1}, where Xn satis�es the equation,

Xn = aXn−1 + ϵn; a ∈ (0, 1) and ∀n > 0 (2.29)

where {ϵn} is a sequence of independently and identically distributed random

variables such that Xn is stationary Markovian with GStGS marginal
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distribution. In terms of characteristic function the model de�ned in (2.29)

can be given as

ϕXn(t) = ϕXn−1(at)ϕϵn(t) (2.30)

Assuming stationarity, we have

ϕϵ(t) =
ϕX(t)

ϕX(at)
(2.31)

=

[
aα + (1− aα)

1

1 + σα|t|α exp(−iπαβ sign(t)/2)

]λ
(2.32)

Hence, we can regard {ϵn} as the η-fold convolutions of random variables Un's

such that

Un =


0, with probability aα,

Ln, with probability 1− aα,

(2.33)

where Ln's are independently and identically distributed strictly geometric

stable random variables.

2.10 Moments of the log-transformed GGS

random variable V ′

Taking the logarithm of the mixture representation of the GGS distributed

random variable V in (2.23), for µ = 0 and α ̸= 1 gives,

V ′ =
1

α
W ′ +X ′ (2.34)

where V ′ = log|V |, W ′ = log(W ) andX ′ = log|X| .
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To obtain the moments of V ′, �rst we need to get the moments of W ′.

The characteristic function of W ′ can be shown as

ϕW ′(t) = E exp(itW ′) = EW it =
Γ(λ+ it)

Γ(λ)

where i =
√
−1. Using the logarithmic expansion of the gamma function, we

get the cumulant generating function

log
(
ϕW ′(t)

)
=

∞∑
k=1

(it)k

k!
ck

where the kth cumulant is given by,

ck = ψ(k−1)(λ), where ψ(0)(λ) = ψ(λ).

The mean and variance ofW ′ are µ′
1 = c1 = ψ(λ) and µ2 = c2 = ψ(1)(λ), where

ψ(λ) and ψ(1)(λ) are the digamma and trigamma functions, respectively. For

k ≥ 3, the kth cumulant is the polygamma function of order k − 2 evaluated

at λ. The kth order integer moment can be calculated using the formula

ψ(k−1)(λ) = µ′
k −

k−1∑
j=1

(
k − 1

j − 1

)
cjµ

′
k−j.

This implies that µ′
1 = c1 = ψ(λ), µ′

2 = c2 + c21 = ψ(1)(λ) + ψ(λ)2, µ′
3 = c3 +

3c2c1+c
3
1 = ψ(2)(λ)+3ψ(1)(λ)ψ(λ)+ψ(λ)3, µ′

4 = c4+4c3c1+3c22+6c2c
2
1+c

4
1 =

ψ(3)(λ) + 4ψ(2)(λ)ψ(λ) + 3ψ(1)(λ)2 + 6ψ(1)(λ)ψ(λ)2 + ψ(λ)4 and so on.
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Now we can derive the moments of V′ using the moments of X ′ in Section 2.3 :

M ′
1 = E(V ′) =

1

α
ψ(λ) + ψ0

(
1− 1

α

)
+

1

α
log

∣∣∣∣ γ

cos θ

∣∣∣∣ , (2.35)

M ′
2 = V(V ′) =

1

α2
ψ(1)(λ) + ψ1

(
1

2
+

1

α2

)
− θ2

α2
, (2.36)

and M ′
3 = µ3(V

′) =
1

α3
ψ(2)(λ) + ζ(3)

(
1− 1

α3

)
. (2.37)

2.11 Weighted sums of Independent GGS

variates

Let Yk
′ ∼ GGS(λ, α, β, σ, µ) be independent GGS variates that are identically

distributed. Then the distribution of a weighted sum of these variables with

the weights ak can be derived using a set of S(α, β, σ, 0) random variables Xk.

De�ne T =
∑
akXk and Yk

′ = µW +W
1
αXk. Then

T =
n∑
k=1

akXk ∼ S

α,∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,
n∑
k=1

|ak|ασ, 0


where x⟨p⟩ = sign(x)|x|p (see, Kuruo§lu(2001)) and W is gamma distributed

with scale parameter 1 and shape parameter λ, and is independent of Xk.

Then,

∑
akYk

′ =
∑

ak

(
µW +W

1
αXk

)
=

 n∑
k=1

akµ

W +W
1
α

 n∑
k=1

akXk


∼ GGS

λ, α,∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,

n∑
k=1

|ak|ασ,
n∑
k=1

akµ

 .

This provides a convenient way to generate sequences of independent GGS

random variables with µ = 0, β = 0, or with zero values for both µ and
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β(except when α = 1). We call these the centered, deskewed and symmetrized

sequences, respectively:

Yk
′C = Y3k

′ + Y ′
3k−1 − 2Y3k−2

′

∼ GGS

(
λ, α,

[
2− 2α

2 + 2α

]
β, [2 + 2α]σ, 0

)
, (2.38)

Yk
′D = Y3k

′ + Y3k−1
′ − 21/αY3k−2

′

∼ GGS
(
λ, α, 0, 4σ, [2− 21/α]µ

)
, (2.39)

Yk
′S = Y2k

′ − Y2k−1
′ ∼ GGS (λ, α, 0, 2σ, 0) . (2.40)

Using such sequences, we may apply methods for symmetric variates to skewed

variates and we may apply skew-estimation methods for centered variates to

noncentered variates, with the e�ective loss of some sample.

2.12 Estimation for GGS(λ, α, β, σ, µ)

distributions

We use a similar procedure of geometric stable distributions, for parametric

estimation GGS distributions. We apply the centro-symmetrization procedure;

therefore, we set θ = 0 and obtain α and λ solvingM2
′ andM3

′. The estimates

of α and λ may then be used to solve M2
′ of the skewed process for the

parameter θ and hence β. Similarly, M1
′ is solved for γ and hence σ.

Logarithmic estimator for α and λ: Apply centro-symmetrization as

given by equation (2.40) to the observed data. Estimate M2
′ and M3

′

for the transformed data and solve M2
′ and M3

′ for α and λ. That is
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the estimates α̂ and λ̂ are the solutions of the equations

M̂2
′ =

1

α2
ψ(1)(λ)+ψ1

(
1

2
+

1

α2

)
and M̂3

′ =
1

α3
ψ(2)(λ)+ζ(3)

(
1− 1

α3

)
.

Here we consider an approximation based on the �rst few terms of the

series representation of the digamma function.

Logarithmic estimator for β: By centering as (2.38) and assuming

estimates of α and λ are available, we estimate M2
′ for this data and

hence estimate θ as follows:

|θ| = α

(
1

α2
ψ(1)(λ) + ψ1

(
1

2
+

1

α2

)
−M2

′

)1/2

.

Estimate of β is

β =
tan(θ̂)

tan(α̂π/2)

(
2− 2α̂

2 + 2α̂

)
.

Logarithmic estimator for σ: For the estimate of γ we apply the centering

given by (2.38). Estimate M1
′ for the transformed data and hence the

estimate is

γ̂ = exp

{
α

(
M1

′ +
1

α
(ψ0 − ψ(λ))− ψ0

)}
.

Hence, σ̂ = γ̂
1
α̂

2+2α̂

The series representation of the digamma function ψ(τ) is

ψ(τ) = log(τ)− 1

2τ
− 1

12τ 2
+

1

120τ 4
− 1

252τ 6
+O(

1

τ 8
).

Therefore, we approximate ψ(τ) as

ψ(τ) = log(τ)− 1

2τ
− 1

12τ 2
+

1

120τ 4
− 1

252τ 6
.

51



Chapter 2. Parametric estimation and univariate generalization of geometric

stable distributions

This results approximation of ψ(1)(τ) as ψ(1)(τ) = 1
τ
+ 1

2τ2
+ 1

6τ3
− 1

30τ5
+ 1

42τ7

and the approximation of ψ(2)(τ) as ψ(2)(τ) = 1
30τ6

− 1
τ2

− 1
τ3

− 1
2τ4

− 1
6τ8

.

We carry out a simulation study to obtain the estimates of of the

parameters λ, α, β and σ. For di�erent values of the parameters, we

generated 10000 random samples of sizes n=30, 100, 200, 500, 20000 each

from the GGS(λ, α, β, σ, 0 ) distribution, and computed the bias and the

root-mean-square error (RMSE). The results obtained are given in Table 2.2.

From the results, it is evident that for each values of the parameters, the values

of bias and RMSEs decrease as the sample size increases.

Table 2.2: Average values of bias and RMSEs using di�erent values of
λ, α, β and σ for sample sizes n=30, 100, 200, 500, 20000 corresponding to
GGS(λ, α, β, σ, 0) distribution

Bias RMSE

(λ, α, β, σ) Est n=30 100 200 500 20000 n=30 100 200 500 20000

(15,1.2,0.8,20)

λ̂ 6.601 4.003 3.905 1.001 0.002 8.006 6.980 4.002 2.003 0.130

α̂ 0.521 0.470 0.397 0.231 0.001 0.806 0.560 0.154 0.032 0.020

β̂ 0.553 0.478 0.411 0.110 0.032 0.932 0.563 0.507 0.040 0.052

σ̂ 17.087 8.098 7.654 0.924 0.003 24.062 11.098 10.022 1.002 0.102

(10,1.4,0.6,15)

λ̂ 5.018 3.099 2.972 .0877 0.020 13.545 7.665 7.003 1.980 0.006

α̂ 0.597 0.430 0.380 0.221 0.000 7.980 3.092 3.007 0.005 0.000

β̂ 0.441 0.304 0.300 0.210 0.010 2.094 1.076 1.06 0.065 0.001

σ̂ 4.679 1.891 1.003 0.670 0.000 6.055 4.345 3.990 1.093 0.023

(5,1.6,0.4,10)

λ̂ 4.014 3.786 3.069 1.085 0.001 18.043 10.005 8.076 2.031 0.021

α̂ 0.605 0.553 0.453 0.201 0.003 4.661 3.002 2.873 0.672 0.003

β̂ 0.396 0.272 0.255 0.100 0.005 2.675 1.098 1.005 0.456 0.000

σ̂ 5.700 3.081 2.756 1.090 0.000 16.007 8.091 7.900 2.001 0.040

(2,1.8,0.2,5)

λ̂ 2.022 1.978 1.657 1.002 0.021 4.006 2.005 1.784 0.543 0.002

α̂ 0.743 0.436 0.400 0.11 0.001 4.761 2.221 2.003 0.451 0.007

β̂ 0.272 0.197 0.116 0.018 0.007 2.004 1.984 1.008 0.086 0.001

σ̂ 2.341 0.789 0.456 0.002 0.000 5.008 4.031 3.902 0.871 0.001

(1,1.9,0.1,2)

λ̂ 0.906 0.761 0.543 0.001 0.000 2.002 0.973 0.820 0.003 0.000

α̂ 0.801 0.734 0.701 0.320 0.000 0.963 0.701 0.562 0.024 0.001

β̂ 0.253 0.210 0.165 0.097 0.003 1.232 1.009 0.873 0.674 0.035

σ̂ 1.603 0.765 0.564 0.450 0.001 2.006 1.008 0.701 0.036 0.004
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2.13 Slash generalized geometric stable

distributions

In this section, we de�ne the slash version of the generalized geometric stable

distributions.

De�nition 2.13.1. A random variable Y has a slash generalized geometric

stable (SGGS) distributions, denoted by Y ∼ SGGS(λ, α, β, σ, µ, q), if Y =

X

U
1
q
, where q > 0 and X is GGS random variable with characteristic function

given by ϕX(t) =
[
1 + σα|t|αωα,β(t)− iµt

]−λ
, where 0 < α ≤ 2, λ > 0,−1 ≤

β ≤ 1, σ > 0, and µ ∈ ℜ, and U ∼ U(0, 1), which is independent of X.

In the section below, analogous to the generalized normal-Laplace (GNL)

distribution (Reed(2007)), we further generalizes GGS distributions to obtain

Gaussian- non Gaussian models.

2.14 Generalized normal geometric stable

distributions

Reed(2007) introduced generalized normal-Laplace distribution, which is useful

in �nancial applications for obtaining an alternative stochastic process model

to Brownian motion for logarithmic prices, in which the increments exhibit

fatter tails than the normal distribution. The generalized normal Laplace

(GNL) distribution is de�ned as that of a random variable Y with characteristic

function

ϕX(t) =

[
αβ exp{iηt− τ2t2

2
}

(α− it)(β + it)

]λ
(2.41)
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where α, β, λ and τ and are positive parameters and −∞ < η <∞. It follows

that Y can be represented as

λη + τ
√
λZ +

1

α
G1 −

1

β
G2

where Z,G1, and G2 are independent with Z ∼ N(0, 1) and G1, G2 gamma

random variables with scale parameter 1 and shape parameter λ. For λ = 1,

GNL distribution becomes what has been called an (ordinary) normal-Laplace

(NL) distribution.

Now we introduce a new class of Gaussian-non Gaussian distributions,

namely generalized normal geometric stable (GNGS) distribution, which

generalizes GGS distributions. The generalized normal geometric stable

(GNGS) distribution is de�ned as follows.

De�nition 2.14.1. A random variable Y is said to have generalized normal

geometric stable distribution GNGS(η, τ, λ, α, β, σ, µ) if there are parameters

0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, τ > 0, σ > 0, and η, µ ∈ ℜ such that its

characteristic function, ϕ(t) has the following form:

ϕX(t) =

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
(2.42)

Thus, we have

ΦX(t) =


eiληt−

λτ2t2

2 [1 + σα|t|α(1− iβ tan(πα
2
))− iµt]−λ, if α ̸= 1,

eiληt−
λτ2t2

2 [1 + σα|t|α(1 + iβ 2
π
log |t|)− iµt]−λ, if α = 1.

(2.43)

We shall use the notation X ∼ GNGS(η, τ, λ, α, β, σ, µ) to denote that X is

distributed according to the generalized normal geometric stable distribution.

Detailed list of special cases of GNGS laws is presented in the Table 2.3.
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Distribution Charcteristic function Parametric values

Normal-Geometric Stable eiηt−
τ2t2

2 [1 + σα|t|αωα,β(t)− iµt]−1 η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ = 1,−1 ≤ β ≤ 1,
σ > 0, µ ∈ R

Generalized normal-Linnik eiληt−
λτ2t2

2 [1 + σα|t|α]−λ η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ > 0, β = 0,
σ > 0, µ = 0

normal-Linnik eiηt−
τ2t2

2 [1 + σα|t|α]−1 η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ = 1, β = 0,
σ > 0, µ = 0

Generalized normal-Asymmmetric eiληt−
λτ2t2

2 [1 + σ2|t|2 − iµt]−λ η ∈ ℜ, τ > 0, α = 2, λ > 0, β = 0,
Laplace σ > 0, µ ∈ R

Generalized normal-Symmmetric eiληt−
λτ2t2

2 [1 + σ2|t|2]−λ η ∈ ℜ, τ > 0, α = 2, λ > 0, β = 0,
Laplace σ > 0, µ = 0

Normal-asymmmetric Laplace eiηt−
τ2t2

2 [1 + σ2|t|2 − iµt]−1 η ∈ ℜ, τ > 0, α = 2, λ = 1, β = 0,
σ > 0, µ ∈ R

Normal-symmetric Laplace eiηt−
τ2t2

2 [1 + σ2|t|2]−1 η ∈ ℜ, τ > 0, α = 2, λ = 1, β = 0,
σ > 0, µ = 0

Generalized normal-Mittag-Le�er eiληt−
λτ2t2

2 [1 + σα(−it)α]−λ η ∈ ℜ, τ > 0, 0 < α < 1, σ = σ[cos(πα2 )]1/α,
β = 1 and µ = 0, λ > 0

Normal-Mittag-Le�er eiηt−
τ2t2

2 [1 + σα(−it)α]−1 η ∈ ℜ, τ > 0, 0 < α < 1, σ = σ[cos(πα2 )]1/α,
β = 1 and µ = 0, λ = 1

Normal-Gamma eiληt−
λτ2t2

2 [1− µit]−λ η ∈ ℜ, τ > 0, α = 1, σ = 0,
β = 1 and µ > 0, λ > 0

Normal-exponential eiηt−
τ2t2

2 [1− µit]−1 η ∈ ℜ, τ > 0, α = 1, σ = 0,
β = 1 and µ > 0, λ = 1

Table 2.3: Special cases of GNGS laws.

Theorem 2.14.1. GNGS is in�nitely divisible.

Proof. LetX1, X2, . . . Xn are identically and independently distributed random

variables with GNGS(η, τ, λ
n
, α, β, σ, µ) distribution. De�ne X = X1 + X2 +

· · ·+Xn. Then the characteristic function of X is

ΦΘ(p)) =

[ exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
n


n

=

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ (2.44)

Hence X is in�nitely divisible.

2.15 Representation

A representation of GNGS random variable similar to the representation of

GGS de�ned in (2.23), can be derived as follows.

55



Chapter 2. Parametric estimation and univariate generalization of geometric

stable distributions

Proposition 2.15.1. Let V ∼ GNGS(η, τ, λ, α, β, σ, µ) and X ∼S(α, β, σ, 0).

Then

V =


ηλ+ τ

√
λZ + µW +W

1
αX, if α ̸= 1,

ηλ+ τ
√
λZ + µW +WX + σWβ(2/π) log(W ), if α = 1,

(2.45)

where Z ∼ N(0, 1), W is gamma distributed with scale parameter 1 and shape

parameter λ, and Z, W and X are independent of each other.

Proof. Case 1: α ̸= 1

ϕV (t) = E[eitV ]

= E[eit(ηλ+τ
√
λZ+µW+W

1
αX)]

= E[eit(ηλ+τ
√
λZ)]E[eit(µW+W

1
αX ]

= eiληtE[eitτ
√
λZ ]Ew(EX [e

it(µw+w
1
αX)|W = w])

= eiληte−
λτ2t2

2 Ew([e
itµwEX [e

i(tw
1
α )X ]])

= eiληt−
λτ2t2

2 EW [eitµwe−σ
α|tw

1
α |αωα,β(tw

1
α )]

= eiληt−
λτ2t2

2 EW [e−wσ
α|t|αωα,β(t)+itµw]

= eiληt−
λτ2t2

2 EW [e−(σα|t|αωα,β(t)+itµ)w]

= eiληt−
λτ2t2

2 [1 + σα|t|αωα,β(t)− itµ]−λ

=

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
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Case2: α = 1

ϕV (t) = E[eitV ]

= E[eit(ηλ+τ
√
λZ+µW+WX+σWβ(2/π) log(W ))]

= E[eit(ηλ+τ
√
λZ)]E[eit(µW+WX+σWβ(2/π) log(W ))]

= eiληtE[eitτ
√
λZ ]EW [eit(µW+WX+σWβ(2/π) log(W ))]

= eiληte−
λτ2t2

2 EW [eit(µW+σWβ(2/π) log(W ))EX [e
i(tW )X ]]

= eiληt−
λτ2t2

2 EW [eit(µW+σWβ(2/π) log(W ))e−|σtW |ωα,β(tW )]

= eiληt−
λτ2t2

2 EW [eit(µW+σWβ(2/π) log(W ))e−|σtW |[1+iβ(2/π)sign(tw) log |tw|]]

= eiληt−
λτ2t2

2 EW [eitµW−σ|t|W−iβσ|t|W (2/π)sign(t) log |t|]

= eiληt−
λτ2t2

2 EW [eW{itµ−σ|t|−iβσ|t|(2/π)sign(t) log |t|}]

= eiληt−
λτ2t2

2 [1− itµ+ σ|t|+ iβσ|t|(2/π)sign(t) log |t|]−λ

= eiληt−
λτ2t2

2 [1 + σ|t|(1 + iβ(2/π)sign(t) log |t|)− itµ]−λ

= eiληt−
λτ2t2

2 [1 + σ|t|ωα,β(t)− itµ]−λ

=

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ

Analogous to the representation (2.24) of GGS distribution, we present the

representation for GNGS random variable as follows:

U =


ηλ+ τ

√
λZ + µW + (W/L)

1
αLσHαβ(π(s− 1

2
)), if α ̸= 1,

ηλ+ τ
√
λZ + µW +WσKαβ(π(s− 1

2
), L) + σWβ(2/π) log(σW ), if α = 1,

(2.46)

where Hαβ(x) and Kαβ(x, y) are as de�ned in (2.8) and (2.9) respectively and,

W , L�Z and S are independent with W ∼ G(1, λ), L ∼ exp(1), Z ∼ N(0, 1)

and S ∼ U(0, 1).
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The above representation provides a straightforward way to generate

pseudo-random deviates following a GNGS distribution.

2.16 Weighted sums of Independent GNGS

variates

Let Yk
′ ∼ GNGS(η, τ, λ, α, β, σ, µ) be independent GNGS variates that are

identically distributed. Then the distribution of a weighted sum of these

variables with the weights ak can be derived using a set of S(α, β, σ, 0) random

variables Xk. De�ne T =
∑
akXk. Since,

T =
n∑
k=1

akXk ∼ S

α,∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,
n∑
k=1

|ak|ασ, 0


where x⟨p⟩ = sign(x)|x|p (see, Kuruo§lu(2001)) and W is gamma distributed

with scale parameter 1 and shape parameter λ, and is independent of Xk. For

α ̸= 1, de�ne Yk
′ = ηλ+ τ

√
λZ + µW +W

1
αXk, then

∑
akYk

′ =
∑

ak

(
ηλ+ τ

√
λZ + µW +W

1
αXk

)
=

 n∑
k=1

akηλ

+

 n∑
k=1

akτ
√
λ

Z +

 n∑
k=1

akµ

W +W
1
α

 n∑
k=1

akXk


=

 n∑
k=1

akη

λ+

 n∑
k=1

akτ

√
λZ +

 n∑
k=1

akµ

W +W
1
α

 n∑
k=1

akXk


∼ GNGS

 n∑
k=1

akη,
n∑
k=1

akτ, λ, α,

∑n
k=1 ak

⟨α⟩∑n
k=1|ak|

α β,
n∑
k=1

|ak|ασ,
n∑
k=1

akµ


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Chapter 2. Parametric estimation and univariate generalization of geometric

stable distributions

2.17 Slash generalized normal-geometric stable

distributions

Here we de�ne the slash version of the generalized normal-geometric stable

distributions.

De�nition 2.17.1. A random variable Y has a slash generalized

normal-geometric stable(SGNGS) distributions, denoted by Y ∼

SGNGS(η, τ, λ, α, β, σ, µ, q), if Y = X

U
1
q
, where q > 0 and X is GNGS random

variable with characteristic function given by ϕX(t) =

[
exp{iηt− τ2t2

2
}

1+σα|t|αωα,β(t)−iµt

]λ
,

where 0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, τ > 0, σ > 0, and η, µ ∈ ℜ , and

U ∼ U(0, 1), which is independent of X.
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CHAPTER 3

GEOMETRIC GENERALIZED

GEOMETRIC STABLE

DISTRIBUTION

3.1 Introduction

Pillai(1990b) introduced the concept of geometric exponential distribution.

Jose and Seetha Lekshmi(1999) studied the properties and applications

of geometric exponential distribution. As a generalization of geometric

exponential distribution, Jayakumar and Ajitha(2003) introduced geometric

Mittag-Le�er distribution and developed autoregressive process with

geometric Mittag-Le�er marginals. Geometric Mittag-Le�er distribution

further extended to geometric Quasi Factorial gamma distributions. Seetha

Lekshmi and Jose(2004) introduced geometric Laplace and extended to

geometric α−Laplace distribution. Certain limit properties of geometric

Laplace distribution are derived. Seetha Lekshmi and Jose(2006) introduced
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Chapter 3. Geometric generalized geometric stable distribution

and studied Geometric Pakes generalized Linnik distribution.

In the present chapter, Geometric GGS distributions(GeoGGS) are

introduced and discussed its di�erent properties. First order autoregressive

process with GeoGGS marginals are developed and are extended to kth

order. We have also introduced Geometric GNGS distributions(GeoGNGS)

and autoregressive time series models with GeoGNGS marginals are developed.

3.2 Geometric generalized geometric

stable(GeoGGS) distributions

A distribution with characteristic function ψ(t)is geometrically in�nitely

divisible if and only if

ϕ(t) = exp{1− 1

ψ(t)
},

where ϕ(t) is an in�nite divisible characteristic function (see, Klebanov et al.

(1984)).

Now, [1 + σα|t|αωα,β(t) − iµt]−λ = exp

{
1− 1[

1+λ log(1+σα|t|αωα,β(t)−iµt)
]−1

}
.

Since GGS distribution is in�nite divisible, it follows that

[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

is geometrically in�nite divisible.

A distribution with characteristic function

[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

is called GeoGGS distribution. It is denoted as GeoGGS(λ, α, β, σ, µ)
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De�nition 3.2.1. A random variable X is said to follow geometric generalized

geometric stable distribution and write X ∼ GeoGGS(λ, α, β, σ, µ) if it has the

characteristic function

ϕ(t) =
[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

,

where λ > 0 and

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1.

Special cases: Detailed list of special cases of GeoGGS laws is presented

in the Table 3.1.

Distribution Charcteristic function Parametric values

GeoGS
[
1 + log

(
1 + σα|t|αωα,β(t)− iµt

)]−1
0 < α ≤ 2, λ = 1,−1 ≤ β ≤ 1,

σ > 0, µ ∈ R

Geometric Pakes generalized Linnik
[
1 + λ log

(
1 + σα|t|α

)]−1
0 < α ≤ 2, λ > 0, β = 0,

σ > 0, µ = 0

Geometric Linnik
[
1 + log

(
1 + σα|t|α

)]−1
0 < α ≤ 2, λ = 1, β = 0,

σ > 0, µ = 0

Geometric generalized asymmmetric
[
1 + λ log

(
1 + σ2|t|2 − iµt

)]−1
α = 2, λ > 0, β = 0,

Laplace σ > 0, µ ∈ R

Geometric generalized symmmetric
[
1 + λ log

(
1 + σ2|t|2

)]−1
α = 2, λ > 0, β = 0,

Laplace σ > 0, µ = 0

Geometric asymmmetric Laplace
[
1 + log

(
1 + σ2|t|2 − iµt

)]−1
α = 2, λ = 1, β = 0,

σ > 0, µ ∈ R

Geometric symmetric Laplace
[
1 + log

(
1 + σ2|t|2

)]−1
α = 2, λ = 1, β = 0,

σ > 0, µ = 0

geometric Quasi Factorial Gamma
[
1 + λ log

(
1 + σα(−it)α

)]−1
0 < α < 1, σ = σ[cos(πα2 )]1/α,

β = 1 and µ = 0, λ > 0

Geometric Mittag-Le�er
[
1 + log

(
1 + σα(−it)α

)]−1
0 < α < 1, σ = σ[cos(πα2 )]1/α,

β = 1 and µ = 0, λ = 1

Geometric Gamma
[
1 + λ log (1− µit)

]−1
α = 1, σ = 0,
β = 1 and µ > 0, λ > 0

Geometric exponential
[
1 + log (1− µit)

]−1
α = 1, σ = 0,
β = 1 and µ > 0, λ = 1

Table 3.1: Special cases of GeoGGS laws.

Theorem 3.2.1. Let X1, X2, . . . be independent and identically distributed

as geometric generalized geometric stable random variables with parameter
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λ, α, β, σ, µ and that is, Xi ∼ GeoGGS(λ, α, β, σ, µ), i = 1, 2, . . . and N(γ) be a

geometric with mean 1/γ, P [N(γ) = k] = γ(1− γ)k−1, k = 1, 2, . . . , 0 < γ < 1.

De�ne Y = X1 +X2 + · · ·+XN(γ), then Y ∼ GeoGGS(λ
γ
, α, β, σ, µ)

Proof. Since Xi ∼ GeoGGS(λ, α, β, σ, µ), then its characteristic function is ,

ϕX(t) =

[
1 + λ log

(
1 +

{
σα|t|αωα,β(t)− iµt

})]−1

Then the characteristic function of Y is

ϕY (t) =
n∑
k=1

[ϕX(t)]
kγ(1− γ)k−1

=
γϕX(t)

1− (1− γ)ϕX(t)

=

γ

[
1 + λ log

(
1 +

{
σα|t|αωα,β(t)− iµt

})]−1

1− (1− γ)

[
1 + λ log

(
1 +

{
σα|t|αωα,β(t)− iµt

})]−1

=

[
1 +

λ

γ
log
(
1 +

{
σα|t|αωα,β(t)− iµt

})]−1

.

(3.1)

Hence Y ∼ GeoGGS(λ
γ
, α, β, σ, µ).

Now we shall consider a limit property of the GeoGGS distribution and its

relationship with the GGS distribution.

Theorem 3.2.2. Suppose X1, X2, . . . be independent and identically

distributed as GGS(λ
n
, α, β, σ, µ) and N, independent of X1, X2, . . . be a

geometric random variables with probability of success 1/n. Then Y =

X1 +X2 + · · ·+XN distributed as GeoGGS(λ, α, β, σ, µ) as n→ ∞.

Proof.

[
1 + σα|t|αωα,β(t)− iµt

]−λ
n =

{
1 +

[[
1 + σα|t|αωα,β(t)− iµt

]λ
n − 1

]}−1

.

(3.2)
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Hence by Lemma 3.2 of Pillai(1990b)

ϕn(t) =

{
1 + n

[[
1 + σα|t|αωα,β(t)− iµt

]λ
n − 1

]}−1

is the characteristic function of Y . Taking limit as n→ ∞, we have

ϕ(t) = lim
n→∞

ϕn(t)

=

{
1 + lim

n→∞
n

[[
1 + σα|t|αωα,β(t)− iµt

]λ
n − 1

]}−1

=
[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

(3.3)

Theorem 3.2.3. Let X|λ ∼ GGS(λ, α, β, σ, µ) with random λ, where λ is

exponential with mean η. Then X ∼ GeoGGS(η, α, β, σ, µ).

Proof.

ϕ(t) = E
(
eitXλ

)
= Eλ

[
1 + σα|t|αωα,β(t)− iµt

]−λ
= Eλ

[
elog[1+σ

α|t|αωα,β(t)−iµt]
−λ
]

= Eλ

[
e−λ log(1+σ

α|t|αωα,β(t)−iµt)
]

=
[
1 + η log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

(3.4)

Theorem 3.2.4. Let X1, X2, . . . be independent and identically distributed as

GeoGGS(λ
n
, α, β, σ, µ). Then Y = X1 +X2 + · · · +Xn

d→ GGS(λ, α, β, µ) as

n→ ∞.
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Proof. The ch.f of GeoGGS(λ
n
, α, β, σ, µ) distribution is

ϕX(t) =

[
1 +

λ

n
log
(
1 + σα|t|αωα,β(t)− iµt

)]−1

Then the characteristic function of Y is

ϕY (t) =

[
1 +

λ

n
log
(
1 + σα|t|αωα,β(t)− iµt

)]−n

Hence,

lim
n→∞

ϕY (t) =
[
1 + σα|t|αωα,β(t)− iµt

]−λ
That is, Y

d→ GGS(λ, α, β, σ, µ).

Theorem 3.2.5. Let X be a GeoGGS(1
δ
, α, β, δ

1
ασ, δµ) random variable,we

write X ∼ DeGS(δ, α, β, σ, µ). Then X becomes GS(α, β, σ, µ) with ch.fn

given in (1.13), as δ → 0.

Proof. Since X ∼ GeoGGS(1
δ
, α, β, δ

1
ασ, δµ), the ch. fn of X is

ϕX(t) =
[
1 + δ−1 log

(
1 + δσα|t|αωα,β(t)− iδµt

)]−1

Therefore,

lim
δ→0

ϕX(t) = lim
δ→0

[
1 + δ−1 log

(
1 + δσα|t|αωα,β(t)− iδµt

)]−1

= [1 + σα|t|αωα,β(t)− iµt]−1

Note: In DeGS distributions the parameter δ act as a pathway parameter

as its values varies, the distributions moves to its GS forms.

Special cases: Detailed list of special cases of DeGS distributions is presented
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in the Table 3.2.

Distribution Charcteristic function Parametric values

DeGS
[
1 + δ−1 log

(
1 + δσα|t|αωα,β(t)− iδµt

)]−1
0 < α ≤ 2, δ > 0,−1 ≤ β ≤ 1,

σ > 0, µ ∈ R

DeLinnik
[
1 + δ−1 log

(
1 + δσα|t|α

)]−1
0 < α ≤ 2, δ > 0, β = 0,

σ > 0, µ = 0

DeAsymmmetric
[
1 + δ−1 log

(
1 + δσ2|t|2 − iδµt

)]−1
α = 2, δ > 0, β = 0,

Laplace σ > 0, µ ∈ R

DeSymmmetric
[
1 + δ−1 log

(
1 + δσ2|t|2

)]−1
α = 2, δ > 0, β = 0,

Laplace σ > 0, µ = 0

DeMitag-Le�er(DeML)
[
1 + δ−1 log

(
1 + δσα(−it)α

)]−1
0 < α < 1, σ = σ[cos(πα2 )]1/α,

β = 1 and µ = 0, δ > 0

DeExponential
[
1 + δ−1 log (1− δµit)

]−1
α = 1, σ = 0,
β = 1 and µ > 0, δ > 0

Table 3.2: Special cases of DeGS laws.

3.3 AR(1) model with GeoGGS marginals

In this section, we develop a �rst order new autoregressive process with

GeoGGS marginals. Consider an autoregressive structure given by,

Xn =


ϵn, w.p γ,

Xn−1 + ϵn, w.p 1− γ,

(3.5)

where 0 < γ < 1. Now we shall construct an AR(1) process with stationary

marginal as GeoGGS distribution.

Theorem 3.3.1. Consider an autoregressive process {Xn} with structure

given by (3.5). Then {Xn} is strictly stationary Markovian with

GeoGGS(λ, α, β, σ, µ) marginal if and only if {ϵn} are distributed

as GeoGGS(γλ, α, β, σ, µ) provided that X0 is distributed as

GeoGGS(λ, α, β, σ, µ).

Proof. Let us denote the Laplace transform of {Xn} by ψXn(t) and that of ϵn
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by ψϵn(t). Then the equation (3.5) in terms of characteristic function becomes

ψXn(t) = γψϵn(t) + (1− γ)ψXn−1(t)ψϵn(t).

On assuming stationarity, it reduces to the form

ψX(t) = γψϵ(t) + (1− γ)ψX(t)ψϵ(t).

Write

ψX(t) =
[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

and hence

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
(3.6)

becomes

ψϵ(t) =
[
1 + γλ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

.

Hence it follows that ϵn
d
= GeoGGS(γλ, α, β, σ, µ).

The converse can be proved by the method of mathematical induction as

follows: Now assume that Xn−1
d
= GeoGGS(λ, α, β, σ, µ). Then

ψXn(t) = ψϵn(t)[γ + (1− γ)ψXn−1(t)]

=
[
1 + γλ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

x[γ + (1− γ)
[
1 + λ log

(
1 + δσα|t|αωα,β(t)− iµt

)]−1

=
[
1 + λ log

(
1 + σα|t|αωα,β(t)− iµt

)]−1

(3.7)

That is, Xn
d
= GeoGGS(λ, α, β, σ, µ)
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The joint distribution of Xn and Xn−1

Consider the autoregressive structure given in (3.5). It can be written as

Xn = InXn−1 + ϵn−1,whereP (In = 0) = γ, P (In = 1) = 1− γ

Then the joint ch.f of(Xn, Xn−1) is given by

ψXn−1,Xn(t1, t2) = E
[
eit1Xn−1+it2Xn

]
= E

[
eit1Xn−1+it2(InXn−1+ϵn)

]
= E[e(it1+it2In)Xn−1 ]ψϵn(t2)

= [
1

1 + γλ log
(
1 + σα|t2|αωα,β(t2)− iµt2

) ]
x[

γ

1 + λ log
(
1 + σα|t1|αωα,β(t1)− iµt1

) + (1− γ)

1 + λ log
(
1 + σα|t1 + t2|αωα,β(t1 + t2)− iµ(t1 + t2)

) ]
(3.8)

This shows the process is not time reversible.

3.4 Generalisation to a kth order GeoGGS

autoregressive process

Lawrence and Lewis(1982) constructed higher order analogs of the

autoregressive equation(3.5) with structure as given below.

Xn =



ϵn, w.p γ,

Xn−1 + ϵn, w.p γ1,

...

Xn−k + ϵn, w.p γk,

(3.9)

where γ1 + γ2 + . . . + γk = 1 − γ, 0 ≤ γi, γ ≤ 1, i = 1, 2, . . . , k and ϵn is

independent of {Xn, Xn−1, . . .}. In terms of characteristic function, equation
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(3.9) can be written as

ψXn(t) = γψϵn(t) + γ1ψXn−1(t)ψϵn(t) + . . .+ γkψXn−k
(t)ψϵn(t)

Assuming stationarity, we get

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
.

This establishes that the results developed in the above section are valid in

this case also . This gives to the kth order GeoGGS autoregressive process.

3.5 Geometric generalized normal geometric

stable distributions

In this section, geometric generalized normal geometric stable(GeoGNGS)

distributions is introduced and its properties are studied.

A random variable Y is said to have generalized normal geomeric stable

distribuion GNGS(η, τ, λ, α, β, σ, µ) if there are parameters 0 < α ≤ 2, λ >

0,−1 ≤ β ≤ 1, τ > 0, σ > 0, and η, µ ∈ ℜ such that its characteristic function,

ϕ(t) has the following form:

ϕY (t) =

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
.

Now,

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
= exp

1− 1[
1 + λ τ

2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

 .

(3.10)
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Since GNGS distribution is in�nitely divisible, it follows that

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

is geometrically in�nite divisible.

A distribution with characteristic function

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

is called GeoGNGS distribution. It is denoted as GeoGNGS(η, τ, λ, α, β, σ, µ).

De�nition 3.5.1. A random variable X is said to follow geometric

generalized normal geometric stable distribution and write X ∼

GeoGNGS(η, τ, λ, α, β, σ, µ) if it has the characteristic function

ϕX(t) =

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

(3.11)

where η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, σ > 0, µ ∈ ℜ.

Special cases of GeoGNGS laws listed in the Table 3.3 below
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Distribution Charcteristic function Parametric values

GeoNGS
[
1 + τ2t2

2 − iηt+ log(1 + σα|t|αωα,β(t)− iµt)
]−1

η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ = 1,−1 ≤ β ≤ 1,

σ > 0, µ ∈ R

Geometric generalized
[
1 + λ τ

2t2

2 − iληt+ λ log
(
1 + σα|t|α

)]−1
η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ > 0, β = 0,

normal-Linnik σ > 0, µ = 0

Geometric normal-Linnik
[
1 + τ2t2

2 − iηt+ log
(
1 + σα|t|α

)]−1
η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ = 1, β = 0,

σ > 0, µ = 0

Geometric generalized
[
1 + λ τ

2t2

2 − iληt+ λ log
(
1 + σ2|t|2 − iµt

)]−1
η ∈ ℜ, τ > 0, α = 2, λ > 0, β = 0,

normal-asymmmetric Laplace σ > 0, µ ∈ R

Geometric generalized
[
1 + λ τ

2t2

2 − iληt+ λ log
(
1 + σ2|t|2

)]−1
η ∈ ℜ, τ > 0, α = 2, λ > 0, β = 0,

normal-symmmetric Laplace σ > 0, µ = 0

Geometric normal-
[
1 + τ2t2

2 − iηt+ log
(
1 + σ2|t|2 − iµt

)]−1
η ∈ ℜ, τ > 0, α = 2, λ = 1, β = 0,

asymmmetric Laplace σ > 0, µ ∈ R

Geometric normal-
[
1 + τ2t2

2 − iηt+ log
(
1 + σ2|t|2

)]−1
η ∈ ℜ, τ > 0, α = 2, λ = 1, β = 0,

symmetric Laplace σ > 0, µ = 0

Geometric generalized
[
1 + λ τ

2t2

2 − iληt+ λ log
(
1 + σα(−it)α

)]−1
η ∈ ℜ, τ > 0, 0 < α < 1, σ = σ[cos(πα2 )]1/α,

normal-Mittag-Le�er β = 1 and µ = 0, λ > 0

Geometric normal-
[
1 + τ2t2

2 − iηt+ log
(
1 + σα(−it)α

)]−1
η ∈ ℜ, τ > 0, 0 < α < 1, σ = σ[cos(πα2 )]1/α,

Mittag-Le�er β = 1 and µ = 0, λ = 1

Geometric normal-Gamma
[
1 + λ τ

2t2

2 − iληt+ λ log (1− µit)
]−1

η ∈ ℜ, τ > 0, α = 1, σ = 0,

β = 1 and µ > 0, λ > 0

Geometric normal-exponential
[
1 + τ2t2

2 − iηt+ log (1− µit)
]−1

η ∈ ℜ, τ > 0, α = 1, σ = 0,

β = 1 and µ > 0, λ = 1

Table 3.3: Special cases of GeoGNGS laws.

The results presented below, shows some immediate properties of

GeoGNGS distributions, which are analogous to the results of GeoGGS

distributions.

Theorem 3.5.1. Let X1, X2, . . . be independent and identically distributed

as geometric generalized normal-geometric stable random variables with

parameters η, τ, λ, α, β, σ, µ , that is, Xi ∼ GeoGNGS(η, τ, λ, α, β, σ, µ), i =

1, 2, . . . and N(γ) be a geometric with mean 1/γ, that is, P [N(γ) = k] =

γ(1− γ)k−1, k = 1, 2, . . . , 0 < γ < 1. De�ne Y = X1 +X2 + · · ·+XN(γ). Then

Y ∼ GeoGNGS(η, τ, λ
γ
, α, β, σ, µ)

Proof. Since Xi ∼ GeoGNGS(η, τ, λ, α, β, σ, µ), then its characteristic

function is ,

ϕX(t) =

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1
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Then the characteristic function of Y is

ϕY (t) =
n∑
k=1

[ϕX(t)]
kγ(1− γ)k−1

=
γϕX(t)

1− (1− γ)ϕX(t)

=
γ
[
1 + λ τ

2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

1− (1− γ)
[
1 + λ τ

2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

=

[
1 +

λ

γ

τ 2t2

2
− i

λ

γ
ηt+

λ

γ
log(1 + σα|t|αωα,β(t)− iµt)

]−1

(3.12)

Hence Y ∼ GeoGNGS(η, τ, λ
γ
, α, β, σ, µ).

Theorem 3.5.2. Suppose X1, X2, . . . be independent and identically

distributed as GNGS(η, τ, λ
n
, α, β, σ, µ) and N, independent of X1, X2, . . . be

a geometric random variables with probability of success 1/n. Then, Y =

X1 +X2 + · · ·+XN distributed as GeoGNGS(η, τ, λ, α, β, σ, µ) as n→ ∞.

Proof.

ϕX(t) =

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
n

=

[
exp{−iηt+ τ 2t2

2
}(1 + σα|t|αωα,β(t)− iµt)

]−λ
n

=

1 +

[exp{−iηt+ τ 2t2

2
}(1 + σα|t|αωα,β(t)− iµt)

]λ
n

− 1




−1

.

Hence by Lemma 3.2 of Pillai(1990b)

ϕn(t) =

1 + n

[exp{−iηt+ τ 2t2

2
}(1 + σα|t|αωα,β(t)− iµt)

]λ
n

− 1




−1
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is the characteristic function of Y . Taking limit as n→ ∞, we have

ϕ(t) = lim
n→∞

ϕn(t)

=

1 + lim
n→∞

n

[exp{−iηt+ τ 2t2

2
}(1 + σα|t|αωα,β(t)− iµt)

]λ
n

− 1




−1

=

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

(3.13)

Theorem 3.5.3. Let X1, X2, . . . be i.i.d with GeoGNGS(η, τ, λ
n
, α, β, σ, µ).

Then, Y = X1 +X2 + · · ·+Xn
d→ GNGS(η, τ, λ, α, β, µ) as n→ ∞.

Proof. The characteristic function of GeoGNGS(η, τ, λ
n
, α, β, σ, µ) distribution

is

ϕX(t) =

[
1 +

λ

n

τ 2t2

2
− i

λ

n
ηt+

λ

n
log(1 + σα|t|αωα,β(t)− iµt)

]−1

Then the characteristic function of Y is

ϕY (t) =

[
1 +

λ

n

τ 2t2

2
− i

λ

n
ηt+

λ

n
log(1 + σα|t|αωα,β(t)− iµt)

]−n

Hence,

lim
n→∞

ϕY (t) =

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ

That is, Y
d→ GNGS(η, τ, λ, α, β, σ, µ).

3.6 AR(1) model with GeoGNGS marginals

In this section, we develop a �rst order new autoregressive process with

GeoGNGS marginals.
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Theorem 3.6.1. Consider an autoregressive process {Xn} with structure

given by (3.5). Then {Xn} is strictly stationary Markovian with

GeoGNGS(η, τ, λ, α, β, σ, µ) marginal if and only if {ϵn} are distributed

as GeoGNGS(η, τ, γλ, α, β, σ, µ) provided that X0 is distributed as

GeoGNGS(η, τ, λ, α, β, σ, µ).

Proof. Let us denote the Laplace transform of {Xn} by ψXn(t) and that of ϵn

by ψϵn(t). Then equation (3.5) in terms of characteristic function becomes

ψXn(t) = γψϵn(t) + (1− γ)ψXn−1(t)ψϵn(t).

On assuming stationarity, we get

ψX(t) = γψϵ(t) + (1− γ)ψX(t)ψϵ(t).

Write

ψX(t) =

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

and hence

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
(3.14)

becomes

ψϵ(t) =

[
1 + γλ

τ 2t2

2
− iγληt+ γλ log(1 + σα|t|αωα,β(t)− iµt)

]−1

.

Hence it follows that ϵn
d
= GeoGNGS(η, τ, γλ, α, β, σ, µ).

The converse can be proved by the method of mathematical induction as
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follows. Now assume that Xn−1
d
= GeoGNGS(η, τ, λ, α, β, σ, µ). Then

ψXn(t) = ψϵn(t)[γ + (1− γ)ψXn−1(t)]

=

[
1 + γλ

τ 2t2

2
− iγληt+ γλ log(1 + σα|t|αωα,β(t)− iµt)

]−1

x[γ + (1− γ)

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

=

[
1 + λ

τ 2t2

2
− iληt+ λ log(1 + σα|t|αωα,β(t)− iµt)

]−1

(3.15)

That is, Xn
d
= GeoGGS(η, τ, λ, α, β, σ, µ).
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CHAPTER 4

WRAPPED GENERALIZED

GEOMETRIC STABLE

DISTRIBUTIONS

4.1 Introduction

Researchers studied circular distributions extensively because of its

application in wide variety of �elds. Gatto and Jammalamadaka(2003)

studied the cases of wrapped Cauchy, normal and stable distributions.

Jammalamadaka and Kozubowski(2004) discussed circular distributions

obtained by wrapping the classical exponential and Laplace distributions on

the real line around the circle. Gatto and Jammalamadaka(2007) introduced a

generalization of the von Mises distribution and studied many features of the

distribution. Jacob and Jayakumar(2013) proposed a new family of circular

distributions by wrapping geometric distribution. Adnan and Roy(2014)

derived wrapped variance gamma distribution and showed its applicability to

76



Chapter 4. Wrapped Generalized Geometric Stable Distributions

wind direction. Joshi and Jose(2018) explored Wrapped Lindley distribution

and applied the model to a data set on orientations of turtles after laying eggs.

Varghese and Jose(2018) studied Wrapped hb-skewed Laplace distribution

and its application in meteorology. For more references see, Lévy(1939),

Jammalamadaka and Gupta(2001)and Rao et al.(2007).

The modeling of �nancial data such as stock returns, commodity prices,

foreign currency exchange rates, have attracted the attention of numerous

researchers. The �rst step towards the statistical modeling of stock price

changes was taken by Bachelier(1900)(see, Kozubowski(1994)). His approach

was based on three assumptions: independence, identical distribution and

�nite variance of daily changes. Since the price change over a certain period of

time can be regarded as the sum of changes over shorter periods of time(weekly

change = sum of daily changes, daily change = sum of changes between of the

various transactions, etc.), Bachelier(1900) arrived at a normal model. Further

studies, however, showed that empirical distributions of stock returns had more

kurtosis, than was predicted by the normal distribution. Mandelbrot(1963a,

b) and Fama(1965) proposed the symmetric stable distribution as a model

for asset returns. The family of stable distributions seemed appropriate,

because they could allow independent and identically distributed returns

and, at the same time, account for the observed leptokurtosis in the data.

Later, studies showed that the characteristic exponent does not, as it should,

remain constant as the sampling period is increased. In response to these

empirical inconsistencies, alternatives to the stable laws have been proposed

for asset returns models. Mittnik and Rachev (1989, 1991, 1993) have

considered various probability schemes and extended the stability concept of

Mandelbrot, which arises from one speci�c (summation) scheme. These lead to

a variety of distributions, stable with respect to the underlying scheme. They
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also �tted these alternative stable distributions to the stock-index data and

compared the appropriateness. Their �ndings were that the (double) Weibull

distribution, which arises in the geometric summation scheme, dominates all

other alternative stable laws. The theory of geometric stable(GS) distributions

was studied extensively. Recently Jayakumar and Sajayan(2020) introduced

the generalized geometric stable distributions(GGS) as a generalization of

geometric stable distributions(GS)and discussed its application to �nancial

data modeling.

In this chapter, a new wrapped distribution namely Wrapped generalized

geometric stable(WGGS)distribution is introduced. The probability density

function and cumulative density function are derived and the shapes of

the probability density function for di�erent values of the parameters are

presented. Expressions for characteristic function and trigonometric moments

are derived. Expressions for skewness, kurtosis etc. are derived. Maximum

likelihood estimation method is used for estimating parameters and a

simulation study is carried out to show the consistency of the MLEs.

4.2 Wrapped generalized geometric stable

distributions

We de�ne the circular random variable

Θ = X mod (2π) ∈ [0, 2π) (4.1)

where X ∼ GGS(λ, α, σ, β, µ) with characteristic function

ϕ(t) = [1 + σα|t|αωα,β(t)− iµt]−λ, (4.2)
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0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, σ > 0, and µ ∈ R.

Since the Fourier coe�cients for a wrapped circular random variable

corresponds to the characteristic function at integer values for the unwrapped

random variable(see, Mardia(1972)), ΦΘ(p) : p = 0,±1,±2, . . . of the

characteristic function of Θ is given by

ΦΘ(p) = ϕX(p). (4.3)

Therefore, using (4.2), the characteristic function corresponding to the

wrapped generalized geometric stable(WGGS) angular random variable is

ΦΘ(p) = [1 + σα|p|αωα,β(p)− iµ∗p]−λ (4.4)

where µ∗ = µ mod (2π) ∈ [0, 2π). Thus for p = 1, 2, . . . , we have

ΦΘ(p) =


[1 + σαpα(1− iβ tan(πα

2
))− iµ∗p]−λ, if α ̸= 1,

[1 + σαpα(1 + iβ 2
π
log |p|)− iµ∗p]−λ, if α = 1.

(4.5)

We shall use the notation Θ ∼ WGGS(λ, α, β, σ, µ∗) to denote that Θ is

distributed according to the wrapped generalized geometric stable distribution

under this parametrization.

De�nition 4.2.1. An angular random variable Θ is said to follow WGGS

distribution with parameters λ, α, β, σ, µ∗ if its characteristic function is

ΦΘ(p) = [1 + σα|p|αωα,β(p)− iµ∗p]−λ (4.6)

where

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1.
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The characteristic function, ΦΘ(p) can be written as

ΦΘ(p) = ρpe
iµp , p = 0,±1,±2, . . .

where

ρp =


[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2 , if α ̸= 1,[

(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2
π
log |p|)2

]−λ
2 , if α = 1,

(4.7)

and

µp =


λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
) mod (2π), if α ̸= 1,

λ arctan(
µ∗p−σαpαβ 2

π
log |p|

1+σαpα
)) mod (2π), if α = 1.

The probability density function of the WGGS angular random variable Θ ∈

[0, 2π), is given by

fw(θ) =
1

2π

∞∑
p=−∞

ΦΘ(p) exp(−ipθ)

=
1

2π

∞∑
p=−∞

[1 + σα|p|αωα,β(p)− iµ∗p]−λ exp(−ipθ).

On simpli�cation, we get

fw(θ) =
1

2π

1 + 2
∞∑
p=1

(αp cos(pθ) + βp sin(pθ))

 , (4.8)

where

αp =


[
(1 + σαpα)2 + (σαpαβ tan(πα

2
) + µ∗p)2

]−λ
2 cos

(
λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
)
)
, if α ̸= 1,[

(1 + σαpα)2 + (µ∗p− σαpαβ 2
π
log |p|)2

]−λ
2 cos

(
λ arctan(

µ∗p−σαpαβ 2
π
log |p|

1+σαpα
)

)
, if α = 1,
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and

βp =


[
(1 + σαpα)2 + (σαpαβ tan(πα

2
) + µ∗p)2

]−λ
2 sin

(
λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
)
)
, if α ̸= 1,[

(1 + σαpα)2 + (µ∗p− σαpαβ 2
π
log |p|)2

]−λ
2 sin

(
λ arctan(

µ∗p−σαpαβ 2
π
log |p|

1+σαpα
)

)
, if α = 1.

Using (4.8), we get the distribution function Fw(θ) as

Fw(θ) =
1

2π

1 + 2
∞∑
p=1

{αp
p

sin(pθ) +
βp
p
(1− cos(pθ))}

 . (4.9)

Special cases:

Let λ = 1. Then (4.6) becomes ΦΘ(p) = [1 + σα|p|αωα,β(p) − iµ∗p]−1, which

is the characteristic function of wrapped geometric stable distributions(see,

Jacob(2012)). The corresponding αp and βp are as follows:

For α ̸= 1

αp =

[
(1 + σαpα)2 + (σαpαβ tan(

πα

2
) + µ∗p)2

]−1
2

cos

(
arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

=
1 + σαpα

(1 + σαpα)2 + (σαpαβ tan(πα
2
) + µ∗p)2

, p = 1, 2, . . .

and

βp =

[
(1 + σαpα)2 + (σαpαβ tan(

πα

2
) + µ∗p)2

]−1
2

sin

(
arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

=
σαpαβ tan(πα

2
) + µ∗p

(1 + σαpα)2 + (σαpαβ tan(πα
2
) + µ∗p)2

, p = 1, 2, . . .

Similarly for α = 1

αp =
1 + σαpα

(1 + σαpα)2 + (µ∗p− σαpαβ 2
π
ln |p|)2

and βp =
µ∗p− σαpαβ tan(πα

2
)

(1 + σαpα)2 + (µ∗p− σαpαβ 2
π
ln |p|)2
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Analogous to the representation (2.23) of GGS random variable, we present

below, the representation of WGGS random variable as follows:

Let V∼ WGGS(λ, α, β, σ, µ∗). Then

V =


µΘW + (ΘW)

1
αΘS mod (2π), if α ̸= 1,

µΘW +ΘWΘS + σΘWβ(2/π) log(ΘW) mod (2π), if α = 1,

(4.10)

where ΘS ∼WS(α, β, σ, 0)(see, Pewsey(2008)). ΘW is wrapped gamma,

WΓ(λ, 1) with characteristic function (1 − ip)−λ(see, Coelho(2007))and is

independent of ΘS. Note that ΘS ∼ WS(α, β, σ, µ∗) has the characteristic

function ϕ(p) = exp{−σα|p|αωα,β(p) + iµ∗p}, where µ∗ ∈ [0, 2π).

Theorem 4.2.1. Θ ∼ WGGS(λ, α, β, σ, µ∗)is in�nitely divisible

Proof. Let Θ1,Θ2, . . .Θn be identically and independently distributed random

variables withWGGS(λ
n
, α, β, σ, µ∗) distribution. De�ne Θ = Θ1+Θ2+ . . .Θn

mod (2π). Then the characteristic function of Θ, is

ΦΘ(p)) =
(
[1 + σα|p|αωα,β(p)− iµ∗p]−

λ
n

)n
= [1 + σα|p|αωα,β(p)− iµ∗p]−λ

(4.11)

Hence Θ is in�nitely divisible.
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Figure 4.1: Densities of WGS(λ = 1) and WGGS for various parameter values.

We draw the densities, �ve in each plot for λ =0.5, 1, 5, 20 and 100

while keeping the other parameters constant. The values of (α, σ, β, µ∗) are

(1,0,1,3),(0.5,2,1,0),(2,2,0,0),(2,2,0,6),(1.4,2,0,0),(1.4,10,-1,1) respectively.

4.3 Trigonometric moments and other

parameters

By the de�nition of trigonometric moments, we have

ΦΘ(p) = αp + iβp, p = ±1,±2, . . .

and, hence, the non-central moments of the respective distribution are given

by

αp = ρp cos(µp) and βp = ρp sin(µp).

So, we have, for α ̸= 1

αp =

[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2

cos

(
λ arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

and βp =

[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2

sin

(
λ arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)
.
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For α = 1,

αp =

[
(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2

π
log |p|)2

]−λ
2

cos

(
λ arctan(

µ∗p− σαpαβ 2
π
log |p|

1 + σαpα
))

)
,

and βp =

[
(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2

π
log |p|)2

]−λ
2

sin

(
λ arctan(

µ∗p− σαpαβ 2
π
log |p|

1 + σαpα
))

)
.

The mean direction, µ = µ1 ∈ [0, 2π) is

µ =


λ arctan(

σαβ tan(πα
2
)+µ∗

1+σα ) mod (2π), if α ̸= 1,

λ arctan( µ∗

1+σα )) mod (2π), if α = 1.

By substituting ρp, µp and µ1, we gets the central trigonometric moments

ᾱp = ρp cos
(
µp − pµ1

)
,

and β̄p = ρp sin
(
µp − pµ1

)
.

The circular variance is given by, V0 = 1− ρ, where

ρ =


[
(1 + σα)2 + (σαβ tan(πα

2
) + µ∗)2

]−λ
2 , if α ̸= 1,[

(1 + σ)2 + (µ∗)2
]−λ

2 , if α = 1.

The circular standard deviation is given by

σ0 =


λ log((1 + σα)2 + (σαβ tan(πα

2
) + µ∗)2), if α ̸= 1,

λ log((1 + σ)2 + (µ∗)2), if α = 1.

(4.12)

The coe�cient of skewness is

ζ01 =
β̄2

(1− ρ)3/2
.
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and the coe�cient of kurtosis is,

ζ02 =
ᾱ2 − ρ4

(1− ρ)2
.

Table 4.1 exhibits various features of WGGS distribution for di�erent values

of the parameters λ, α, β, σ, µ∗.

Table 4.1: Values of di�erent characteristics of WGGS distributions
with parametric values (λ, α, σ, β, µ∗) as A:(0.5,0.1,1,1,3); B:(0.5,0.5,2,1,0);
C:(0.5,2,2,0,0); D:(0.5,2,2,0,6); E:(0.5,1,1,1,3); F:(0.5,1,2,1,0); G:(0.5,1,2,0,0);
H:(0.5,1,2,0,6).
Properties A B C D E F G H

α1 0.4531 0.5769 0.4472 0.3240 0.4643 0.5773 0.5773 0.3284

β1 0.2493 0.1565 0 0.1517 0.2484 0 0 0.2029

α2 0.3182 0.5040 0.2425 0.2089 0.3562 0.4280 0.4472 0.2307

β2 0.2288 0.1526 0 0.0663 0.2041 -0.0733 0 0.1538

ᾱ1 0.5172 0.5978 0.4472 0.3578 0.5266 0.5773 0.5773 0.3860

β̄1 0 0 0 0 0 0 0 0

ᾱ2 0.3635 0.5120 0.2425 0.1847 0.3674 0.4280 0.4472 0.2408

β̄2 -0.1464 -0.1230 0 -0.1180 -0.1832 -0.0733 0 -0.1376

ρ 0.5172 0.5978 0.4472 0.3578 0.5266 0.5773 0.5773 0.3860

V0 0.4827 0.4021 0.5527 0.6421 0.4733 0.4226 0.4226 0.6139

σ0 1.1483 1.0143 1.2686 1.4336 1.1324 1.0481 1.0481 1.3796

ζ01 -0.4365 -0.4826 0 -0.2294 -0.5625 -0.2668 0 -0.2860

ζ02 1.2528 2.3761 0.6628 0.4081 1.2965 1.7741 1.8815 0.5799

4.4 Maximum likelihood estimation

In this section, we discuss the method of maximum likelihood estimation to

estimate the parameters of the WGGS model. Let θ1, θ2, . . . , θn be a random

sample of size n from WGGS(λ, α, σ, β, µ∗). Then, the log-likelihood function

is given by,

logL = −n log 2π +
∑n

i=1

{
log(1 + 2

∑∞
p=1[αp cos(pθi) + βp sin(pθi)])

}
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Equating the partial derivative of log-likelihood function with respect to the

parameters to zero, for α ̸= 1 we get

∂ logL

∂λ
=

n∑
i=1

2
∑∞

p=1[(a
2 + b2)−

λ
2 {B1 log((a

2 + b2)−1/2) + A1 arctan(b/a)]}
f1

= 0

∂ logL

∂α
=

n∑
i=1

2
∑∞

p=1 λ(a
2 + b2)−

λ
2
−1[α11{(aβ tan(πα2 )− b)A1 −B1(a+ bβ tan(πα

2
))}+ (aA1 − bB1)α12]

f1
= 0

∂ logL

∂σ
=

n∑
i=1

2
∑∞

p=1 λ(a
2 + b2)−

λ
2
−1[A1σ11(aβ tan(

πα
2
)− b)−B1σ11(bβ tan(

πα
2
) + a)]

f1
= 0

∂ logL

∂β
=

n∑
i=1

2
∑∞

p=1 λ(a
2 + b2)−

λ
2
−1[(σαpα tan(πα

2
))(aA1 − bB1)]

f1
= 0

∂ logL

∂µ∗ =
n∑
i=1

2
∑∞

p=1 λ(a
2 + b2)−

λ
2
−1[p(aA1 − bB1)]

f1
= 0,

where

α1,p = (a2 + b2)−
λ
2 cos(λ arctan(b/a)), β1,p = (a2 + b2)−

λ
2 sin(λ arctan(b/a)), σ11 = ασα−1pα

a = 1+σαpα, b = σαpαβ tan(
πα

2
)+µ∗p, f1 = 1+2

∑∞
p=1[α1,p cos(pθi)+β1,p sin(pθi)]

A1 = cos(λ arctan(b/a)) sin(pθi)− sin(λ arctan(b/a)) cos(pθi), α12 = σαpαβ(π/2) sec2(π/2),

B1 = cos(λ arctan(b/a)) cos(pθi) + sin(λ arctan(b/a)) sin(pθi), α11 = σαpα log(σp)

Similarly, for α = 1,

∂ logL

∂λ
=

n∑
i=1

2
∑∞

p=1[(c
2 + d2)−

λ
2 {log((c2 + d2)−1/2)B2 + arctan(d/c)A2}]

f2
= 0

∂ logL

∂σ
=

n∑
i=1

2
∑∞

p=1[λ(c
2 + d2)−

λ
2
−1{pB2(dβ(2/π) log(p)− c)− pA2(d+ cβ(2/π) log(p))}]

f2
= 0

∂ logL

∂β
=

n∑
i=1

2
∑∞

p=1[λ(c
2 + d2)−

λ
2
−1pσ(2/π) log(p){dB2 − cA2}]

f2
= 0

∂ logL

∂µ∗ =
n∑
i=1

2
∑∞

p=1[λ(c
2 + d2)−

λ
2
−1p{cA2 − dB2}]

f2
= 0,
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where,

α2,p = (c2 + d2)−
λ
2 cos(λ arctan(d/c)), β2,p = (c2 + d2)−

λ
2 sin(λ arctan(d/c)), c = 1 + σp,

d = µ∗p− σpβ(2/π) log(p), B2 = cos(λ arctan(d/c)) cos(pθi) + sin(λ arctan(d/c)) sin(pθi),

A2 = cos(λ arctan(d/c)) sin(pθi)− sin(λ arctan(d/c)) cos(pθi), f2 = 1 + 2
∑∞

p=1[α2,p cos(pθi) + β2,p sin(pθi)].

Since the above normal equations cannot be solved analytically, a numerical

technique is to be adopted to get the estimates of the parameters. The

log-likelihood of the WGGS(λ, α, β, σ, µ∗) density can be computed numerically

to a given level of precision for ℓ =
∑n

i=1 log f(θi) using �nite sum

approximation to (4.8) for the given set of independent observed directions

θT = (θ1, θ2, ..., θn). The optim function in the R stats package used for the

numerical optimization of ℓ over the parameters. We opted the the L-BFGS-B

algorithm as it allows box constraints for any or all the parameters.

We carry out a simulation study to obtain the maximum likelihood estimate

of the parameters. We generate samples of size 30,50,100 and 200 and replicate

the program N=1000 times to get the estimates. The results are presented in

Table 4.2.
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Table 4.2: Average values of bias and MSEs using di�erent values of
λ, α, β, σ and µ∗, for sample sizes n=30, 50,100,200 corresponding to
WGGS(λ, α, β, σ, µ∗) distribution

Bias MSE

(λ, α, β, σ, µ∗) Est n=30 50 100 200 n=30 50 100 200

(20,0.6,0.9,10,6)

λ̂ 3.006 1.034 0.790 0.004 6.000 4.060 1.011 0.011

α̂ 0.463 0.260 0.179 0.000 0.608 0.410 0.114 0.030

β̂ 0.803 0.631 0.200 0.002 12.588 5.333 1.401 0.002

σ̂ 6.011 3.055 1.554 0.001 16.002 7.022 2.031 0.006

µ̂∗ 4.002 3.909 2.555 0.011 8.005 6.075 2.011 0.110

(10,0.8,0.7,6,4)

λ̂ 3.002 1.202 1.072 0.010 5.545 4.505 2.805 0.003

α̂ 0.712 0.522 0.250 0.001 5.076 4.012 2.052 0.010

β̂ 0.643 0.404 0.220 0.002 8.054 5.056 0.045 0.001

σ̂ 3.112 1.001 0.043 0.000 12.332 6.355 2.001 0.011

µ̂∗ 2.044 1.011 0.874 0.001 6.062 4.033 0.022 0.000

(5,1.2,0.5,4,2)

λ̂ 1.021 1.002 0.065 0.000 4.023 2.025 0.701 0.010

α̂ 1.005 0.783 0.343 0.002 6.421 4.062 1.113 0.005

β̂ 0.499 0.182 0.005 0.000 3.121 1.000 0.005 0.000

σ̂ 1.776 1.009 0.336 0.010 8.055 2.022 1.609 0.098

µ̂∗ 1.0665 0.652 0.004 0.002 4.055 3.023 2.011 0.000

(1,1.5,0.3,2,1)

λ̂ 1.021 1.008 0.507 0.001 2.010 1.014 0.048 0.002

α̂ 1.663 0.811 0.100 0.001 8.831 4.921 1.001 0.003

β̂ 0.352 0.221 0.106 0.002 3.114 1.224 0.440 0.000

σ̂ 1.101 0.654 0.340 0.002 5.011 3.211 0.531 0.031

µ̂∗ 0.775 0.018 0.004 0.000 3.110 1.001 0.512 0.004

(0.5,1.8,0.1,2,0.5)

λ̂ 0.605 0.321 0.023 0.000 2.010 0.773 0.023 0.001

α̂ 1.967 1.611 0.608 0.006 12.333 7.001 1.092 0.004

β̂ 0.221 0.110 0.103 0.001 2.897 1.089 0.355 0.012

σ̂ 0.893 0.342 0.109 0.003 2.887 1.005 0.701 0.001

µ̂∗ 0.615 0.311 0.015 0.001 2.751 1.011 0.044 0.001

It can be seen that as sample size increases, the average values of bias and

MSE decreases.

4.5 Wrapped generalized normal geometric

stable distributions

We de�ne the circular random variable

Θ = X mod (2π) ∈ [0, 2π) (4.13)
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Since the Fourier coe�cients for a wrapped circular random variable

corresponds to the characteristic function at integer values for the unwrapped

random variable(see, Mardia(1972)), ΦΘ(p) : p = 0,±1,±2, . . . of the

characteristic function of Θ is given by

ΦΘ(p) = ϕX(p). (4.14)

Therefore, from (2.42), the characteristic function corresponding to the

wrapped generalized geometric stable(WGNGS) angular random variable is

ΦX(p) =

[
exp{iη∗p− τ2p2

2
}

1 + σα|p|αωα,β(t)− iµ∗p

]λ
(4.15)

where η∗ = η mod (2π) ∈ [0, 2π), τ > 0, 0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, σ >

0, µ∗ = µ mod (2π) ∈ [0, 2π). Thus, for p = 1, 2, . . . , we have

ΦΘ(p) =


eiλη

∗p−λτ2p2

2 [1 + σαpα(1− iβ tan(πα
2
))− iµ∗p]−λ, if α ̸= 1,

eiλη
∗p−λτ2p2

2 [1 + σαpα(1 + iβ 2
π
log |p|)− iµ∗p]−λ, if α = 1.

(4.16)

We shall use the notationΘ ∼ WGNGS(η∗, τ, λ, α, β, σ, µ∗) to denote thatΘ is

distributed according to the wrapped generalized geometric stable distribution

under this parametrization.

De�nition 4.5.1. An angular random variable Θ is said to follow WGNGS

distribution with parameters η∗, τ, λ, α, β, σ, µ∗ if its characteristic function is

ΦΘ(p) =

[
exp{iη∗p− τ2p2

2
}

1 + σα|p|αωα,β(t)− iµ∗p

]λ
(4.17)
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where

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1.

The characteristic function, ΦΘ(p) can be written as

ΦΘ(p) = ρpe
iµp , p = 0,±1,±2, . . .

where

ρp =


e−

λτ2p2

2

[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2 , if α ̸= 1,

e−
λτ2p2

2

[
(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2

π
log |p|)2

]−λ
2 , if α = 1,

(4.18)

and

µp =


λη∗p+ λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
) mod (2π), if α ̸= 1,

λη∗p+ λ arctan(
µ∗p−σαpαβ 2

π
log |p|

1+σαpα
)) mod (2π), if α = 1.

The probability density function of the WGNGS angular random variable Θ ∈

[0, 2π), is given by

fw(θ) =
1

2π

∞∑
p=−∞

ΦΘ(p) exp(−ipθ)

=
1

2π

∞∑
p=−∞

[
exp{iη∗p− τ2p

2
}

1 + σα|p|αωα,β(t)− iµ∗p

]λ
exp(−ipθ).

On simpli�cation, we get

fw(θ) =
1

2π

1 + 2
∞∑
p=1

(αp cos(pθ) + βp sin(pθ))

 , (4.19)
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where

αp =


e−

λτ2p2

2

[
(1 + σαpα)2 + (σαpαβ tan(πα

2
) + µ∗p)2

]−λ
2 cos

(
λη∗p+ λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
)
)
, if α ̸= 1,

e−
λτ2p2

2

[
(1 + σαpα)2 + (µ∗p− σαpαβ 2

π
log |p|)2

]−λ
2 cos

(
λη∗p+ λ arctan(

µ∗p−σαpαβ 2
π
log |p|

1+σαpα
)

)
, if α = 1,

and

βp =


e−

λτ2p2

2

[
(1 + σαpα)2 + (σαpαβ tan(πα

2
) + µ∗p)2

]−λ
2 sin

(
λη∗p+ λ arctan(

σαpαβ tan(πα
2
)+µ∗p

1+σαpα
)
)
, if α ̸= 1,

e−
λτ2p2

2

[
(1 + σαpα)2 + (µ∗p− σαpαβ 2

π
log |p|)2

]−λ
2 sin

(
λη∗p+ λ arctan(

µ∗p−σαpαβ 2
π
log |p|

1+σαpα
)

)
, if α = 1.

Using (4.19), we get the distribution function Fw(θ) as

Fw(θ) =
1

2π

1 + 2
∞∑
p=1

{αp
p

sin(pθ) +
βp
p
(1− cos(pθ))}

 . (4.20)

Special cases:

Let λ = 1, η∗ = 0, τ = 0. Then (4.17) becomes ΦΘ(p) = [1 + σα|p|αωα,β(p) −

iµ∗p]−1, which is the characteristic function of wrapped geometric stable

distributions(see, Jacob(2012)). The corresponding αp and βp are as follows:

For α ̸= 1

αp =

[
(1 + σαpα)2 + (σαpαβ tan(

πα

2
) + µ∗p)2

]−1
2

cos

(
arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

=
1 + σαpα

(1 + σαpα)2 + (σαpαβ tan(πα
2
) + µ∗p)2

, p = 1, 2, . . .

and

βp =

[
(1 + σαpα)2 + (σαpαβ tan(

πα

2
) + µ∗p)2

]−1
2

sin

(
arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

=
σαpαβ tan(πα

2
) + µ∗p

(1 + σαpα)2 + (σαpαβ tan(πα
2
) + µ∗p)2

, p = 1, 2, . . .
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Similarly, for α = 1

αp =
1 + σαpα

(1 + σαpα)2 + (µ∗p− σαpαβ tan(πα
2
))2

and βp =
µ∗p− σαpαβ tan(πα

2
)

(1 + σαpα)2 + (µ∗p− σαpαβ tan(πα
2
))2

Analogous to the representation of GNGS random variable in Proposition

2.15.1, we present below, a representation of WGNGS random variable as

follows:

Let V∼ WGNGS(η, τ, λ, α, β, σ, µ∗). Then

V =


η∗λ+ τ

√
λΘZ + µΘW + (ΘW)

1
αΘS mod (2π), if α ̸= 1,

η∗λ+ τ
√
λΘZ + µΘW +ΘWΘS + σΘWβ(2/π) log(ΘW) mod (2π), if α = 1,

(4.21)

where ΘZ ∼ WN(η, τ 2), ΘS ∼WS(α, β, σ, 0)(see, Pewsey(2008)). ΘW

is wrapped gamma, WΓ(λ, 1) with characteristic function(1 − ip)−λ(see,

Coelho(2007))and is independent of ΘS. Note that ΘS ∼ WS(α, β, σ, µ∗)

has the characteristic function ϕ(p) = exp{−σα|p|αωα,β(p) + iµ∗p} where

µ∗ ∈ [0, 2π).

Theorem 4.5.1. Θ ∼ WGNGS(η∗, τ, λ
n
, α, β, σ, µ∗)is in�nitely divisible

Proof. Let Θ1,Θ2, . . .Θn are identically and independently distributed random

variables withWGNGS(η∗, τ, λ
n
, α, β, σ, µ∗) distribution. De�neΘ = Θ1+Θ2+

. . .Θn mod (2π). Then the characteristic function of Θ, is

ΦΘ(p)) =

[ exp{iη∗p− τ2p2

2
}

1 + σα|p|αωα,β(t)− iµ∗p

]λ
n


n

=

[
exp{iη∗p− τ2p2

2
}

1 + σα|p|αωα,β(t)− iµ∗p

]λ (4.22)
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Hence Θ is in�nitely divisible.

4.6 Trigonometric moments and other

parameters

By the de�nition of trigonometric moments, we have

ΦΘ(p) = αp + iβp, p = ±1,±2, . . .

and, hence, the non-central moments of the respective distribution are given

by

αp = ρp cos(µp) and βp = ρp sin(µp).

So, we have, for α ̸= 1

αp = e
−λτ2p2

2

[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2

cos

(
λη∗p+ λ arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)

and βp = e
−λτ2p2

2

[
(1 + σα|p|α)2 + (σα|p|αβ tan(πα

2
) + µ∗p)2

]−λ
2

sin

(
λη∗p+ λ arctan(

σαpαβ tan(πα
2
) + µ∗p

1 + σαpα
)

)
.

For α = 1,

αp = e
−λτ2p2

2

[
(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2

π
log |p|)2

]−λ
2

cos

(
λη∗p+ λ arctan(

µ∗p− σαpαβ 2
π
log |p|

1 + σαpα
))

)
,

and βp = e
−λτ2p2

2

[
(1 + σα|p|α)2 + (µ∗p− σα|p|αβ 2

π
log |p|)2

]−λ
2

sin

(
λη∗p+ λ arctan(

µ∗p− σαpαβ 2
π
log |p|

1 + σαpα
))

)
.

The mean direction, µ = µ1 ∈ [0, 2π) is

µ =


λ
(
η∗ + arctan(

σαβ tan(πα
2
)+µ∗

1+σα )
)

mod (2π), if α ̸= 1,

λ
(
η∗ + arctan( µ∗

1+σα )
)

mod (2π), if α = 1.

93



Chapter 4. Wrapped Generalized Geometric Stable Distributions

By substituting ρp, µp and µ1, we gets the central trigonometric moments

ᾱp = ρp cos
(
µp − pµ1

)
,

and β̄p = ρp sin
(
µp − pµ1

)
.

The circular variance is given by V0 = 1− ρ, where

ρ =


e−

λτ2

2

[
(1 + σα)2 + (σαβ tan(πα

2
) + µ∗)2

]−λ
2 , if α ̸= 1,

e−
λτ2

2

[
(1 + σ)2 + (µ∗)2

]−λ
2 , if α = 1.

The circular standard deviation is given by

σ0 =


√
λ{τ 2 + log((1 + σα)2 + (σαβ tan(πα

2
) + µ∗)2)}, if α ̸= 1,√

λ{τ 2 + log((1 + σ)2 + (µ∗)2)}, if α = 1.

(4.23)

The coe�cient of skewness is given by,

ζ01 =
β̄2

(1− ρ)3/2
.

The coe�cient of kurtosis is given by,

ζ02 =
ᾱ2 − ρ4

(1− ρ)2
.

Table 4.3 exhibits various features of WGNGS distribution for di�erent values

of the parameters η∗, τ, λ, α, σ, β, µ∗.
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Table 4.3: Values of di�erent characteristics of WGNGS distributions
with parametric values (η∗, τ, λ, α, σ, β, µ∗) as A:(3,1,0.5,0.1,1,1,3);
B:(0,2,0.5,0.5,2,1,0); C:(0,2,0.5,2,2,0,0); D:(3,2,0.5,2,2,0,6); E:(3,1,0.5,1,1,1,3);
F:(0,2,0.5,1,2,1,0); G:(0,2,0.5,1,2,0,2); H:(6,2,0.5,1,2,0,3).

Properties A B C D E F G H

α1 -0.1688 0.2122 0.1645 -0.0473 -0.1675 0.2124 0.1854 -0.1730

β1 0.3657 0.0576 0 0.1229 0.3744 0 0.0561 -0.0444

α2 -0.1278 0.0092 0.0044 -0.0040 -0.1403 0.0078 0.0068 0.0065

β2 -0.0668 0.0028 0 -0.0007 -0.0558 -0.0013 0.0024 0.0010

ᾱ1 0.4028 0.2199 0.1645 0.1316 0.4101 0.2124 0.1937 0.1786

β̄1 0 0 0 0 0 0 0 0

ᾱ2 0.1338 0.0094 0.0044 0.0034 0.1352 0.0078 0.0070 0.0062

β̄2 -0.0539 -0.0023 0 -0.0022 -0.0674 -0.0013 -0.0018 -0.0022

ρ 0.4028 0.2199 0.1645 0.1316 0.4101 0.2124 0.1937 0.1786

V0 0.5972 0.7801 0.8355 0.8684 0.5898 0.7876 0.8063 0.8214

σ0 1.0154 0.7048 0.5995 0.5313 1.0275 0.6910 0.6563 0.6273

ζ01 -0.1167 -0.0033 0 -0.0027 -0.1488 -0.0019 -0.0025 -0.0030

ζ02 0.3012 0.0116 0.0053 0.0041 0.3072 0.0093 0.0086 0.0076

4.7 Maximum likelihood estimation

In this section, we discuss the method of maximum likelihood estimation to

estimate the parameters of the model. Let θ1, θ2, . . . , θn be a random sample

of size n from WGGS(λ, α, σ, β, µ∗). Then, the log-likelihood function is given

by,

logL = −n log 2π +
∑n

i=1

{
log(1 + 2

∑∞
p=1[αp cos(pθi) + βp sin(pθi)])

}
.

Equating the partial derivative of log-likelihood function with respect to
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the parameters to zero, for α ̸= 1 we get,

∂ logL

∂η∗
=

n∑
i=1

2
∑∞

p=1

[
{α1,p sin(pθi)− β1,p cos(pθi)}λp

]
f1

= 0

∂ logL

∂τ 2
=

n∑
i=1

2
∑∞

p=1

[
(α1,p cos(pθi) + β1,p sin(pθi))(

−λp2
2

)
]

f1
= 0

∂ logL

∂λ
=

n∑
i=1

2
∑∞

p=1

[
e−

λτ2p2

2 (a2 + b2)−
λ
2 {B1C1 + A1(η

∗p+ arctan(b/a))}
]

f1
= 0

∂ logL

∂α
=

n∑
i=1

2
∑∞

p=1 λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1[α11{(aβ tan(πα2 )− b)A1 −B1(a+ bβ tan(πα

2
))}+ (aA1 − bB1)α12]

f1
= 0

∂ logL

∂σ
=

n∑
i=1

2
∑∞

p=1 λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1[A1σ11(aβ tan(

πα
2
)− b)−B1σ11(bβ tan(

πα
2
) + a)]

f1
= 0

∂ logL

∂β
=

n∑
i=1

2
∑∞

p=1 λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1[(σαpα tan(πα

2
))(aA1 − bB1)]

f1
= 0

∂ logL

∂µ∗ =
n∑
i=1

2
∑∞

p=1 λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1[p(aA1 − bB1)]

f1
= 0

where, α1,p = e−
λτ2p2

2 (a2+ b2)−
λ
2 cos(λη∗p+λ arctan(b/a)), β1,p = e−

λτ2p2

2 (a2+

b2)−
λ
2 sin(λη∗p + λ arctan(b/a)), a = 1 + σαpα, b = σαpαβ tan(πα

2
) +

µ∗p, α11 = σαpα log(σp), α12 = σαpαβ(π/2) sec2(π/2), A1 = cos(λη∗p +

λ arctan(b/a)) sin(pθi) − sin(λη∗p + λ arctan(b/a)) cos(pθi), B1 = cos(λη∗p +

λ arctan(b/a)) cos(pθi) + sin(λη∗p + λ arctan(b/a)) sin(pθi),C1 = log((a2 +

b2)−1/2)− τ2p2

2
, σ11 = ασα−1pα and f1 = 1+2

∑∞
p=1[α1,p cos(pθi)+β1,p sin(pθi)].

Similarly, for α = 1,

∂ logL

∂η∗
=

n∑
i=1

2
∑∞

p=1

[
{α2,p sin(pθi)− β2,p cos(pθi)}λp

]
f2

= 0

∂ logL

∂τ 2
=

n∑
i=1

2
∑∞

p=1

[
(α2,p cos(pθi) + β2,p sin(pθi))(

−λp2
2

)
]

f2
= 0

∂ logL

∂λ
=

n∑
i=1

2
∑∞

p=1[e
−λτ2p2

2 (c2 + d2)−
λ
2 {B2C2 + (η∗p+ arctan(d/c))A2}]

f2
= 0

∂ logL

∂σ
=

n∑
i=1

2
∑∞

p=1[λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1{pB2(dβ(2/π)log(p)− c)− pA2(d+ cβ(2/π)log(p))}]

f2
= 0

∂ logL

∂β
=

n∑
i=1

2
∑∞

p=1[λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1pσ(2/π) log(p){dB2 − cA2}]
f2

= 0

∂ logL

∂µ∗ =
n∑
i=1

2
∑∞

p=1[λe
−λτ2p2

2 (a2 + b2)−
λ
2
−1p{cA2 − dB2}]

f2
= 0
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where, α2,p = e−
λτ2p2

2 (c2 + d2)−
λ
2 cos(λη∗p + λ arctan(d/c)),

β2,p = e−
λτ2p2

2 (c2 + d2)−
λ
2 sin(λη∗p + λ arctan(d/c)), c = 1 + σp,

d = µ∗p− σpβ(2/π) log(p), f2 = 1 + 2
∑∞

p=1[α2,p cos(pθi) + β2,p sin(pθi)], A2 =

cos(λη∗p + λ arctan(d/c)) sin(pθi) − sin(λη∗p + λ arctan(d/c)) cos(pθi), B2 =

cos(λη∗p + λ arctan(d/c)) cos(pθi) + sin(λη∗p + λ arctan(d/c)) sin(pθi)),C2 =

log((c2 + d2)−1/2)− τ2p2

2
,

Since the above normal equations cannot be solved analytically, a numerical

technique is to be adopted to get the solutions for the estimates of the

parameters. The log-likelihood of the WGGS(λ, α, β, σ, µ∗) density can be

computed numerically to a given level of precision for logL =
∑n

i=1 log f(θi)

using �nite sum approximation to (4.19) for the given set of independent

observed directions θT = (θ1, θ2, ..., θn). The optim function in the R stats

package used for the numerical optimization of ℓ over the parameters.
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CHAPTER 5

MULTIVARIATE GENERALIZED

GEOMETRIC STABLE

DISTRIBUTIONS AND PROCESSES

5.1 Introduction

A geometric stable law is de�ned as a limiting distribution of appropriately

normalized sums of a random number of independent identically distributed

random variables, where the number of terms has a geometric distribution.

Geometric stable distributions generalizes distributions like exponential and

Laplace distribution. Generalized geometric stable(GGS)distributions is

the univariate generalization of geometric stable distributions. Kozubowski

and Panorska(1999)introduced a multivariate generalization of geometric

stable distribution and used it for modeling multivariate �nancial portfolios

of securities. The normal-Laplace distribution, which results from the

convolution of independent normal and Laplace random variables is introduced
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by Reed and Jorgensen (2004). Manu(2013) introduced a multivariate

normal-Laplace distribution, and studied its properties and applications in

multivariate �nancial data modeling.

The geometric stable distribution has found applications in a variety of areas

such as economics, insurance mathematics, reliability and queuing theories,

and other �elds. This distribution is often used for modeling phenomena with

heavier tails. We know that a random variable V is said to follow a generalized

geometric stable distribution with parameters 0 < α ≤ 2, λ > 0,−1 ≤ β ≤

1, σ > 0, and µ real, if its characteristic function, ϕ(t) has the following form:

ϕ(t) = [1 + σα|t|αωα,β(t)− iµt]−λ (5.1)

where

ωα,β(x) =


1− iβsign(x) tan(πα/2), if α ̸= 1,

1 + iβ(2/π)sign(x) log |x|, if α = 1,

(5.2)

and

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

The special cases of GGS distributions include geometric stable, Laplace,

exponential, Linnik etc. Multivariate extensions of symmetric and asymmetric

Laplace distributions discussed in Kotz et al.(2001). Multivariate generalized

asymmetric Laplace distributions and its applications are studied in

Kozubowski et al.(2013). Many properties in the univariate laws can be

extended to this class of distributions. For more details (see, Ernst(1998)).
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We have, the characteristic function of GNGS distributions as

ϕX(t) =

[
exp{iηt− τ2t2

2
}

1 + σα|t|αωα,β(t)− iµt

]λ
, (5.3)

where η ∈ ℜ, τ > 0, 0 < α ≤ 2, λ > 0,−1 ≤ β ≤ 1, σ > 0, µ ∈ ℜ.

The special cases of GNGS distributions include normal-Laplace,

normal-Linnik etc. Manu(2013) introduced multivariate normal-Laplace

distribution and developed �rst order autoregressive processes with

multivariate normal-Laplace marginals.

Kozubowski and Panorska(1999) introduced a multivariate extension of

geometric stable distributions. As shown in Mittnik and Rachev(1991), there

is a one-to-one correspondence between characteristic functions of geometric

stable and α-stable distributions: Y is geometric stable if and only if its

characteristic function ψ(t) has the form

Ψ(t) = (1− log ϕ(t))−1 =

∫ ∞

0

[Φ(t)]ze−zdz. (5.4)

Utilizing (5.4) and the spectral representation of α-stable laws(see,

Samorodnitsky and Taqqu(1994)), a multivariate geometric stable distribution

was introduced in Kozubowski and Panorska(1999): A geometric stable

random vector Y = (Y1, Y2, . . . , Yd) can be described by its characteristic

function as

ψY(t) =

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−1

,

where 0 < α ≤ 2, Γ is a �nite measure on the unit sphere Sd ∈ ℜd, µ ∈ ℜd is

the location vector, and ωα,β is given by (5.2). Measure Γ is called the spectral

measure of the vector Y .
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A representation of GSα(Γ,µ) random vector presented below.

Lemma 5.1.1. Y ∼ GSα(Γ,µ) if and only if

Y
d
=


µZ + Z

1
αX, if α ̸= 1,

µZ + ZX+
(
Z(2/π) log(Z)

)
g, if α = 1,

with

g = (g1, g2, . . . , gd) and gk =

∫ ∞

Sd

skΓ(ds),

where X ∼ Sα(Γ,0)(α-stable distribution with spectral measure Γ and

location parameter µ, (see, Samorodnitsky and Taqqu(1994))) , Z ∼ exp(1),

and X and Z are independent.

In the present chapter, we introduce multivariate GGS distributions, and

study its properties. Also multivariate GeoGGS distributions are introduced.

First order autoregressive processes with multivariate GeoGGS distributions

is developed. Multivariate GNGS distributions is introduced, as an extension

of multivariate normal-Laplace distribution. We introduced the GeoGNGS

distributions and studied its properties.

5.2 The multivariate generalized geometric

stable distributions

Here we introduce multivariate generalized geometric stable laws . Let

{X(n) = (X
(n)
1 , X

(n)
2 , . . . , X

(n)
d ), n ≥ 1} be independently and identically

distributed random vectors in ℜd, and let Np,λ be an NB random variable

with parameters p ∈ (0, 1), λ > 0, independent of {X(n)},

P (Np,λ = k) =
Γ(λ+ k)

Γ(λ)Γ(k + 1)
pλ(1− p)k−1, k = 1, 2, . . . . (5.5)
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GGS laws are the only possible limits, and therefore, good approximations,

of properly scaled and centered random sums of random vectors. Namely,

Y = (Y1, Y2, . . . , Yd) is GGS, if there exist a(p) > 0, and b(p) ∈ ℜd such that

a(p)

Np,λ∑
i=1

(
X(i) + b(p)

)
d→ Y, as p→ 0 (5.6)

The random vectors X(i) appearing in (5.6) are in the domain of attraction of

the GGS vector Y.

A GGS random vector Y = (Y1, Y2, . . . , Yd) can be described by its

characteristic function ψ(t) = E exp{it′Y}, we can write the characteristic

function of GGS vector as

ΨY(t) =

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
, (5.7)

where 0 < α < 2, λ > 0, Γ is a �nite measure on the unit sphere Sd ∈ ℜd,µ ∈

ℜd, and ωα,β is given by (5.2). Measure Γ is called the spectral measure of the

vector Y, and carries the information about the dependence structure between

its components. We denote Y ∼ GGSα(λ,Γ,µ).

Similar to the univariate case, multivariate GGS distributions also possesses

the in�nite divisibility property.

In�nite divisibility. The characteristic function ΦX(t) of GGSα(λ,Γ,µ) can

be written as

ΦX(t) =

(1 + ∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−λ
n


n

,

for any integer n > 0. The term in brackets is the characteristic function of a

GGSα(
λ
n
,Γ,µ)
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The class of elliptical distributions. The class of elliptical distributions is

a generalization of multivariate normal distributions (see, Kelker (1970)).

De�nition 5.2.1. A random vector X has a multivariate elliptical

distribution, if. its characteristic function can be expressed as

X(t) = exp(iν ′t)ψ(
1

2
t′Σt) (5.8)

for some column vector ν, positive matrix Σ and for some function ψ(t) ∈ ψn,

which is called the characteristic generator.

GGS distributions with µ = 0, α = 2, λ = 1 are elliptically contoured, as

their characteristic function depends on t only through the quadratic form

t′Σt. With a non-singular Σ, they are also elliptically symmetric.

5.2.1 Representation

In this section, we present a useful representation of GGS random

vectors analogous to geometric stable random vectors, which extends the

representation of univariate GGS laws given in Proposition 2.7.2.

Theorem 5.2.1. Y ∼ GGSα(λ,Γ,µ) if and only if

Y
d
=


µW +W

1
αX, if α ̸= 1,

µW +WX+
(
W (2/π) log(W )

)
g, if α = 1,

(5.9)

with

g = (g1, g2, . . . , gd) and gk =

∫ ∞

Sd

skΓ(ds),

where X ∼ Sα(Γ,0)(α-stable distribution with spectral measure Γ and

location parameter µ, (see, Samorodnitsky and Taqqu(1994))), W ∼ G(1, λ),

and X and W are independent.
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Proof. Case 1: α ̸= 1.Let Y1 = µW +W
1
αX

ΨY1(t) = E[eit
′Y1 ]

= Ew

[
E
[
eit

′Y1 |W
]]

= Ew

EX [exp{it′ (µW +W
1
αX
)}

|W

]
= Ew

[
exp{it′µW}Φ(W t)

]
= Ew

[
exp{it′µW}[Φ(t)]W

]
= EW [Φ(t) exp{it′µ}]W

= E[exp{−{−(log Φ(t) + it′µ)}W}]

This is the Laplace transform ofW , that is, Ee−sw, with s = −(log Φ(t)+it′µ).

Thus, representation (5.9) holds for α ̸= 1.

Case 2: α = 1. Let Y2 = µW +WX +W (2/π) log(W )g, with the variables

de�ned in the statement of the theorem. Conditioning on W produces

ΨY2(t) = E[eit
′Y2 ]

= Ew

[
E
[
eit

′Y2 |W
]]

= Ew

[
EX

[
exp

{
it′
(
µW +WX+W (2/π) log(W )g

)}
|W
]]

= Ew

[
exp{it′µW+W (2/π) log(W )it′g}Φ(W t)

]

where Φ is the characteristic function of X ∼ Sα(Γ,0). Note that for any

t ∈ ℜd and w > 0,Φ satis�es

Φ(wt) = [Φ(t)]w exp{−w 2

π
log(w)it′g}.
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Therefore,

ΨY2(t) = EW [Φ(t) exp{it′µ}]w

Thus, representation (5.9) holds for α = 1.

Remarks:

1. When α = 2, the characteristic function of a GGS vector can be written

as

ψ(t) =

[
1 +

1

2
t′Σt− iµ′t

]−λ
,

where Σ is a dxd positive-de�nite symmetric matrix. This

is the characteristic function of multivariate generalized Laplace

distribution(see, Kozubowski et al.(2013))

2. When Γ ≡ 0(Γ(A) = 0, for any Borel set in ℜd), th characteristic

function becomes

ψ(t) =
[
1− iµ′t

]−λ
.

It admits the representation Y ∼ µW , where W ∼ G(1, λ).

3. Summation: Let X ∼ GGSα(λ,Γ,µ) and Y ∼ GGSα(γ,Γ,µ), X and Y

are independent, then X+Y ∼ GGSα(λ+ γ,Γ,µ).

4. If d = 1, the unit sphere consists of only two points: S1 = {1,−1}.

Denoting Γ1 = Γ({1}) and Γ−1 = Γ({−1}), in case α ̸= 1, characteristic

function (5.7) becomes

ψ(t) =

[
1 + |t1|α

(
1− isgn(t1) tan(

πα

2
)

)
Γ1 + |t(−1)|α

(
1− isgn(t(−1)) tan(

πα

2
)

)
Γ−1 − itµ

]−λ

=

[
1 +

(
(Γ1 + Γ−1)

1
α

)α
|t|α
(
1− isgn(t)

Γ1 − Γ−1

Γ1 + Γ−1

tan(
πα

2
)

)
Γ1 − itµ

]−λ
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Comparing the above expression with (5.1), we see that a univariate

GGS random variable with spectral representation GGSα(λ,Γ, µ) has

parameters

λ, α, β =
Γ1 − Γ−1

Γ1 + Γ−1

, σ = (Γ1 + Γ−1)
1
α , µ

The skewness parameter β is zero if the spectral measure is symmetric.

Similar result holds for α = 1.

5.3 Multivariate slash generalized geometric

stable distributions

Now let us de�ne the slash version of the generalized geometric stable

distributions.

De�nition 5.3.1. A random vector Y ∈ ℜd has a d-variate slash generalized

geometric stable (SGGSd) distributions, denoted by Y ∼ SGGSα(λ,Γ,µ, q),

if Y = X

U
1
q
, where q > 0 and X is GGS random vector with characteristic

function given by ΨX(t) =
[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
]−λ

, where 0 <

α < 2, λ > 0, Γ is a �nite measure on the unit sphere Sd ∈ ℜd,µ ∈ ℜd and

U ∼ U(0, 1), which is independent of X.

5.4 The multivariate geometric generalized

geometric stable distributions

In this section, multivariate geometric generalized normal geometric

stable(GeoGGS) distributions is introduced and its properties are studied.

A GGSα(λ,Γ,µ) random vector Y = (Y1, Y2, . . . , Yd) can be described by
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its characteristic function as

ΨY(t) =

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
, (5.10)

where 0 < α < 2, λ > 0, Γ is a �nite measure on the unit sphere Sd ∈ ℜd,µ ∈

ℜd is the location vector, and ωα,β is given by (5.2). Measure Γ is called the

spectral measure of the vector Y,

Now, we can write,

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ

as

exp

1− 1[
1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1

 .

Since GGSα(λ,Γ,µ) distribution is in�nitely divisible, it follows that

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

is geometrically in�nite divisible.

A distribution with characteristic function

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

is called GeoGGS distribution. It is denoted as GeoGGSα(λ,Γ,µ)

De�nition 5.4.1. A d-variate random vector X is said to follow

multivariate geometric generalized geometric stable distribution and write X ∼
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GeoGGSα(λ,Γ,µ) if it has the characteristic function

ϕX(t) =

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

,

where 0 < α < 2, λ > 0, Γ is a �nite measure on the unit sphere Sd ∈ ℜd,µ ∈

ℜd is the location vector, and ωα,β(x) is given by (5.2).

Theorem 5.4.1. Let X1,X2, . . . be independent and identically distributed

d-variate geometric generalized geometric stable random vectors, that is,

Xi ∼ GeoGGSα(λ,Γ,µ), i = 1, 2, . . . and N(γ) be a geometric with mean

1/γ, P [N(γ) = k] = γ(1 − γ)k−1, k = 1, 2, . . . , 0 < γ < 1. De�ne Y =

X1 +X2 + · · ·+XN(γ), then Y ∼ GeoGGSα(
λ
γ
,Γ,µ)

Proof. Since Xi ∼ GeoGGSα(λ,Γ,µ), then its characteristic function is ,

ϕX(t) =

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

Then the characteristic function of Y is

ϕY(t) =
n∑
k=1

[ϕX(t)]
kγ(1− γ)k−1

=
γϕX(t)

1− (1− γ)ϕX(t)

=

γ

[
1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1

1− (1− γ)

[
1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1

=

1 + λ

γ
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

.

(5.11)

Hence Y ∼ GeoGGSα(
λ
γ
,Γ,µ).

108



Chapter 5. Multivariate generalized geometric stable distributions and

processes

Theorem 5.4.2. Suppose X1,X2, . . . are independently and identically

distributed as GGSα(
λ
n
,Γ,µ) and N, independent of X1,X2, . . . be a geometric

random variables with probability of success 1/n. Then Y = X1+X2+· · ·+XN

distributed as GeoGGSα(λ,Γ,µ) as n→ ∞.

Proof.

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
n

=

1 +

[1 + ∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]λ
n

− 1




−1

.

Hence by Lemma 3.2 of Pillai(1990b)

ϕn(t) =

1 + n

[1 + ∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]λ
n

− 1




−1

is the characteristic function of Y . Taking limit as n→ ∞, we have

ϕ(t) = lim
n→∞

ϕn(t)

=

1 + lim
n→∞

n

[1 + ∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]λ
n

− 1




−1

=

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

.

(5.12)

Theorem 5.4.3. Let X|λ ∼ GGSα(λ,Γ,µ) with random λ, where λ is

exponential with mean η. Then X ∼ GeoGGSα(η,Γ,µ).
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Proof.

ϕ(t) = E
(
eit

′Xλ

)
= Eλ

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
= Eλ

[
e
log

[
1+

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)−iµ′t
]−λ
]

= Eλ

[
e
−λ log

(
1+

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)−iµ′t
)]

=

1 + η log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

.

(5.13)

Theorem 5.4.4. Let X1,X2, . . . be independent and identically distributed

with GeoGGSα(
λ
n
,Γ,µ). Then Y = X1 +X2 + · · ·+Xn

d→ GGSα(λ,Γ,µ) as

n→ ∞.

Proof. The characteristic function of GeoGGSα(
λ
n
,Γ,µ) distribution is

ϕX(t) =

1 + λ

n
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

Then the characteristic function of Y is

ϕY(t) =

1 + λ

n
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−n

.

Hence,

lim
n→∞

ϕY(t) =

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ

That is, Y
d→ GGSα(λ,Γ,µ).
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5.4.1 AR(1) model with multivariate GeoGGS marginals

Consider the linear additive autoregreessive equation

Xn = ρXn−1 + ϵn, n = 0,±1,±2, . . . , |ρ| ≤ 1 (5.14)

where Xn and innovations ϵn are independent d- variate random vectors.

Lawrence(1978) derived the gamma and the Laplace solution of equation

(5.14). In this section, we develop a �rst order new autoregressive process

with multivariate GeoGGS marginals. Consider an autoregressive structure

given by,

Xn =


ϵn, w.p γ,

Xn−1 + ϵn, w.p 1− γ,

(5.15)

where 0 < γ < 1. Now we shall construct an AR(1) process with stationary

marginal as multivariate GeoGGS distribution.

Theorem 5.4.5. Consider an autoregressive process {Xn} with structure given

by (5.15). Then {Xn} is strictly stationary Markovian with GeoGGSα(λ,Γ,µ)

marginal if and only if {ϵn} are distributed as GeoGGSα(γλ,Γ,µ) provided

that X0 is distributed as GeoGGSα(λ,Γ,µ).

Proof. Let us denote the Laplace transform of {Xn} by ψXn(t) and that of ϵn

by ψϵn(t), equation (5.15) in terms of characteristic function becomes

ψXn(t) = γψϵn(t) + (1− γ)ψXn−1(t)ψϵn(t).

On assuming stationarity, it reduces to the form

ψX(t) = γψϵ(t) + (1− γ)ψX(t)ψϵ(t).
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Write

ψX(t) =

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

and hence

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
(5.16)

becomes

ψϵ(t) =

1 + γλ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

.

Hence it follows that ϵn
d
= GeoGGSα(γλ,Γ,µ)

The converse can be proved by the method of mathematical induction as

follows. Now assume that Xn−1
d
= GeoGGSα(λ,Γ,µ). Then

ψXn(t) =ψϵn(t)[γ + (1− γ)ψXn−1(t)]

=


1 + γλ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1
 x

[γ + (1− γ)

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1


=

1 + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

(5.17)

That is, Xn
d
= GeoGGSα(λ,Γ,µ)
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The joint distribution of Xn and Xn−1

Consider the autoregressive structure given in (5.15). It can be written as

Xn = InXn−1 + ϵn−1,whereP (In = 0) = p, P (In = 1) = 1− p

Then the joint characteristic function of(Xn,Xn−1) is given by

ψXn−1,Xn(t1, t2) =E
[
eit

′
1Xn−1+it′2Xn

]
=E

[
eit

′
1Xn−1+it′2(InXn−1+ϵn)

]
=E[e(it1+it2In)

′Xn−1 ]ψϵn(t2)

=

 1

1 + γλ log
(
1 +

∫
Sd

|t′2s|αωα,1(t′2s)Γ(ds)− iµ′t2

)


x

 p

1 + λ log
(
1 +

∫
Sd

|t′1s|αωα,1(t′1s)Γ(ds)− iµ′t1

) +
1− p

1 + λ log
(
1 +

∫
Sd

|(t1 + t2)′s|αωα,1((t1 + t2)′s)Γ(ds)− iµ′(t1 + t2)
)


(5.18)

This shows the process is not time reversible.

5.5 Generalisation to a kth order multivariate

GeoGGS autoregressive process

Consider the higher order process, analogs of the autoregressive equation (5.15)

with structure as given below.

Xn =



ϵn, w.p γ,

Xn−1 + ϵn, w.p γ1,

...

Xn−k + ϵn, w.p γk,

(5.19)

where γ1 + γ2 + . . . + γk = 1 − γ, 0 ≤ γi, γ ≤ 1, i = 1, 2, . . . , k and ϵn is

independent of {Xn,Xn−1, . . .}.
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In terms of characteristic function, equation (5.19) can be written as

ψXn(t) = γψϵn(t) + γ1ψXn−1(t)ψϵn(t) + . . .+ γkψXn−k
(t)ψϵn(t).

Assuming stationarity, we get

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
.

This establishes that the results developed in the above section are valid

in this case also. This gives to the kth order GeoGGS autoregressive process.

5.6 Multivariate generalized normal-geometric

stable distributions

De�nition 5.6.1. A d-variate random vector X is said to follow

multivariate generalized normal-geometric stable distribution and write X ∼

GNGSα(η,T , λ,Γ,µ) if it has the characteristic function

ϕX(t) = exp{iλt′η − 1

2
λt′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
,

where η ∈ ℜd,T > 0, 0 < α < 2, λ > 0, Γ is a �nite measure on the unit

sphere Sd ∈ ℜd,µ ∈ ℜd, and ωα,β(x) is given by (5.2).

When λ = 1, we get multivariate normal-geometric stable distributions.

The characteristic function is given by

ϕX(t) = exp{it′η − 1

2
t′T t}

[
1+

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−1

.

Some properties:
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Let X ∼ GNGSα(η,T , λ,Γ,µ), then X can be expressed as

X
d
= Z+Y

where Z and Y are independent random vectors with Z following a

d-variate normal distribution with mean vector λη and dispersion matrix λT

(Nd(λη, λT )) and Y following a d-variate GGS distributions GGSα(λ,Γ,µ).

Remarks:

1. When α = 2 the characteristic function of a GNGS vector can be written

as

ψ(t) = exp{iλt′η − 1

2
λt′T t}

[
1+

1

2
t′Σt− iµ′t

]−λ
where Σ is a dxd positive-de�nite symmetric matrix.

2. Summation: Let X ∼ GNGSα(η,T , λ,Γ,µ) and Y ∼

GNGSα(η,T , γ,Γ,µ), X and Y are independent, then X+Y ∼

GNGSα(η,T , λ+ γ,Γ,µ).

3. If d = 1, the unit sphere consists of only two points: S1 = {1,−1}.

Denoting Γ1 = Γ({1}) and Γ−1 = Γ({−1}), in case α ̸= 1, characteristic

function (5.7) becomes

ψ(t) = exp{iλt1η1 −
1

2
λt1

2τ11}

[
1 + |t1|α

(
1− isgn(t1) tan(

πα

2
)

)
Γ1 + |t(−1)|α

(
1− isgn(t(−1)) tan(

πα

2
)

)
Γ−1 − itµ

]−λ
.

=exp{iλt1η1 −
1

2
λτ11t1

2}

[
1 +

(
(Γ1 + Γ−1)

1
α

)α
|t|α
(
1− isgn(t)

Γ1 − Γ−1

Γ1 + Γ−1

tan(
πα

2
)

)
Γ1 − itµ

]−λ
.

Comparing the above expression with (2.42), we see that a

univariate GNGS random variable with spectral representation

GNGSα(η, T , λ,Γ, µ) has parameters

η = η1, τ = τ11, λ, α, β =
Γ1 − Γ−1

Γ1 + Γ−1

, σ = (Γ1 + Γ−1)
1
α , µ
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Similar result holds for α = 1.

Proposition 5.6.1. Y ∼ GNGSα(η,T , λ,Γ,µ) if and only if

Y
d
=


λη +

√
λΛZ+ µW +W

1
αX, if α ̸= 1,

λη +
√
λΛZ+ µW +WX+

(
W (2/π) log(W )

)
g, if α = 1,

(5.20)

with

g = (g1, g2, . . . , gd) and gk =

∫ ∞

Sd

skΓ(ds),

where Z ∼ Nd(0, I)(d-variate standard normal random vector ) and

Λ is a dxd invertible matrix such that T = ΛTΛ = ΛΛT, X ∼

Sα(Γ,0)(α-stable distribution with spectral measure Γ and location parameter

µ, (see, Samorodnitsky and Taqqu(1994))), W ∼ G(1, λ), and Z, X and W

are independent.

The class of elliptical distributions: The multivariate normal and

multivariate GGS distributions with α = 2, λ = 1,µ = 0 belong to elliptical

family, since their characteristic functions can be factorized as (5.8). The

multivariate generalized normal-geometric distribution α = 2, λ = 1,µ = 0

belongs to the class of elliptical distributions, as, the sum of elliptical

distributions is elliptical(see, Fang et al. (1987)).

In�nite divisibility:. Multivariate GNGS distributions possesses the

in�nite divisibility property. Since the characteristic function ΦX(t) of

GNGSα(η,T , λ,Γ,µ) can be written as

ΦX(t) =

exp{iλ
n
t′η − 1

2

λ

n
t′T t}

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−λ
n


n

.
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5.7 Multivariate slash generalized

normal-geometric stable distributions

Now we de�ne the slash version of the generalized normal-geometric stable

distributions.

De�nition 5.7.1. A random vector Y ∈ ℜd has a d-variate slash

generalized normal-geometric stable (SGNGSd) distributions, denoted by Y ∼

SGNGSα(η,T , λ,Γ,µ, q), if Y = X

U
1
q
, where q > 0 and X is GNGS

random vector with characteristic function given by ϕX(t) = exp{iλt′η −
1
2
λt′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
]−λ

, where η ∈ ℜd,T > 0, 0 <

α < 2, λ > 0, Γ is a �nite measure on the unit sphere Sd ∈ ℜd,µ ∈ ℜd, and

U ∼ U(0, 1), which is independent of X.

5.8 Multivariate geometric generalized normal

geometric stable distributions

A GNGSα(η,T , λ,Γ,µ) random vector Y = (Y1, Y2, . . . , Yd) can be described

by its characteristic function as

ϕY(t) = exp{iλt′η − 1

2
λt′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
,

where η ∈ ℜd,T > 0, 0 < α < 2, λ > 0, Γ is a �nite measure on the unit

sphere Sd ∈ ℜd,µ ∈ ℜd, and ωα,β(x) is given by (5.2). Now, we can write

exp{iλt′η − 1

2
λt′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
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as

exp

1− 1[
1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1


Since GNGSα(η,T , λ,Γ,µ) distribution is in�nitely divisible, it follows that

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

is geometrically in�nitely divisible.

A distribution with characteristic function

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

is called GeoGNGS distribution. It is denoted as GeoGNGSα(η,T , λ,Γ,µ).

De�nition 5.8.1. A d-variate random vector X is said to follow multivariate

geometric generalized normal-geometric stable distribution and write X ∼

GeoGNGSα(η,T , λ,Γ,µ) if it has the characteristic function

ϕX(t) =

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

,

where η ∈ ℜd,T > 0, 0 < α < 2, λ > 0, Γ is a �nite measure on the unit

sphere Sd ∈ ℜd,µ ∈ ℜd is the location vector, and ωα,β(x) is given by (5.2).

Theorem 5.8.1. Let X1,X2, . . . be independent and identically distributed as

d-variate geometric generalized normal-geometric stable random vectors, that

is, Xi ∼ GeoGNGSα(η,T , λ,Γ,µ), i = 1, 2, . . . and N(γ) be a geometric with

mean 1/γ, that is, P [N(γ) = k] = γ(1− γ)k−1, k = 1, 2, . . . , 0 < γ < 1. De�ne
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Y = X1 +X2 + · · ·+XN(γ), then Y ∼ GeoGNGSα(η,T , λγ ,Γ,µ)

Proof. Since Xi ∼ GeoGNGSα(η,T , λ,Γ,µ), then its characteristic function

is,

ϕX(t) =

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

Then the characteristic function of Y is

ϕY(t) =
n∑
k=1

[ϕX(t)]
kγ(1− γ)k−1

=
γϕX(t)

1− (1− γ)ϕX(t)

=

γ

[
1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1

1− (1− γ)

[
1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t
)]−1

=

1 + 1

2

λ

γ
t′T t− i

λ

γ
t′η +

λ

γ
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

(5.21)

Hence Y ∼ GeoGNGSα(η,T , λγ ,Γ,µ)

Theorem 5.8.2. Suppose X1,X2, . . . are independently and identically

distributed as GNGSα(η,T , λn ,Γ,µ) and N, independent of X1,X2, . . . be

a geometric random variables with probability of success 1/n. Then Y =

X1 +X2 + · · ·+XN distributed as GeoGNGSα(η,T , λ,Γ,µ) as n→ ∞.
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Proof.

ΦX(t) = exp{iλ
n
t′η − 1

2

λ

n
t′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ
n

=

exp{−it′η +
1

2
t′T t}

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−λ
n

=

1 +


exp{−it′η +

1

2
t′T t}

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)λ
n

− 1




−1

.

Hence by Lemma 3.2 of Pillai(1990a)

ϕn(t) =

1 + n


exp{−it′η +

1

2
t′T t}

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)λ
n

− 1




−1

is the characteristic function of Y . Taking limit as n→ ∞, we have

ϕ(t) = lim
n→∞

ϕn(t)

=

1 + lim
n→∞

n


exp{−it′η +

1

2
t′T t}

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)λ
n

− 1




−1

=

1− iλt′η + λ
1

2
t′T t+ λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

(5.22)

Theorem 5.8.3. Let X1,X2, . . . be independent and identically distributed

as GeoGNGSα(η,T , λn ,Γ,µ). Then Y = X1 + X2 + · · · + Xn
d→

GNGSα(η,T , λ,Γ,µ) as n→ ∞.

Proof. The characteristic function of GeoGNGSα(η,T , λn ,Γ,µ) distribution
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is

ϕX(t) =

1− i
λ

n
t′η +

λ

n

1

2
t′T t+

λ

n
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

Then the characteristic function of Y is

ϕY(t) =

1− i
λ

n
t′η +

λ

n

1

2
t′T t+

λ

n
log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−n

Hence,

lim
n→∞

ϕY(t) = exp{iλt′η − 1

2
λt′T t}

[
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

]−λ

That is, Y
d→ GNGSα(η,T , λ,Γ,µ).

5.8.1 AR(1) model with multivariate GeoGNGS

marginals

We shall now construct an AR(1) processes with stationary marginals as

multivariate GeoGNGS distributions.

Theorem 5.8.4. Consider an autoregressive process {Xn} with structure

given by (5.15).Then {Xn} is strictly stationary Markovian with

GeoGNGSα(λ,Γ,µ) marginal if and only if {ϵn} are distributed as

GeoGNGSα(γλ,Γ,µ) provided that X0 is distributed as GeoGNGSα(λ,Γ,µ)

Proof. Let us denote the Laplace transform of {Xn} by ψXn(t) and that of ϵn

by ψϵn(t), equation (5.15) in terms of characteristic function becomes

ψXn(t) = γψϵn(t) + (1− γ)ψXn−1(t)ψϵn(t).

On assuming stationarity, it reduces to the form
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ψX(t) = γψϵ(t) + (1− γ)ψX(t)ψϵ(t).

Write

ψX(t) =

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

and hence

ψϵ(t) =
ψX(t)

γ + (1− γ)ψX(t)
(5.23)

becomes

ψϵ(t) =

1 + 1

2
γλt′T t− iγλt′η + γλ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

.

Hence it follows that ϵn
d
= GeoGNGSα(η,T , γλ,Γ,µ)

The converse can be proved by the method of mathematical induction as

follows. Now assume that Xn−1
d
= GeoGNGSα(η,T , λ,Γ,µ). Then

ψXn(t) =ψϵn(t)[γ + (1− γ)ψXn−1(t)]

=


1 + 1

2
γλt′T t− iγλt′η + γλ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1
 x

[γ + (1− γ)

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1


=

1 + 1

2
λt′T t− iλt′η + λ log

(
1 +

∫
Sd

|t′s|αωα,1(t′s)Γ(ds)− iµ′t

)−1

(5.24)

That is, Xn
d
= GeoGNGSα(η,T , λ,Γ,µ).
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CHAPTER 6

APPLICATIONS

6.1 Introduction

Kozubowski(2001) examined the S&P index data and illustrated the

potential of geometric stable distributions in modeling �nancial data.

Mittag-Le�er distribution has been used to model random phenomena in

�nance and economics. Jose et al.(2010) applied the generalized Mittag-Le�er

(GML) distribution in astrophysics and time series modeling.

Circular data analysis, and more generally spherical data analysis, has

been practiced in areas like astronomy, ornithology, demography, geology,

geography, meteorology, earth sciences, oceanography, and in biology. In

ornithology, the nest orientation of birds, migration direction or general �ight

pattern is studied(see, Bergin (1991), Squires and Ruggiero(1996), Beason

(1980), Bryan and Coulter(1987), Matthews(1974), Schmidt-Koeing (1963)).

In biomathematics, the idea of circular distributions in animal behavior studies

on homing, migration, escape, and exploratory behavior etc are well accepted.
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In demography, circular data analysis has been used to study the concepts

such as geographic marital patterns, occupational relocation in the same city

and settlement trends(see, Coleman and Haskey(1986), Clark and Burt(1980),

Upton (1986)).

In the present chapter, we consider the applications of univariate generalized

geometric stable distributions to �nancial data. We used the currency exchange

rates for validation of GGS model over other models. We modeled the data set

of ordered remission times of bladder cancer patients to the DeML distribution.

Applications of wind data to the wrapped GGS distributions also discussed.

6.2 Modeling price exchange rates

Here we study the distribution of the Japanese currency (Yen) exchange rates

(in relation to US dollar). The data are daily exchange rates from 1/1/80 to

12/7/90. We consider the change in the log(price) from time i to i+1, that is,

each data point Pi equals Pi = log(Xi+1) − log(Xi), where Xi represents the

closing price on day i. We shall compare the �t of normal, geometric stable and

generalized geometric stable models. For comparison, we shall use histograms,

QQ plots ad Kolmogorov Smirnov Statistic.

We use maximum likelihood method to estimate the parameters of assumed

normal model, which resulted in mean 0 and standard deviation 0.07. For

the geometric stable model, we applied estimation procedure based on method

moments. It results in α = 1.7. Since distribution appears to be symmetric,

β is taken as 0. The parameters of generalized geometric stable are estimated

based on the estimation procedure, proposed in Chapter 2. The estimates are

obtained as λ = 1.23, α = 1.21, β = 0.01, σ = 1.99, µ = .02. The solutions

of the non linear equations in the estimation techniques are obtained through

124



Chapter 6. Applications

the R programming package 'nleqslv '. We calculated the values of trigamma

and psigamma functions using trigamma() and psigamma() functions in R.

We have simulated random samples from the above distributions and compare

visually the histograms (see, Figure 6.1). Compared to normal, geometric

stable and GGS models are more appropriate to the data. But histograms

suggest slight improvement of GGS model upon the geometric stable model.

We use the empirical QQ-Plots to validate the model. The �t is measured

by the closeness of the graph to the straight line(straight line shows perfect

�t). Figure 6.2 and Figure 6.3 represents the results. Further, we used the

Kolmogorov-Smirnov distance to measure the goodness-of-�t, and present the

results in Table 6.1. It also shows the GGS model �ts the data better than

the other models considered.

Figure 6.1: Histograms of model �t to the yen data. Clockwise from the top
left: the data, the normal, the gs and ggs.

125



Chapter 6. Applications

Figure 6.2: QQ plot of Yen data with geometric stable
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Figure 6.3: QQ plot of Yen data with generalized geometric stable.

Table 6.1: Kolmogorov distance for three models.
Normal GS GGS
0.39168 0.25443 0.15532

The Kolmogorov distance test numerically supports the results that GGS

models dominates all other models considered.

6.3 Modeling remission times data using DeML

distribution

In this section, we model the data set of ordered remission times (in months)

of a random sample of 128 bladder cancer patients, reported in Lee and

Wang(2003) to show the appropriateness of the proposed model to real life
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situations. The data set is given in Table 6.2

Table 6.2: The Remission Times (in Months) of 128 Bladder Cancer
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2 2.23
0.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57 5.06 7.09
0.22 13.8 25.74 0.5 2.46 3.46 5.09 7.26 9.47 14.24
0.82 0.51 2.54 3.7 5.17 7.28 9.74 14.76 26.31 0.81
0.62 3.28 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
0.39 10.34 14.38 34.26 0.9 2.69 4.18 5.34 7.59 10.66
0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
0.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46 4.4 5.85
0.26 11.98 19.13 1.76 3.25 4.5 6.25 8.37 12.02 2.02
0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
0.73 2.07 3.36 6.39 8.65 12.63 22.69 5.49

Here we compare the �t of three distributions, namely DeML(δ, λ, α), L(θ)

and E(λ) to the data set. Note that L(θ) is the Lindley distribution with the

probability density function

f(x) =
θ2

θ + 1
(1 + x) exp(−θx), x > 0, θ > 0,

and E(λ) is exponential distribution with probability density function

f(x) = λ exp(−λx), x > 0, λ > 0.

We use maximum likelihood method to estimate the parameters of assumed

models, which resulted in λ̂ = 0.11688 for exponential and θ̂ = 0.21322 for

Lindley distribution. For the DeML model, we applied estimation procedure

based on method of moments based on empirical characteristic function. The

estimates are obtained as α̂ = 0.857, δ̂ = 3.871 and λ̂ = 3.923. The solutions

of the non linear equations in the estimation techniques are obtained through

the R programming package 'nleqslv '. We have simulated random samples

from the above distributions and compare visually the histograms (see, Figure
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6.4). Compared to exponential and Lindley, DeML model is more appropriate

to the data. We use the empirical QQ-Plots to validate the model. The �t

is measured by the closeness of the graph to the straight line. Figure 6.5

represents the results. Further, we used the Kolmogorov-Smirnov distance to

measure the goodness-of-�t, and present the results in Table 6.3. It also shows

the DeML model �ts the data better than the other models considered.

Figure 6.4: Histograms of model �t to the remission data. Clockwise from the
top left: the data, the exponential, the Lindley and DeML.
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Figure 6.5: QQ plots of remission times data with the models

Table 6.3: Kolmogorov distance for three models
Exponential Lindley DeML
0.11719 0.0625 0.0423

The Kolmogorov distance test numerically supports the results that DeML

distribution dominates all other models considered.

6.4 Applications to wind data

In this section, we study wind data set reported in Fisher(1993) to show the

appropriateness of the proposed WGGS model to real life situations. The data

set of directions (in degree) are given in Table 6.4. The performance of the

model is compared with that of wrapped variance gamma distribution and

generalized von Mises distribution using log-likelihood, AIC, and BIC.
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Table 6.4: Wind data set
0 15 50 90 150 182 220 235
240 245 250 255 265 270 280
285 300 315 330 335 340 345

Here we compare the �t of three distributions, namely

WGGS(λ, α, β, σ, µ∗), WvG(µ, λ, α, β, γ) and GvM(µ1, µ2, κ1, κ2, δ) to

the data in Table 6.4. Note WvG(µ, λ, α, β, γ) is the wrapped variance gamma

distribution with pdf

f(θ) =
γ2λ exp{β(θ − µ)}
√
πΓ(λ)(2α)λ−

1
2

∞∑
m=−∞

exp{βm2π}Kλ− 1
2
(α|θ + 2mπ − µ|)

|θ + 2mπ − µ|λ− 1
2

for θ ∈ [0, 2π), α > 0, β > 0, 0 ≤ |β| < α, λ > 0, 0 ≤ |µ| < α, γ =√
α2 − β2 > 0 where K(.) is the modi�ed Bessel function of the third kind.

GvM(µ1, µ2, κ1, κ2, δ) is generalized von Mises distribution with pdf

f(θ) =
1

2πG0(δ, κ1, κ2)
exp{κ1 cos(θ − µ1) + κ2 cos 2(θ − µ2)},

for 0 ∈ [0, 2π), µ1 ∈ [0, 2π), µ2 = [0, π), δ = µ1 − µ2 mod (2π), κ1, κ2 > 0 ,

where G0(δ, κ1, κ2) =
∫ 2π

0
exp{κ1 cos θ + κ2 cos 2(θ + δ)}dθ
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Table 6.5: Summary of �ts of distributions to the data
Distribution Estimates log L AIC BIC

WGGS λ̂ = 1.68 -58.1171 76.448 73.160
(λ, α, β, σ, µ∗) α̂ = 1.02

β̂ = 0.53
σ̂ = 0.22
µ̂∗ = 2.13

WvG µ̂ = 4.07 -63.40 136.8 136.8

(µ, λ, α, β, γ) λ̂ = 2.00
α̂ = 0.90

β̂ = 2.10
γ̂ = 0.50

GvM µ1 = 5.02 -67.20 144.4 141.11
(µ1, µ2, κ1, κ2, δ) µ2 = 5.70

κ1 = 1.04
κ2 = 0.0003
δ = 0.68

The MLE's of the parameters corresponding to WGGS, WvG and GvM

distributions along with the values of log-likelihood (log L), AIC and BIC are

presented in Table 6.5. From the Table, it is clear that WGGS distribution has

highest log-likelihood and smaller AIC and BIC values compared to the other

two models. Hence WGGS is an appropriate model for modeling the data set

in Table 6.4.
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CHAPTER 7

RECOMMENDATIONS

Based on the works carried out in Chapters 2 to 6, we present the following

recommendations:

� The most important applications of the GS laws come from the area

of �nance. The appropriateness of the four parameters GGS family of

distributions over the GS models, to price exchange rates established in

Chapter 6. We recommend GGS distribution as a �exible model in the

area of heavy modeling, especially in modeling of �nancial data.

� The parameter estimation problem for the GS model is addressed by

Kozubowski(1999), which proposes an estimation procedure based on

characteristic functions. But it requires suitable constants prior to the

computations of estimates. The estimation procedures for Mittag-Le�er

and Linnik distributions proposed in Kozubowski(2001) also requires

pre-selection of constants. But practically such pre-selection of values is

infeasible. We recommend the estimation procedure based on moments

of log transformed GS and GGS random variables proposed in the present
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work to address this drawback.

� Reed(2007)introduced an in�nitely divisible distribution namely the

generalized normal Laplace distribution(GNL), represented by the

characteristic function de�ned in equation(2.41). It arises as the

distribution of convolution of independent normal and generalized

Laplace random variables. GNL distribution is particularly well suited

for modeling logarithmic price returns which exhibit excess kurtosis

with more probability mass near the origin and in the tails and less

in the �anks than would occur for normally distributed data. We have

introduced generalized normal geometric stable(GNGS) distribution with

characteristic function(2.42) in Chapter 2 as a generalization of GNL

distribution which we recommend in similar contexts, since it provides

more modeling �exibility.

� The works on the concept of geometric extensions of di�erent models

such as geometric exponentials, geometric Mittag-Le�er etc. and their

applications are discussed in Chpater 3. The GeoGGS distributions

introduced in the present work generalizes most of the geometric

extensions in the literature. It helps uni�ed framework for future works

and applications. Theorem 3.2.5 establishes how the δ parameter act

as a pathway parameter between GS and GeoGGS distributions and

which makes the GeoGGS distributions more sigini�cant. Hence it is

highly recommendable for further studies to explore the full potential

of GeoGGS distributions and its further extended model, GeoGNGS

distributions.

� Circular models have applications in diverse �eld which are discussed

in Chapter 4. Circular models, WGGS and WGNGS are

proposed by wrapping GGS and GNGS dostributions and some data
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analysis conducted in Chapter 6, to justify that generalizations are

recommendable models over the existing distributions.

� Multivariate extensions presented in Chapter 5 opens up new areas of

research and we propose detailed study on each distributions proposed.

Based on the �ndings of the present study, we recommend some future works:

� Since we have developed an estimation procedure for the parameters

of GS(λ, α, β, σ, 0) and GGS(λ, α, β, σ, 0) distributions based on log

moments of its representations. We propose further studies for the

extension of the estmation procedure, also for µ ̸= 0 cases of the models.

� Extensive study on generalized normal geometric stable

distributions(GNGS) to explore the full potential of the model.

� Detailed study on geometric versions of GGS and GNGS models and its

applications.

� A discrete analogue of Mittag�Le�er distribution was obtained in Pillai

and Jayakumar (1995) as geometric sum of Sibuya random variables

having probability generating function (pgf) δ(s) = 1 − (1 − s)α, |s| ≤

1, 0 < α < 1. We say that a random variable X has discrete

Mittag�Le�er distribution if its pgf is π(s) = 1
1+c(1−s)α , c > 0, 0 <

α ≤ 1. (see, Jayakumar et al.(2010)). Researchers worked on di�erent

extensions of this discrete version of Mittag-Le�er distribution. Since,

Mittag-Le�er distribution is a special case of GGS distributions, we

propose further studies for similar discrete extensions to GGS models.

� The properties and applications of the newly introduced multivariate

models will be explored in the future works.
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