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CHAPTER 1

INTRODUCTION

1.1 Introduction

Geometric stable(GS) laws is well suited for modeling heavy-tailed
phenomena. Modeling and predicting the behavior of financial asset returns
has attracted attention of numerous researchers over the years. Bachelier(1900)
proposed normal distribution to model stock returns. His main idea came from
the Central Limit Theorem: normal distribution provides good approximation
for sum of independent, identically distributed random variables with finite
variance. Since the price change Y over a given period of time can be regarded
as the sum of changes X; over shorter periods (that is, monthly change =
sum of daily changes), the distribution of Y can be approximated by normal
law under the assumption of independence, identical distribution, and finite

variance of Xj;’s.

Further studies, however, revealed that empirical distributions of financial

data had more kurtosis (“fatter tails”) than that predicted by the normal
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approximation. It is not unusual for a stock price to have a relatively large
jump, which is not consistent with the normal hypothesis. In response to
these findings, Mandelbrot(1963b) and Fama(1965) proposed symmetric stable

distributions for modeling asset returns.

Stable distributions provide approximations for sums of independent and
identically distributed(i.i.d.) random variables that have heavy tails, and thus
seemed appropriate for modeling leptokurtic data. However, a number of
recent studies, showed inconsistencies with the Paretian stable model, and
alternatives to the stable laws have been proposed for modeling asset returns.
Extending the stability concept of Mandelbrot, Mittnik and Rachev (1993)
considered other distributions, stable with respect to various operations (e.g.,
minimum, maximum, random summation). Fitting these alternative stable
distributions to the stock-index data, they found that the Weibull distribution,
which arises in geometric summation(summation variable follows geometric

distribution)scheme, dominated all other alternative stable laws.

Geometric stable distributions approximate geometric random sums of i.i.d.
random variables, which naturally arise in a variety of applied problems and
are particularly appropriate in modeling heavy tailed phenomena. In finance,
it was observed that the number of “individual effects” that produce a price
change during a period of time is random. Namely, if 7" is the (random) number
of transactions in one day, and X;’s represent price changes between successive

transactions, then

Y =) X (1.1)

represents the daily price change of a particular stock or commodity. If T" has

a geometric distribution and if 7' is large, then (appropriately normalized) sum
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(1.1) can be approximated by a geometric stable law.

The objective of this research work is to study on geometric stable
distributions and their extensions. The study mainly focus on inference,
circular modeling, univariate and multivariate extensions and autoregressive

models of additive structure.

1.2 Review of Literature

Now we consider some basic concepts along with a review of distributions

used in the forthcoming chapters.

1.2.1 Self decomposability

Definition 1.2.1. A charactristic function ¢ is self-decomposable if for every
a € (0,1), there exists a characteristic function ¢, such that ¢(t) = P(at)p.(t),

VieR
The corresponding distribution is said to belong to class £

Definition 1.2.2. A charactristic function ¢ is semi self-decomposable if for

some a € (0,1), there erxists a characteristic function ¢, such that ¢(t) =

o(at)pu(t), VE € R

1.2.2 Autoregressive Processes

A time series is a set of observations x;, each one being recorded at a specific
time t. A discrete time series is one in which the set T; of times at which
observations are made is a discrete set, for example, observations are made at
fixed time intervals. Continuous time series are obtained when observations

are recorded continuously over some time interval.
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When we analyse a time series using formal statistical methods, we view
the collection of observations {X,,n = 1,2,---} as a particular realization
of the stochastic process {X;}. Hence a complete description of a time
series, observed as a collection of n random variables at arbitrary time points
t1,ta,- -+ ,t, is provided by the joint distribution function F(xq, 2, -+ ,z,) =
P(Xy, < 21, X, < x9,---,X;, < x,). A special class of time series, is
stationary time series. If the joint probability distribution of {X,} at any
set of times tq,t9,--- ,t, is same as the joint probability distribution at times
tv+k,to+k, -+ t, + k, where k is an any arbitrary shift in time, then {X,,}

is called a strictly stationary time series.

An autoregressive time series model of order p > 1, abbreviated as AR(p),
is defined as

Xn = panfl + ,02an2 + -+ prnfp + €n

where {¢,} is a sequence of independent and identically distributed random
variables, and py, p2,- -+, pp are constants.

AR(1), autoregressive process of order 1, is obtained as

Xy = :OXn—l + €n

and p must satisfy the condition |p| < 1 to ensure the stationarity of the

process.

1.2.3 Non-Gaussian autoregressive models

Classical time series analysis is based on the normality assumption of the error
variable. But there are many occasions in which the time series are non-normal.
We have later witnessed the emergence of many non Gaussian autoregressive

processes in discrete time. The fact is that many naturally occurring time
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series are non Guassian. Consider the linear additive autoregreessive equation

Xp=pXp1+enn=0+1,+2,... |p| <1 (1.2)

where {€,} isi.i.d. and ¢, is independent of { X,,_1, X, o, ...} . Lawrance(1978)
derived the gamma and the Laplace solution of equation (1.2). Gaver and
Lewis (1980) obtained the exponential solution. Jayakumar(1997) developed
autoregressive model using semi a—Laplace as marginal distribution. For more
details see, Andel(1983), Dewald and Lewis(1985), Sim(1993), Seetha Lekshmi
and Jose(2006).

1.2.4 Angular observations and related measures

Circular data arise in various ways. The two main ways correspond to the two
principal circular measuring instruments, the compass and the clock. Typical
observations measured by the compass include wind directions and directions
of birds. Data of similar type arise from measurements by spirit level or
protractor. Typical observations measured by the clock include the arrival
times(on a 24-hour clock) of patients at a casualty unit in a hospital. Data of
a similar type arise as times of year(or times of month) of appropriate events.
A circular observation can be regarded as a point on a circle of unit radius,
or a unit vector (that is, a direction)in the plane. Once an initial direction
and an orientation of the circle has been chosen, each circular observation can
be specified by the angle from the initial direction to the point on the circle

corresponding to the observation.

Circular data arises in different fields such as earth sciences, meteorology,
biology and image analysis. In meteorology, wind directions provide a natural
source of circular data. A distribution of wind directions may arise either

as marginal distribution of the wind speed and direction or as a conditional
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distribution for a given speed. Other circular data arising in meteorology
include the times of day at which thunderstorms occur and the times of year
at which heavy rain occurs. In earth science, spherical data arise readily as the
surface of the earth is approximately a sphere. For example, in estimation of
relative rotations of tectonic plates, the points on the earth’s surface considered
to be the observations. In biology, studies of animal navigation lead to circular
data. The incidents of onsets of a particular disease(or of deaths due to the
disease) at various times of year provides circular data in the medicine fields.

For more details see, Mardia and Jupp(2000).

A circular distribution is a probability distribution whose total probability
concentrated on the circumference of a unit circle. Since such a distribution is
a way of assigning probabilities to different directions or defining a directional
distribution, the range of a circular random variable ©, measured in radians,
may be taken to be [0,27] or [—m,m]. A continuous circular probability
density function f(f) exists and has the following basic properties: (i)
£(8) > 0;90(i) [77 £(0)d6 = 1 and (i) f(8) = f(0 + 2kn) for any integer
k. The distribution function F(f) can be defined over any interval (6;,6s) by
F(0y) — F(0,) = 0612 f(0)de. If an initial direction and orientation of the unit
circle have been chosen(generally 0° and anticlockwise orientation), then F(6)

is defined as F(0) = f0€ f(0)do.

The characteristic function of a circular random variable © having

distribution function F'() is defined by

@@zEWﬂ:AﬂﬁMﬂw
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Since © is a periodic random variable having the same distribution as © + 27,

the characteristic function of such a random variable has the property,
Cb(t) — E[eite)] — E[ez‘t(9+27r)] _ eitQWq)(t)

Hence ¢?™ = 1, whenever there is a ®(¢) with |®(¢)| # 0. This suggests that
for circular random variables the characteristic function needs to be defined
only for integer values. Therefore, the characteristic function of a random angle
© is the doubly-infinite sequence of complex numbers ®(p) : p =0, +1,£2, - -

given by

2
®(p) = E[e®] = / P’ dF(0),p =0,+1,42, - - (1.3)
0

= Ppewg (1.4)
Let us write ®(p) = a;, +i,; Then

a, = E(cos(pO)) and

Pp = E(sin(po©))

The complex numbers ®(p) : p = 0, £1,£2, - are the Fourier coefficients of

F (see, Feller (1971)). It is possible to write

o0

AF () ~ 5= > B(p)e

p=—00

If

Zap2 + B, < o0, (1.5)
p=1
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then the random variable © has a density f which is defined almost every

where by
1 — »
fO) =5 > ®(pe ™. (1.6)
p=—00
Equation (1.6) can be written as
1 = .
fO) = -1+ 2;[% cos(pd) + 3, sin(pf)] (L.7)

and the distribution function is given by

F(0) = =4 042 la, sin(ph) + 5,1 — cos(ph))]/p (1.8)

2m =
The p'" trigonometric moment of © is the same as ®(p). When p = 1,

(I)(l) = + Zﬁl

i 0
:pl e M1
where

) =p = arctan(é) is the mean direction and
aq

p1 =p = \/ 12+ 3,” is the mean resultant length.

The circular variance is given by, Vo =1 —p

The circular standard deviation is given by, oo = \/—2log(1 — V;)

The coefficient of skewness is given by, (¥ = (1_’8—23/2

az—p*
(1-p)%*

The coeflicient of kurtosis is given by, (J =
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1.2.5 Generalized von Mises distribution

An angular random variable © is said to follow the Generalized von Mises

distribution over (0,27 if its probability density function is

1
N 27TGO((5, K1, Iig)

f(9) exp{r1 cos(f — 1) + Ko cos2(0 — us)},

for 0 € [0,27m), 1 € [0,27), 2 = [0,7),0 = pg — p2 mod (27), k1, k2 > 0,
where Gy(0, k1, ka) = fo% exp{r1 cos @ + Ky cos2(6 + 9)}do

We write © ~ GvM (1, p2, K1, £2,90)

1.2.6 Wrapped distributions

Circular distributions can be obtained by wrapping distributions on the real
line around unit circle. In general, if X is any random variable on the real line,
with probability density function g(z), and distribution function G(x), we can

obtain circular random variable © by defining
© =X mod (27).

The probability density function of ©, f(6), is obtained by wrapping g(x)
around the circumference of a unit circle and summing up the overlapping
points:

oo

FO)= > g(0+2rk),0 <0< 2.

k=—o00

The cumulative distribution function is

F(0) = i [G(0 + 27k) — G(27k)).

The probability density function f(6) of the random variable 0, which has a

period 27, can be written as an infinite sum of sine and cosine functions on
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the interval [0, 27). That is,

£0) = == 142 o cos(ph) + B, sin(p0)]

2m
p=1
where o, and 3, are defined by

2
a, :/ cos(ph)dF (), and
0

@5[%mwww

1.2.7 Wrapped variance Gamma distribution

An angular random variable © is said to follow the wrapped variance gamma

distribution over (0, 2] if its probability density function is

Y2 exp{ﬁ 0 —p)} Z exp{Sm2m} K, 1 (|0 + 2mm — pl)

0 1 1
J16) = VIT(A) (2a)r 2 0+ 2mm — pr2

for 0 € [0,27),a > 0,5 > 0,0 <|B| <a,A>0,0 < |pu] <a,y=+/a?—p%2>
0 where K,(.) is the modified Bessel function of the third kind. We write
O ~ WvG(p, A a, 5,7)

1.2.8 Infinite divisibility

A random variable X is said to be infinitely divisible if for every positive integer

n’, X can be written as
Xan,1+Xn,2+"'+Xn,n

where X, ;,X,9,---,X,, are independently and identically distributed
random variables. Thus the distribution function F'(x) of X, is said to be

infinitely divisible if for every positive integer 'n’, there exists a distribution

10
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function F,,(z) such that

n times

which implies that F(z) is the n-fold convolution of F,(z). Equivalently, a
characteristic function ®(¢) of a random variable X is said to be infinitely
divisible if for every positive integer 'n’, there exists a characteristic function

®n(t) such that
¢(t) = (¢n(t))".

For more details, see, Laha and Rohatgi (1979). Analogous to this, an
angular random variable © (and its probability distribution) is said to be
infinitely divisible if for every positive integer ‘n’, there exist identically and

independently distributed angular random variables ©,0,,--- . ©,, such that
020, +0y+--+0, mod (27).
Equivalently, if the characteristic function of ©, ¢, can be factored as
¢, = (¢,)", for every n > 1

where gzgp is a characteristic function of ©, then © is said to be infinitely

divisible (see, Mardia (1972)).

1.2.9 Stable distributions

A random variable X is said to have a stable distribution if it has a domain
of attraction, that is, if there is a sequence of independent and identically
distributed random variables Y7, Y5, . .. and sequences of positive numbers {d,, }

and real numbers {a,} such that % +a, % X. Stable distribution best

11
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described by its characteristic function(see, Samorodnitski and Taqqu(1994)).

The random variable X is said to have a stable distribution if there are
parameters 0 < a < 2,0 > 0,—1 < f < 1, and p real such that its

characteristic function, ¢(t) has the following form:

¢(t) = exp{—0°|t|"wa,5(t) + it} (1.9)

with
1 —ifsign(x) tan(ra/2), if o #1,
Wa,p(T) =
1 +ip(2/m)sign(z)log x|, if a=1.

The parameter « is the index of stability and

p

1 if x>0,

Y

sign(x) =<0, if 2 =0,

-1, if z <.

\
1.2.10 Geometric infinite divisibility

The concept of geometric infinite divisibility was introduced by Klebanov et
al.(1984). A random variable X is said to be geometrically infinitely divisible
if
Np
X223 x0 (1.10)

=1

where N, is a geometric random variable with probability mass function

P(N,=k)=(1—-p) 'pk=1,2,-,pe(0,1); (1.11)

12
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XI(,i),i =1,2,--- are independent and identically distributed random variables
and N, and Xéi)(z’ = 1,2,---) are independent. The relation (1.10) is

equivalent to

Y(t) =Y o) (1 —p)*p
_ polt)
1—(1=p)o(t)

where 1 (t) and ¢(t) are the characteristic functions of X and X3 respectively.
The class of geometric infinite divisible distributions is a proper subclass of
infinitely divisible distributions. Klebanov et al.(1984) established that a
distribution function F with characteristic function v (t) is geometric infinite
divisible if and only if exp{l — m} is infinitely divisible. Distributions
such as exponential and Laplace are examples of geometric infinite divisible
distributions. For more details (see, Klebanov et al.(1984), Mohan et al.(1993),

Fujita(1993) and Pillai(1990))

Jammalamadaka and Kozubowski (2003) defined the concept of geometric
infinite divisibility of an angular random variable. An angular random variable
© is said to be geometrically infinitely divisible if there exist independent and

identically distributed angular random variables ©1,0,, - -+, ©,, such that
020,+6,4 - +60y mod (27)
where N, has the geometric distribution (1.11) and N, and ©; are independent.

1.2.11 Geometric stable distributions

Geometric stable distributions arise as limiting class in the random summation

scheme, when the number of terms is geometrically distributed. Let IV, be a

13
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geometric random variable with mean 1/p:
P(Np:k):p(l_p)kila k:1727

Let Y, X1, Xs,... be a sequence of independent and identically distributed
random variables independent of N,,. If there exist deterministic a = a(p) >

0 and b=b(p) € RN such that

Np

a(p) Z(X’ + b(p)) LY, as p—0, (1.12)

=1

(see, Kozubowski(1994)), we say that the limiting random variable Y (and its
distribution)is geometric stable(GS). Mittnik and Rachev(1991) obtained the
one-to-one correspondence between characteristic functions of geometric stable
and stable distributions: Y is geometric stable if, and only if, its characteristic

function ¢ has the form

(t) = Blexpity) = (1 —log ¢(t)) ",

where ¢(t), the characteristic function of the stable distribution, has the
expression as defined in (1.9). Therefore, the characteristic function, (¢)

of the geometric stable distribution has the following representation:
Y(t) = [1+ ot wap(t) — iut] ™ (1.13)

with
1 —ifsign(x) tan(ra/2), if a #1,
Wa,p(2) =
1 +1i6(2/m)sign(x)log|z|, if a=1,

where a(0 < a < 2) is the index of stability, 3(—1 < § < 1) is the skewness

parameter, and 4 € R and ¢ > 0 control location and scale, respectively.
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The most important parameter is the index «a, determining the tails of a
geometric stable law. In the special case o = 2, all moments of Y exist,
and the distribution is not heavy tailed. For o < 2 the variance is infinite, and

the mean is finite only if 1 < o < 2.

Strictly geometric stable distributions have the characteristic function
Y(t) = [1 4 \|t|* exp(—irar sign(t)/2)]
where 0 <« <2,A >0, and |7| < min(1,2/a —1)

1.2.12 Normal-Laplace Distribution

The normal-Laplace distribution was introduced by Reed and Jorgensen
(2004), as the convolution of independent normal and Laplace random
variables.  Normal-Laplace distribution is a distribution which (in its
symmetric form) behaves somewhat like the normal distribution in the middle

of its range, and like the Laplace distribution in its tails.

A Normal-Laplace (NL) random variable X with parameters u,0%,a and j3

can be represented as
XLy +w (1.14)

where Y and W are independent random variables with Y following normal
distribution with mean g and variance o and W following an asymmetric
Laplace distribution with probability density function,

Oj"—fﬁeﬁw, for w <0,

f(w) =

—ﬁfﬁe*aw, for w >0,

15
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where —oo < j < 00,02 > 0, > 0 and 3 > 0.

The probability density function of X can shown to be

gla) = 2ot

where R(z) = 1;21;()2) is the Mill’s ratio where ®(z) and ¢(z) are the cumulative
distribution function (c.d.f.) and the probability density function of standard

normal distribution.

We shall refer to this as the Normal-Laplace distribution and write X ~
NL(a, 3, i1, 0?) to indicate that X follows this distribution.

A closed-form expression for the c¢.d.f of NL(«, 3, p, 0%) can be obtained as

m_u)_gb(x_ﬂ)ﬁR(ag_%) —O{R(ﬁU—F%)

o o a+ 0
Since a Laplace random variable can be expressed as the difference between
two exponentially distributed variates, a NL(«, 3, 1, 0?) random variable, X

can be expressed as
XLu+0Z+E/a+ B/ (1.15)

where Ey, E5 are independent standard exponential random variables and Z

is a standard normal random variable, independent of F; and Ej.

From the representation (1.14), it follows that the characteristic function of
NL(a, B3, u,0?) is the product of the characteristic functions of its normal and

Laplace components. Precisely it is

af exp(iut — #)
(o —it) (B — it)

Px(t) = (1.16)
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It is clear that as 0 — 0, the distribution tends to an asymmetric Laplace
distribution, and as «, f — oo, it tends to a normal distribution. If only § —
oo, the distribution is that of the sum of independent normal and Exponential
components and has a fatter tail than the normal distribution in its upper tail.

In this case the probability density function is

RQw_x;“ﬂ.

If only o — o0, the distribution exhibits extra-normal variation only in the

lower tail and the probability density function is

R(ﬁaer;M)]

NL(a, B3, u,0?) probability density function can be represented as a mixture

ga(x) = Bo(=—1)

g

of the above probability density functions as

«

o) = (@) + )

The symmetric NL distribution arises when o = 3, with probability density

function

o, x—
2 o

)

RQm_x;“)+RQm+x;“ﬂ

Reed and Jorgensen(2004) also introduced a generalized normal-Laplace
distribution, which is wuseful in financial applications for obtaining an
alternative stochastic process model to Brownian motion for logarithmic prices,
in which the increments exhibit fatter tails than the normal distribution. Reed
(2007) developed Brownian-Laplace motion for modelling financial asset price

returns.
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1.2.13 Mittag-Lefller distribution

The function E,(z) = > 1o, was first introduced by Mittag-Leffler

Zk
T(1+ak)

in 1903. Many properties of the function follow from Mittag-Leffler integral

1 ta—l t
Eal2) = — / ‘

27 t® — z

representation

where the path of integration C is a loop which starts and ends at —oo and
encircles the circular disc [¢| < za. Pillai(1990a) proved that

(_1)k71xka

~ x> 00<a<1
1+ka)’x_ ’ “=

are distribution functions, having Laplace transforms 9 (t) = (1 4+ t*)~1 ¢t >
0. He called F,(z), for 0 < a < 1, a Mittag-Leffler distribution. The
Mittag-Leffler distribution is a generalization of the exponential distribution,
since for a« = 1, we get exponential distribution. Mittag-Leffler distributions
can also be used as waiting-time distributions as well as first-passage time

distributions for certain renewal processes.

Pillai(1985) developed a—Laplace distribution with characteristic function
given by (1 + [¢/*)™,0 < « < 2. This distribution is also known as
Linnik distribution. Jose et al.(2010) introduced generalized Mittag-Leffler
distribution and developed first order autoregressive processes with generalized
Mittag-Leffler marginals. A random variable with support over (0, 00) is said
to follow the generalized Mittag-Leffler distribution with parameters o and

if its Laplace transform is given by

YP(t) =1+t P 0<a<1,8>0,t>0. (1.17)
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The cumulative distribution function corresponding to (1.17) is given by

Ny CDIT(B 4 R
Ewﬁﬂ—g;mnﬁwu+aw+kﬁ

0

It easily follows that when g = 1, we get Pillai’s Mittag-Leffler distribution.
When o = 1, we get the gamma distribution. When o = 1,8 = 1 we get
the exponential distribution. This family may be regarded as the positive
counterpart of Pakes generalized Linnik distribution characterized by the

characteristic function
1+t P 0<a<2,8>0.
(see, Pakes(1998)).

1.2.14 Geometric Mittag-Lefller distribution

The geometric exponential distribution(GED (u))introduced by Pillai(1990b)

has Laplace transform given by
[1+log(1+ put)] -

Pillai (1990b) developed renewal processes with geometric exponential as
waiting time distribution. Geometric exponential distribution can be extended
to obtain the geometric gamma distribution denoted by GGD(u, A\)whose
Laplace transform is

[1+ Mog(1 + pt)] -
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We say that a random variable X on [0,00) has the geometric Mittag-Leffler

distribution and write X < GM L(«) if it has the distribution function

= (=DF o Tk A )zttt
F,(z) _; k! /0 TOT(1 + alk + 1)

The Laplace transform of F,(x) is

1

@alt) = B(e™) = 17 log(1 + t°)

,0<a<1,t>0.

Note that o = 1, we get the geometric exponential distribution having density

[e%e] e—txt—l
g(x) = e_””/ dt
W=t ), T

function

(see, Jayakumar and Ajitha(2003)). Jose et al.(2010) introduced geometric

generalized Mittag-Leffler distributions having the Laplace transform
1+t 0<a<1,8>0.

and discussed the applications in various areas like astrophysics, space sciences,
meteorology, financial modeling and reliability modeling. Seetha Lekshmi and
Jose(2006) introduced geometric Pakes generalized Linnik distribution and
studied its properties. A random variable X on (—o0,00) is said to follow
geometric Pakes generalized Linnik distribution and write X < GPGLD(a, \)

if it has the characteristic function

1

O0<a<2,A>0.
14+ Mog(1 + [¢]®) -

If A =1, geometric Pakes generalized Linnik distribution reduces to geometric

a-Laplace distribution.
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1.2.15 Multivariate Laplace distributions

Multivariate Laplace distribution is an important stochastic model that
accounts for asymmetry and heavier than Gaussian tails, while still ensuring
the existence of the second moments. A d-dimensional random vector X € R?
is said to follow multivariate symmetric Laplace laws, with parameter X if it

has the characteristic function

1

t)= ———
o(t) 1+ st/3t

where t € R, ¥ is a dxd nonnegative definite matrix(see, Kotz et al.(2001)).

Asymmetric Laplace laws can be defined in various equivalent ways, which
we express in the form of their characterizations and representations. Their
significance comes from the fact that they are the only distributional limits for

(appropriately normalized) random sums,
X® 4 X@ o XN (1.18)

of independent and identically distributed random vectors (r.v.’s) with finite
second moments, where N, has geometric distribution with the mean 1/ p

(independent of X@ ’s):
P(N,=k)=p(1—-p)* "', k=12,

and p converges to zero (see, Mittnik and Rachev (1991)). Since the sums such
as (1.18) frequently appear in many applied problems in biology, economics,
insurance mathematics, reliability, and other fields, asymmetric Laplace
distributions should have a wide variety of applications. In particular this class

seems to be suitable for modeling heavy-tailed asymmetric multivariate data
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for which one is reluctant to sacrifice the property of finiteness of moments.

A random vector Y € R? is said to have a multivariate asymmetric Laplace

distribution, if its characteristic function is given by

1

t) =
vit) 1+ t/St —ip't’

where € R? and X is a dxd non negative definite symmetric matrix(see,

Kozubowski and Podgorski(2000))

Multivariate extension of the normal-Laplace distribution of Reed and
Jorgenson(2004), namely multivariate normal-Laplace distribution, introduce
in Jose and Manu(2014)as the convolution of multivariate normal(with
parameters n and T°) and multivariate asymmetric Laplace (with parameters

p and X). The ch.f of multivariate normal-Laplace distribution is given by

1 1 !
exp{it'n — §t’7't} 1+ 3 (t'St) —ip't| ,t,u,meRP, T >0, >0.

1.3 Slash Distributions

Kafadar(1988) proposed slash normal distribution, which is a heavy tailed
alternative to the normal distribution. Wang and Genton(2006) generalized
the univariate slash normal distribution to multivariate slash normal and
introduced multivariate skew slash distribution. The standard slash normal
distribution is obtained as the distribution of the ratio ¥ = %, where X

is a standard normal random variable, U is an independent uniform random

variable over the interval (0,1) and ¢ > 0. As ¢ — oo, we get the standard
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normal distribution. For ¢ = 1, it has the probability density function,

$(0)—¢(y)
=, 1 #0,
fp. =<5 "7

#(0)

= xz =0,

where ¢(.) is the probability density function of standard normal distribution.

Tan and Peng(2005) have introduced slash Student’s ¢ and skew slash
Student’s ¢ distributions and studied their properties. Its probability density

function is,

1
f(y;m&):/o uMf (yu G m)du

where f(.) denotes the probability density function of the Student’s t
distribution with m degrees of freedom.
The slash distributions are widely used in simulation studies and robust

procedures for statistical analysis.

1.4 Objectives of the Study

The present study has been undertaken with the following objectives:

1. To introduce generalization of univariate geometric stable distributions

and study its properties

2. To develop estimation procedures for parameters of geometric stable and

generalized geometric stable distributions.

3. To introduce distributions related to geometric stable distributions and

develop autoregressive time series models using these distributions.

4. To introduce normal-geometric stable models and its g.i.d versions and

to derive autoregressive time series models.
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5. To introduce circular versions of new models and study the properties.

6. To extend the models to multivariate case viz multivariate generalized
geometric stable and multivariate generalized normal geometric stable

distributions, study their properties and to develop related processes.

7. Apply the distributions to real data sets and compare the performances

of new models.

1.5 Summary of the Present Work

The thesis is organized into seven chapters. Chapter 1 is introductory which
gives preliminary concepts to the topic of research such as self-decomposability,
geometric infinite divisibility, circular data, wrapped distributions, stable
distributions etc. The concepts of time series and non-Gaussian autoregressive
models are discussed. We also consider Gaussian non-Gaussian distributions.

Recents works on geometric stable laws are presented.

In Chapter 2, we study the geometric stable distributions and its properties.
Representation of geometric stable variate is developed for simulation. We
derived the moments of the log-transformed GS random variable. Distribution
of weighted sum of independent geometric stable variables is obtained.
Estimation of geometric stable parameters based on log-moments is done.
Asymptotic normality of the estimates are discussed. We introduced a
generalization of geometric stable(GGS) distributions and its distributional
properties are studied. Histograms for different parametric values are
presented. The special cases of GGS distributions mentioned. The absolute
and signed fractional order moments of GGS random variables are derived.
Generalized strictly geometric sable studied and first order autoregressive

process of its g.i.d versions developed. Moments of the log-transformed
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GGS variables and weighed sums of GGS independent random variables are
derived. We also extended the parameter estimation of geometric stable
disributions based on log-moments to the the parameters of GGS distributions
and a simulation study conducted to check the performance of the estimation
techniques. We here further extended the GGS distributions to generalized

normal geometric stable distributions(GNGS) and studied its properties.

Geometric GGS distributions(GeoGGS) introduced in Chapter 3 and
discussed its different properties. First order autoregressive process with
GeoGGS marginals developed and extended it to k' order. We also introduced
Geometric GNGS distributions(GeoGNGS) and its properties are discussed.

Autoregressive time series models with GeoGNGS marginals developed.

Circular distributions studied in Chapter 4. Wrapped versions of
GGS (WGGS))distributions introduced and different measures including
trigonometric moments derived. The problem of estimation of parameters
is considered. WGGS distributions further generalized to wrapped generalized
normal geometric stable(WGNGS) distributions. A representation of
WGNGS derived and its infinite divisibility property is also established.
Different measures including trigonometric moments and other parametrs are
derived. The maximum likelihood procedure developed for the estimation of

parameters.

Chapter 5 is devoted to multivariate extensions. A multivariate
generalization of GGS distributions introduced and its properties discussed. A
representation of multivariate GGS random vector is presented. Multivariate
slash generalized geometric stable distributions is introduced. The multivariate
geometric generalized geometric stable distributions introduced and its

properties are studied. First order autoregressive process with multivariate
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GeoGGS marginals derived and extended it to k' order. Multivariate GNGS
introduced and its properties studied. Multivariate slash GNGS introduced.
Multivariate geometric GNGS distributions introduced and its properties
are studied. First order autoregressive process with multivariate GeoGNGS

marginals is derived

Applications of new models in various context discusses in Chapter 6.

Recommendations are presented in Chapter 7.

The results of this thesis have been presented in various National and
International conferences and have been published/ submitted for publication

of research papers in National/ International journals which are listed below.

Papers Presented in National/International Conferences

1. 'g-Geometric Stable Distributions and Processes’ in the International
Conference on Statistics for Twenty-first Centuary-2015 (ICSTC-2015)
organized by the Department of Statistics, University of Kerala,

Trivandrum, Kerala, India during 17-19, December 2015.

2. ’A Generalization of Mittag-Leffler Distributions and Related Processes’
in the National Conference on Advances in Statisical Sciences and Annual
Conference of the Kerala Statistical Association held in the Department
of Statistical Science, Kannur University, Kerala, India during 17-18,

February 2017.

3. 'Density Parameter Estimation of Skewed Geometric stable

Distributions’ in the National Seminar on Innovative Appproches in
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Statistics organized by the Department of Statistics, St. Thomas’College

(Autonomous), Thrissur, Kerala, India during 15-17 February 2018.

4. "Wrapped Generalized Geometric Stable Distributions’ in the National
Seminar on Recent Trends in Statistical Science(RTSS-2019) and 40th
Annual Conference of Kerala Statistical Association organized by the
Department of Statistics, University of Kerala, Trivandrum, Kerala,

India during 07-09 March, 2019.
Publications

1. K. Jayakumar and T. Sajayan(2020). On Estimation of Geometric
Stable Distributions, Journal of the Indian Society for Probability and

Statistics21, 329-347.

2. T. Sajayan and K. Jayakumar(2022). A pathway model of Mittag-Leffler
distributions and related processes, Far East Journal of Theoretical

Statistics 65, 55-70.

3. K. Jayakumar and T. Sajayan(2022). Wrapped Generalized Geometric
Stable Distributions with an Application to Wind Direction, Far FEast

Journal of Theoretical Statistics, accepted.
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CHAPTER 2

PARAMETRIC ESTIMATION AND
UNIVARIATE GENERALIZATION
OF GEOMETRIC STABLE
DISTRIBUTIONS

2.1 Introduction

The Geometric stable distributions best described by its characteristic
function. The characteristic function ¢ (t) of a GS(«, 3, o, ) random variable

U is

(1) = (1+ 0t () — ipt) ™ (2.1)
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with
1 —if sign(x) tan(ra/2), if «a #1,
Wa, () = (2.2)
1+1ip (2/m) sign(x)log|z|, if a=1,
and
)
1, if x>0,
sign(z) =40, if z=0, (2.3)
-1, if z<0.
(

where a(0 < a < 2) is the index of stability, 3(—1 < § < 1) is the skewness
parameter, and pu € R and A > 0 control location and scale, respectively.
The most important parameter is the index «a, determining the tails of a
geometric stable law. In the special case o = 2, all moments of Y exist,

and the distribution becomes asymmetric Laplace.

The geometric stable random variable U has the representation

pZ + Za X, if a1,
U = (2.4)

uzZ +7ZX +oZp2/m)log(cZ), if a=1,

where X ~S(a, 3,0,0)(see, Samorodnitski and Taqqu(1994)), Z is unit
exponential with distribution Fz(z) = 1 — exp(—z),z > 0, and X and Z
are independent. We write U ~GS(a, 3,0, ). Note that the characteristic

function of the random variable X having stable distribution S(«, 3,0, i) is

¢(t) = exp{—0"[t["wa,p(t) + ipt} (2.5)

29



Chapter 2. Parametric estimation and univariate generalization of geometric
stable distributions

with w, g(x) and sign(x) as in (2.2)and (2.3) respectively, where 0 < a < 2,0 >
0,—1 < p <1,and p € R. Mittnik and Rachev(1991) showed the one-to-one
correspondence between characteristic functions of geometric stable and stable
distributions: Y is geometric stable if, and only if, its characteristic function

1 has the form

U(t) = EexpitY’) = (1 - logé(t)) (2.6)

where ¢(t) is the characteristic function of the stable variable X as defined in

(2.5).

Mittag-Leffler and Linnik distributions are the two special cases of
geometric stable laws, studied extensively in recent years(see, Jayakumar
and Pillai(1993), Kozubowski(2001) and Jayakumar et al.(2010)).  Tts
generalizations and applications to financial data are studied by different

authors.

In the section below we present a representation for simulation geometric

stable random variable

2.2 Simulation of GS distributions

The most widely used technique of simulation of random variables is the
inversion method. Tt is based on the following fact: if a random variable

Y has distribution function F', then
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where F'~! is a function inverse to the distribution function F' and U is a
uniform random variable on (0,1). In the above representation of geometric
stable random variable, we should simulate the stable random variable X to
simulate the geometric stable random varaible U. The inversion method is not
suitable in the case of stable laws since there is no analytic expressions for F

of stable laws, except for few special cases.

However, we can represent a stable random variable as a function of two
independent random variables (uniform and exponential) (see, Chambers et
al.(1976)). Then, via the representation of geometric stable laws given by
(2.4) we should be able to express a geometric stable random variable U as

follows(see, Kozubowski and Rachev(1994)):

pZ + (Z/L)e Lo Hop(m(S — 1)), a1,

pZ +oZKup(m(S — %),L) +0Z5(2/7)log(cZ), a=1,

where Z, L and S are independent with Z, L ~ exp(1l) and S ~ U(0,1) .
Hos(z) and K,p(z,y) are defined as
_ sinfa(x — c)] 1-a T

Hasle) = = e (eosle —ale =)=, we(-5.9), @9

with

where K(a) = min(q, 2 — «), and

Kop(z,y) = % ((%W + Bz) tanx — Blog(l—)> ,y>0, x € (—g, g)
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In the present chapter, we focus on properties of the geometric stable
distributions and the problem of estimation of its parameters. A representation
of geometric stable variate for the purpose of simulation developed. We
derive the moments of the log-transformed geometric stable random variable.
Distribution of weighted sum of independent geometric stable variables
developed. Based on the moments of log-transformed variable and weighted
sum property, we developed an estimation technique for the parameters
of geometric stable distributions. Asymptotic normality of parameters is

discussed.

2.3 Moments of the log-transformed geometric
stable random variable U’

We derive the log-moments of the random variable U in (2.4). Applying
the log-transformation to the mixture representation (2.4) for the case y =

0 and « # 1, we obtain

1
U'==7+X (2.10)
o

where U’ = log|U|, Z' = log(Z), and X' = log| X|

It is straight forward to show the following non-central moments of the

random variable Z’:(see Cahoy(2013))

2

E(Z)=-C, EZ*=C+ % =C2+ 4
2 4
B(Z%) = —C* — CT” (), B(Z)=CAC 4 ) + o +8C(3)
where C = 0.57721566 - - - = —1y, ¥ = %, ((3) = 1.2020569 . ..

Here C is the Euler’s constant and vy is the digamma function evaluated
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at 1. The functions 4,1 are the first and second differentials of (1) (or
polygamma ) evaluated at 1, and ((7) is the Riemann zeta function. The

following are the log-moments of the random variable X ~ S(«, 3,0,0) (see

Kuruoglu(2001)):
1 1 v
L. = E(X) = 1— = —1 2.11
! (X ¢0( a>+a0gcose‘ (2.11)
, 1 1 6?
Ly = E(X' — L)? =, (1 — %) (2.13)
!

where v = 0® and 6 = arctan(3 tan(%")).

Taking expectation of (2.10) and using the above moments, we get the mean

and variance

1 K 2 T2 62

L'=EU)=-C+ ~1 d LL=VU)=—+———.

! () +ozogcos@ an 2 () a23+12 a?
(2.14)

A similar calculation yields the third central moment as
! / \3 3

Ly =EU — L))° = s (1 — 5) : (2.15)
Note that higher order moments L4, Ls’,... can be calculated in a similar

manner.

2.4 Weighted Sums of Independent GS Variates

Let Y, ~ GS(«,,0,1) be independent geometric stable variates that are
identically distributed. Then the distribution of a weighted sum of these

variables with the weights a;, can be derived using a set of S(a, 3, 0,0) random
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variables X. Define T = Y a; X, and Yy, = uZ + Z= X, Then

P Sui s [ D S0
— 2l

where 2 = sign(z)z’ (see, Kuruoglu(2001)) and Z ~ exp(l) and is

independent of Xj. Then,

ZakYk = Zak (MZ + ZéXk>

k=1 k=1

D kel a;,'
~GS o, S —aB ) lal®0, ) arp
S o2

This provides a convenient way to generate sequences of independent
geometric stable random variables with 4 = 0, § = 0, or with zero values
for both u and f(except when a = 1). We call these the centered, deskewed

and symmetrized sequences, respectively:

V¢ = Yai + Ya1 — 2V o
2—2¢
~ GS (a, [ } B, 2 + 290, 0) , (2.16)

24 2«

Vil = Yap + Yooy — 295

~GS (a, 0,40,[2 — 21/a]u> , (2.17)

VS = Yo, — Yor1 ~ GS (a,0,20,0). (2.18)
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Using such sequences, we may apply methods for symmetric variates to skewed
variates and we may apply skew-estimation methods for centered variates to

noncentered variates, with the effective loss of some sample.

2.5 Estimation for GS(«, 5,0, 1) distributions

We discuss in this section the issue of parameter estimation of geometric
stable laws. Kozubowski(1999) proposed an estimation procedure for the
parameters of geometric stable distributions based on empirical characteristic
function. The draw back of the method include the lack of optimality
properties for estimators, and possible difficulties with choosing the required
constants. We utilizes here the concept of Cahoy(2013)for estimation, where
the method of moments, based on moments of log-transformed random variable
for the estimation of parameters Mittag-Leffler distributions. Here we use the
moments of the random variable U’ defined in Section 2.3 for the estimation of
parameters of geometric stable laws. Equating the sample moments and actual
moments, we may readily solve for the characteristic exponent « using the L
and 0 from L, by substituting estimate of . The estimate of v obtained
from L} by substituting both the estimate of  and 6. However estimation
based on higher order moments is not a good practice. We therefore adopt the
centro-symmetrization procedure; therefore we solve for o using L. This «
estimate may then be used to solve the L) of the skewed process for the skew
parameter §. Similarly, L] is solved for o.

The resulting estimators may be summarised as follows:

Logarithmic estimator for a: Apply centro-symmetrization as given by

equation (2.18) to the observed data to obtain transformed data.
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Estimate Ly’ for the transformed data and hence, estimate

) —-1/2
3 T
— Ly — — ) 2.19
7T2 ( 2 12) ( )

Logarithmic estimator for 3: Assume an estimate of « is available and

o)
|

that data with © = 0 has been obtained, by centering as given by equation

(2.16). Estimate Ly’ for the data, and hence

1/2
w2 w2
Ol=|(a*|=—-L |+~ : 2.20
o= | (12 ) v (220
Estimate [ using 5 = talf(ag;:/Q)' Since we have applied centering, it is
necessary to transform the resulting S by dividing by g;ga

Logarithmic estimator for o: As for [ estimate, we assume data with p =

0. Estimate L;’ for this data, and hence
7 = cos(f) exp {a (L + (C)} (2.21)

and hence
&= (7)1,
Since, we apply centering, transform the resulting o by dividing 2 + 2%

to obtain the actual estimate of o.
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2.6 Interval estimation for GS(«a,f,0,u)
distribution

We study the limiting distribution of our estimator & and & from the

geometric stable distribution GS(«,0,0,0) for a # 1. If we let
N2
L) = iy = — ZU and Ly’ = oy :Z(U;—U> /n,
7j=1

then, the standard two dimensional central limit theorem implies, as n — oo,

the following convergence,

V2 B 0 I A I R ,
Ly — Ly 0 Ly L — L,

where L', Ly, L3, L, are the moments defined in section 2.3.

Now to show the asymptotic normality of the estimators, we use Cramer’s

theorem (see, Ferguson(1996)). Let

9(Ly', Ly) = g(pur, ov®) = exp(Ly' + C).
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exp(L" +C)
Then the gradient becomes g(L;', Ly") = . This implies that
0
V(6 — o) % N(0,0,%) where
/ /
. 2 Ly .
05 =g(L', LQ,)/ ) g(Li', Ly)
L3/ L4/ _ L2/
ol ,
= (Q + E) exp(2(L" + C))
2 a2\,
BRI A

Similarly, /(& — o) 5 N(0, 542), where

) —127 ? Y
Oaq — (12L2/—7T2>3/2 ( 4 — L2 )
1447'('2 2
= 3Ly =7 <L4' L, ) .

The above expression for 0,2 obtained by substituting

2T
gL' L) = ———
(L2, L) V120, — 72
and
. / / 0
g(Ll’LQ):
—127

(12Lo" —72)3/2

Therefore, we have shown that our estimates are normally distributed
(asymptotically unbiased) as the sample size n goes large. Consequently, we

can approximate the (1 — €)% confidence interval for o and o as & % 2/, do’

n
and & & 2214/ ”T'Z respectively, where

0,2 = W—?+7T—2 o
7 302 12
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and

~ 14471—2 ~ )
a2 - - L I L /
g (12L2,—7T2)3 ( 4 2 )7
Zes2 18 the (1 — €/2)™ quantile of the standard normal distribution, and 0 <

e < 1.

2.7 Generalized geometric stable distributions

Now we introduce and study, a new class of distributions called generalized

geometric stable(GGS) distributions.

Definition 2.7.1. A random variable V is said to have generalized geometric
stable distribution GGS(\, a, B, 0, 1) if there are parameters 0 < a < 2, A\ >
0,-1< B <1,0>0, and u real such that its characteristic function, ¢(t) has

the following form:

O(t) = [1+ 0t "we p(t) — iput] (2.22)

where
1 —iBsign(x) tan(ma/2), if « #1,
Wa,s(T) =
1 +1i6(2/m)sign(x)log|z|, if a=1.
and
(
1, if x>0,
sign(t) =140, if x=0,
-1, if x<NO.
\
Special cases: GGS laws becomes geometric stable laws when A\ = 1.

For f§ = 0 and p = 0 it becomes generalized Linnik (see Pakes(1998))and
Linnik if A = 1, § = 0 and pu = 0. Generalized Mittag-Leffler (see Jose
et al.(2010))distributions, which are GGS with A # 1, 0 < a < 1, 0 =
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olcos(Z2)]/*, 8 =1and p = 0.

Detailed list of special cases of GGS laws is presented in the Table 2.1.

Distribution

‘ Charcteristic function

‘ Parametric values ‘

Geometric Stable

[+ 0™ [0 5(0) — ipt] "

0<a<2A=1-1<B<1,

c>0,peR
Generalized Linnik [1+ot]e]A 0<a<2,A>0,8=0,
oc>0,p=0
Linnik [1+4 o2ft]o]~t 0<a<2,A=1,3=0,
oc>0,p=0
Generalized Asymmmetric | [14 o2[t|> —ipt] ™ a=2,A>0,6=0,
Laplace oc>0,peR
Generalized Symmmetric 1+ (72|7§|2]*A a=2,1>0,=0,
Laplace oc>0,p=0
Asymmmetric Laplace 1+ o?[t]* —iut) ! a=2,1=1,8=0,
oc>0,peR
Symmetric Laplace [1+ o?[t]?] ! a=2A=1,=0,
oc>0,p=0

Generalized Mittag-Leffler

[1+ 0% (—it)*]

0<a<l,o=oaclcos(%)]H,
f=land u=0, A>0

Mittag-Leffler

[1 4 o(—it)*] ™

0<a<l, o=oclcos(Z)]M,
f=landu=0,A=1

Gamma [1— pit] a=1,0=0,
B=land >0, A>0
Exponential [1— pit] ! a=1,0=0,

f=land u >0, A=1

Table 2.1: Special cases of GGS laws.

Theorem 2.7.1. Let X be a GGS(%, a, B, (ﬁa, dp) random variable, we write

X ~ DeS(0,a,B,0,u1).

Then X becomes S(«, 8,0, 1) with characteristic

function given in (1.9), as 6 — 0.

Proof. Since X ~ GGS(3

dx(t) = [1 + 60°[t| " wa,p(t) — idut]

Therefore,

iy ox(0)

L, B,050,001)),

= (lsli% [1+ 60°[t|“wa,p(t) — idput]

S

=

= exp{—0°|t|"wa,ps(t) +ipt}.
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]

Proposition 2.7.2. Let V~ GGS(\, o, B,0,1) and X ~S(c, B,0,0). Then

pW+WaX, if a1,
V= (2.23)

W + WX +oWp2/m)log(W), if a=1,

where W is gamma distributed with scale parameter 1 and shape parameter A

and s independent of X.

Proof. Case 1: aa # 1

ov(t) = Ele""]
= EyE[e™|W = w]
. 1
= FE,Ex [e“(“W+W°‘X)|W = w|
. . 1
— Ew [ezt,quX [6z(twa )X“
. 1 1
— EW [ezt,uwe—a'“ﬁw o |%wq g(twa )]
_ EW[e—wo‘*\ﬂawa’ﬁ(t)—kituw]

_ EW [6—(0“|t\“w‘173(t)+itu)w]

= [1+ 0]t] i (t) — itya] .
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Case2: a =1

ov(t) = Ele"]

= Eyy[eituW W X+oWB(2/m) log(W))]

= By [eit(uWJrUWﬁ(Q/Tr) log(W))EX [ei(tW)X]]

— oy [eitEW oW B2/ M) o5(W)) o= otW |, (tW)]

= By [t W +oWB(2/m) 1og(W) o= |otW |[L+i8(2/ m)sign(tw) log |tw]]
— By [eithW —oltlW —iBalt]W(2/msign(t) og ]

— By [V itnoltl=iBoltl(2/msign(t) log |1}

= [1 — ity + o|t| + iBolt|(2/7)sign(t) log |t|]

= [1 + o|t|(1 +iB(2/m)sign(t) log |t]) — itp] ™

— 1+ oftlens(t) — itp] .

O

For the purpose of simulation, we derived the representation of GGS
random variable using (2.23). Then we have the random variable U having

GGS distribution admits the representation:

pW + (W/L)= Lo Hap(m(s — 1)), if a#l,
pW +WoKas(m(s — 1), L) + oW B(2/m)log(a W), if a=1,

(2.24)

where H,3(z) and K,g(x,y) are as defined in (2.8) and (2.9) respectively and,
W, L and S are independent with W ~ G(1,\), L ~ exp(1) and S ~ U(0, 1).
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Figure 2.1: Histograms of GGS(A = 1,5,50) for « = 1.2,0 = 2,4 = 0 and
p = 1(top) and for « = 1,6 = 2,6 =0 and u = 1 (bottom).

The Figure 2.1 shows the histograms of simulated data of 2850 observations
drawn from GGS distributions for different values of A viz A = 1,5,50. The
top row panels shows histograms for a # 1(that is, « = 1.2) and bottom panels
for = 1, for fixed = 0,0 = 2, u = 1. It captures the variations of the model

especially peakedness, for the values of .

2.7.1 Limits of random sums:

Recall that geometric stable distributions are the only possible (weak)
limiting distributions of (normalized) geometric random sums (1.10) as p —
0. A similar result holds true for the GGS distributions under Negative
Binomial(NB) random summation. Let N, be an NB random variable with
parameters p € (0,1), A > 0, so that

T\ + k)

— mp)‘(l -p)F L k=1,2,.... (2.25)
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and let Y, X1, Xs, ... be a sequence of independent and identically distributed
GGS random variables independent of N, y and there exist deterministic a =

a(p) >0 and b=0b(p) € R such that

a(p) Z(X,- +b(p) >Y, as p— 0. (2.26)

2.8 Moments of generalized geometric stable
distributions

Here we derived the absolute and signed fractional order moments of GGS

random variable V'
Theorem 2.8.1. Let V ~ GGS(\, «, 5,0,0). Then for a # 1

FA+Hra-2)
I'x I'(1-g)

E[V]T =

)
o (2.27)
cos 6 %

for g € (=1,a) N (=2, 00) where v = 0 and § = arctan(f tan(2=
o 2

Proof. Since, V = WaX where W and X are independent random variables
defined in (2.23). Therefore

E|V|? =E[W# X]?

=E[Wa]E[X]?

T+ HTA-9)| 5 |+ cos(£)

~ TA T(1—gq)|cosf| cos(L)
Here we used the fact that E[Wa] = F(/\FJ/F\%) for ¢ € (—2,00) and EXY =
ra-4 2z Cos(q—(f) 9y
1“((1—3)) e o) for ¢ € (—1, @) (see, Kuruoglu(2001)) O
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Special case: Let A\=1,=1,0 = 0(003(%))5, then we get

qoim
oIl'(1 — q)sin(%)’

BV =

this is the ¢ fractional moment of the Mittag-Leffler random varaible

ML(a,0)

Theorem 2.8.2. Let V ~ GGS(\, a, 3,0,0). Then, for a # 1

vl - A e e
for g € [(=1,0) U (=2,=1)] N [(~2, 00)]
Proof.
E[V<] = Elsign(V)[V]"]
= Elsign(We X)[Ws X1
= Elsign(X)W&| X[
= E[W#]Elsign(X)| X |’
— E[W=|E[X<%]
T+ YT =G| 4 |* sin(%)
A I(1—gq)|cosf| sin(%)’

. 4
ra-2), 4 £ sin(%)

I'(1—q) lcos® | sin(LF)

here we used the result EF[X <] = for ¢ € (—1,a) U

(=2, —1)(see, Kuruoglu(2001)) O
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2.9 Generalized strictly geometric

stable(GStGS) distribution

Generalized strictly GS distributions have the characteristic function
D(t) = [1+ o°t|* exp(—imaf3 sign(t)/2)] 7,
where 0 < < 2,0 >0,\A >0 and |f| <min(1,2/a —1).

2.9.1 Self decomposabilty

Consider the characteristic function of GStGS distribution

Ux(t) = [1 + o®[t|* exp(—imap sign(t) /2)] .

ox(t) T . : A
= Valt) = 0"+ (= 0 e oep(—imaB sign(1)/2)

where 1,(t) is the characteristic function of the A-fold convolutions of random

variables U, defined in (2.33). Hence GStGS distribution is self-decomposable.

2.9.2 AR(1) model with GStGS marginals

The first order GStGS autoregressive process(GStGSAR(1))is constituted by

{X,,n > 1}, where X, satisfies the equation,

X, =aXn1+e€;a€(0,1)and Vn >0 (2.29)

where {€,} is a sequence of independently and identically distributed random

variables such that X, is stationary Markovian with GStGS marginal
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distribution. In terms of characteristic function the model defined in (2.29)

can be given as

¢, (t) = ¢x,_, (at) e, (1) (2.30)

Assuming stationarity, we have

_ ox(t)
¢e(t) = o () (2.31)
= [a®+ (1 —a") ! (2.32)

1+ o@|t|* exp(—ima/ sign(t)/2)

Hence, we can regard {¢,} as the n-fold convolutions of random variables U,,’s

such that

0,  with probability a®,
U, = (2.33)

L,, with probability 1— a“,

where L,’s are independently and identically distributed strictly geometric

stable random variables.

2.10 Moments of the log-transformed GGS
random variable V'’

Taking the logarithm of the mixture representation of the GGS distributed

random variable V in (2.23), for 4 = 0 and « # 1 gives,
! 1 !/ !/
V= W'+ X (2.34)
a

where V' = log|V'|, W' = log(W) and X’ = log| X| .
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To obtain the moments of V', first we need to get the moments of .
The characteristic function of W’ can be shown as

T(\ + it)

dw(t) = Eexp(itW') = EW" = IO

where ¢ = 4/—1. Using the logarithmic expansion of the gamma function, we

get the cumulant generating function

log (¢w(t)) = (Z,:,) Ck

k=1

o0

where the k"™ cumulant is given by,

cr, = YD (N), where 0 (X) = p()).

The mean and variance of W’ are i} = ¢; = ()\) and py = ¢, = ¥»(V(\), where
¥(A) and ™M (N) are the digamma and trigamma functions, respectively. For
k > 3, the k" cumulant is the polygamma function of order k& — 2 evaluated

at A. The k'™ order integer moment can be calculated using the formula
k—1
E—1
k—1 _
PEDO) = 4y, — JZ:; (j B 1)%’#2]'-

This implies that p} = c¢; = ¥(\), ph = ca + 2 = VW N) + (N2, ph = c3 +
3cger + 3 = @ (N) + 3D (N)Y(N) + (N3, 1) = ca+4czer +3c3+6cac2 +cf =
P N) + 4@ (N () + 3D (N)2 + 690 (A)h(A)? + ¥ (A)* and so on.
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Now we can derive the moments of V' using the moments of X’ in Section 2.3 :

M;=E(V') = éww + %o (1 — é) él COS@ (2.35)
My =V(V') = %w(”(k) + 1 (— %) (2.36)
and M = puz(V') = %¢(2)(A) + ((3) (1 — %) : (2.37)

2.11 Weighted sums of Independent GGS
variates

Let V' ~ GGS(\, «, B, 0, 1) be independent GGS variates that are identically
distributed. Then the distribution of a weighted sum of these variables with

the weights a; can be derived using a set of S(«, 3, ,0) random variables X.

Define T' = 3" ap X, and V' = uW + Wa X,,. Then

where 7P = sign(z)z|” (see, Kuruoglu(2001)) and W is gamma distributed
with scale parameter 1 and shape parameter A\, and is independent of Xj.

Then,

ZakYk, = Zakz (MW + WéXk)
Z agp | W+ W Z%Xk
k=1

k=1

~ GGS [ A\ «, i L0 6,2\%\ Zaku
Zk 1| k’ =1

This provides a convenient way to generate sequences of independent GGS

random variables with © = 0, 8 = 0, or with zero values for both p and
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B(except when oo = 1). We call these the centered, deskewed and symmetrized

sequences, respectively:

V¢ = v + Vi1 — 2Y3-

2 — 20 .
~ GGS (A,a, {2+ 2a1 8,12 + 2%, 0) , (2.38)

Vi’ = Y + Yapy' — 29V,

~ GGS </\, a,0,40,[2 — 21/%) , (2.39)

Y/ = Yo' — Yast ~ GGS (N, @, 0,20,0) . (2.40)

Using such sequences, we may apply methods for symmetric variates to skewed
variates and we may apply skew-estimation methods for centered variates to

noncentered variates, with the effective loss of some sample.

2.12 Estimation for GGS(\, a, B,0, 1)
distributions

We use a similar procedure of geometric stable distributions, for parametric
estimation GGS distributions. We apply the centro-symmetrization procedure;
therefore, we set § = 0 and obtain o and X solving M’ and Mj;'. The estimates
of @ and A\ may then be used to solve M," of the skewed process for the

parameter 6 and hence 3. Similarly, M’ is solved for v and hence o.

Logarithmic estimator for o and A\: Apply centro-symmetrization as
given by equation (2.40) to the observed data. Estimate M, and Mj3'

for the transformed data and solve M,y and Ms' for o and \. That is
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the estimates & and \ are the solutions of the equations
- 1 1 1 A 1 1
r— @) Z4 @ _ =

My' = = (A)+h (2 + aQ) and - My' = =™ (A)+((3) (1 a3) .

Here we consider an approximation based on the first few terms of the

series representation of the digamma function.

Logarithmic estimator for 5: By centering as (2.38) and assuming
estimates of o and \ are available, we estimate M, for this data and

hence estimate 6 as follows:

1/2
1 1 1

Estimate of 3 is

5o tan(6) 2 — 2%
~ tan(am/2) \ 2424 |
Logarithmic estimator for o: For the estimate of v we apply the centering

given by (2.38). Estimate M,  for the transformed data and hence the

estimate is

5 = exp {a (Ml’ <y — 9 () - %) } |

~k

~ 44
Hence, 6 = 713

The series representation of the digamma function (1) is

1 1 1 1 1

—1 - _
Hr) =) = 5.~ o T 120r ~ 3520

Therefore, we approximate (1) as

1 1 1 1

= log(7) — — — - .
W) =los(r) = 5~ o T 120rt ~ 3520

51



Chapter 2. Parametric estimation and univariate generalization of geometric
stable distributions

This results approximation of ¢ (7) as ™M (1) = It st e — s + o

1 1 1 1 1

- 3076 T2 T3 274 678"

and the approximation of 1® (1) as (1)

We carry out a simulation study to obtain the estimates of of the
parameters A\, «, and o. For different values of the parameters, we
generated 10000 random samples of sizes n=30, 100, 200, 500, 20000 each
from the GGS(\, «,3,0,0 ) distribution, and computed the bias and the
root-mean-square error (RMSE). The results obtained are given in Table 2.2.
From the results, it is evident that for each values of the parameters, the values

of bias and RMSEs decrease as the sample size increases.

Table 2.2: Average values of bias and RMSEs using different values of
A, a, 8 and o for sample sizes n=30, 100, 200, 500, 20000 corresponding to
GGS(\, a, 8,0,0) distribution

Bias RMSE

(\a,B8,0) | Est| n=30 100 200 500 20000 | n=30 100 200 500 20000

0.253 0.210 0.165 0.097 0.003 | 1.232 1.009 0.873 0.674 0.035
1.603 0.765 0.564 0.450 0.001 | 2.006 1.008 0.701 0.036 0.004

A 6.601 4.003 3.905 1.001 0.002 | 8.006 6.980 4.002 2.003 0.130
(15,1.2,0.8,20) o:z 0.521 0.470 0.397 0.231 0.001 | 0.806 0.560  0.154 0.032 0.020
e B 0.553 0.478 0.411 0.110 0.032 | 0932 0.563  0.507 0.040 0.052
o | 17.087 8.098 7.654 0.924 0.003 | 24.062 11.098 10.022 1.002 0.102
A 5.018 3.099 2972 .0877 0.020 | 13.545 7.665 7.003 1.980 0.006
(10,1.4,0.6,15) (% 0.597 0.430 0.380 0.221 0.000 | 7.980  3.092 3.007 0.005 0.000
e B 0.441 0.304 0.300 0.210 0.010 | 2.094 1.076 1.06  0.065 0.001
o | 4679 1.891 1.003 0.670 0.000 | 6.055 4.345 3.990 1.093 0.023
A | 4.014 3.78 3.069 1.085 0.001 | 18.043 10.005 8.076 2.031 0.021
(5,1.6,0.4,10) ‘jf 0.605 0.553 0.453 0.201 0.003 | 4.661 3.002 2873 0.672 0.003
e B 0.396 0.272 0.255 0.100 0.005 | 2.675 1.098 1.005 0.456 0.000
o 5.700 3.081 2.756 1.090 0.000 | 16.007 8.091 7.900 2.001 0.040
A 2.022 1.978 1.657 1.002 0.021 | 4.006 2.005 1.784 0.543 0.002
(2,1.8,02,5) ‘3f 0.743 0436 0.400 0.11 0.001 | 4761 2221 2.003 0.451 0.007
R B 0.272 0.197 0.116 0.018 0.007 | 2.004 1.984 1.008 0.086 0.001
o 2341 0.789 0.456 0.002 0.000 | 5.008 4.031 3.902 0.871 0.001
A 0.906 0.761 0.543 0.001 0.000 | 2.002 0.973 0.820 0.003 0.000
(1,1.9,0.1,2) C:Z 0.801 0.734¢ 0.701 0.320 0.000 | 0.963 0.701  0.562 0.024 0.001
T B
o
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2.13 Slash  generalized geometric stable
distributions

In this section, we define the slash version of the generalized geometric stable

distributions.

Definition 2.13.1. A random variable Y has a slash generalized geometric
stable (SGGS) distributions, denoted by Y ~ SGGS(\, «,B,0,1,q), if Y =
Ij{—%, where ¢ > 0 and X 1s GGS random variable with characteristic function
given by dx(t) = [1 + o®[t|"waps(t) — iput] A where 0 < o < 2,0 > 0,—1 <

f<1,0>0, and p € R, and U ~ U(0, 1), which is independent of X.

In the section below, analogous to the generalized normal-Laplace (GNL)
distribution (Reed(2007)), we further generalizes GGS distributions to obtain

Gaussian- non Gaussian models.

2.14 Generalized normal geometric stable
distributions

Reed(2007) introduced generalized normal-Laplace distribution, which is useful
in financial applications for obtaining an alternative stochastic process model
to Brownian motion for logarithmic prices, in which the increments exhibit
fatter tails than the normal distribution. The generalized normal Laplace
(GNL) distribution is defined as that of a random variable Y with characteristic

function

af exp{int — %
(a —at)(B +it)

(2.41)

ox(t) = [
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where «, 5, A and 7 and are positive parameters and —oo < 7 < oo. It follows

that Y can be represented as
1 1
M+ TV 4+ =Gy — EGQ
a

where Z, G, and G9 are independent with Z ~ N(0,1) and G, G, gamma
random variables with scale parameter 1 and shape parameter A\. For A = 1,

GNL distribution becomes what has been called an (ordinary) normal-Laplace

(NL) distribution.

Now we introduce a new class of Gaussian-non Gaussian distributions,
namely generalized normal geometric stable (GNGS) distribution, which

generalizes GGS distributions. The generalized normal geometric stable

(GNGS) distribution is defined as follows.

Definition 2.14.1. A random variable Y is said to have generalized normal
geometric stable distribution GNGS(n, T, \, «, 8,0, 1) if there are parameters
0<a<2A>0-1<p<1,7>00>0, and n,u € N such that its
characteristic function, ¢(t) has the following form:
exp{int — TZ—tQ

ox(t) = |7 e T Fs (2.42)

Thus, we have

. T2t2
Nt =273 [1+ ot|*(1 — iBtan(Z2)) — ipt] >, if a # 1,
() = (2.43)

Ar2¢2

pit— 2T [1 + O_a|t’a(1 —I—Zﬁ% log ’t|> — iut]_)‘7 Zf a=1.

We shall use the notation X ~ GNGS(n, 7, \, a, 3,0, 1) to denote that X is
distributed according to the generalized normal geometric stable distribution.

Detailed list of special cases of GNGS laws is presented in the Table 2.3.
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Distribution

Charcteristic function

Parametric values ‘

Normal-Geometric Stable

) 242
M2 1+ 09| %wa p(t) — ipt] !

neR,7>00<a<2,A=1,-1<p<1,

oc>0,peR
Generalized normal-Linnik girnt—255t 1+ o%t|*)> neR,T>00<a<2,A>0,8=0,
oc>0,u=0
normal-Linnik ei"t’%[l + ot L neR,7T>00<a<2A=1,=0,
oc>0,u=0
T ,Z
Generalized normal-Asymmmetric ent=25t 1+ a2[t)? —iut] > neR,T>0,a=2,1>0,3=0,
Laplace o>0,peR
Generalized normal-Symmmetric | ="' 1+ a2|t5 > neER,T>0,a=2,1>0,3=0,
Laplace oc>0,u=0
Normal-asymmmetric Laplace e 14 o?|t)? — ipt]~* neR,7>0,a=21=1,4=0,
c>0,peR
. 242
Normal-symmetric Laplace e”’l’Tl[l +o?[t2 ! neR,T>0,a=2,1=1,5=0,
oc>0,p=0

Generalized normal-Mittag-Leffler

AT7t%

M5 1 4 0 (—it)] N

neR,7>0,0<a<l, o= U[cos(%)]l/”7
B=land p=0,A>0

Normal-Mittag-Leffler

R 242
ez'r]t—Tt[l +O.u(77-’t)a]—l

neER,T>0,0<a<]l, o=oclcos(Z)Ye,
B=land pu=0, =1

Normal-Gamma

A2

7 [1— pit]

ez)mtf

neR,7™>0,a=1,0=0,
B=land p>0,A>0

Normal-exponential

etm—"g" 1 — pit] ™!

neR,7>0,a=1,0=0,
f=land p>0,A=1

Table 2.3: Special cases of GNGS laws.

Theorem 2.14.1. GNGS is infinitely divisible.

Proof. Let X1, X5, ... X, areidentically and independently distributed random

variables with GNGS(n, T, %, a, 3,0, 1) distribution. Define X = X; + Xy +

-+ + X,,. Then the characteristic function of X is

Do(p))

. 7'2 2
exp{int — 5~}
1 4 0@[t|%wa,p(t) — iut

A

. 7_2 2
eXP{”?t - 2t }
1+ 0%[t|%wq,g(t) — iut

Hence X is infinitely divisible.

2.15 Representation

[>

(2.44)

A representation of GNGS random variable similar to the representation of

GGS defined in (2.23), can be derived as follows.
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Proposition 2.15.1. Let V ~ GNGS(n, 7, A\, a, 5,0, 1) and X ~S(a, 3,0,0).
Then

DA+ TVAZ + W + Wa X, if a1,
Y (2.45)

A+ TVAZ + uW + WX +oWB(2/m)log(W), if a=1,

where Z ~ N(0,1), W is gamma distributed with scale parameter 1 and shape

parameter \, and Z, W and X are independent of each other.

Proof. Case 1: a# 1

ov(t) = Ele"]

— E[eit(nA+rﬁZ+uW+WéX)]
_ E[eit(n,\+7ﬁ2)]E[eit(HWJrWéX]
. . 4 1
— ez)\ntE[e'LtTﬁZ]EW(EX [ezt(,uw+wa X) |W _ ’LU])

_ it _arZe? itpw i(twé)X
=e"e 7 Ey([e"" Exle 1

i)\nt—>‘7'2t2 itpuw —o"‘|twé|°‘w (twé)
=e T Eyle™Ve B ]

7_22
A2t EW[e

— ei)\nt— —Waa|t\aw(x73(t)+it,uw]

. _>\7—2t2 (5| ;
— ez)mt 5 Ew[e (ot wa,ﬁ(t)—l—ztu)w]

_ i)\nt—AthQ oly|o o -
= M gt o) — it
A

| ex{int - 7}
1+ o%[t|%wa,p(t) — ipt

26



Chapter 2. Parametric estimation and univariate generalization of geometric
stable distributions

Case2: a =1

dv(t) = Ele"]

= E| eit(anﬁzww+WX+aW,3(2/w) log(W))]
B 6it(nA+TﬁZ)] E| W AW X +oWB(2/7) log(W))]
_ ei)\ntE[eitT\AZ]EW [eit(,uWJrWXJrUWB(Q/ﬂ) log(W))]

_ it e’# By [t 0W+oW5(2/m) og(W) 7 13(W)X]]

JiNit— xr22 By [eit(BW+oWB(2/m)1o5(W)) o= lotW |wa s (tW)]

ei/\nt— Arzﬂ Ew [eit(#W+UWﬁ(2/7r) 10g(W))€—|UtW| [14i8(2/7)sign(tw) log |tw|]}

; _)\7'2152 . _ o .
_ ez)\nt 5 EW[ezt,u,W olt|W zﬁa|t|W(2/7r)s1gn(t)log\t|]

ei)\nt_ >\T§t2 EW [€W{it,u,—cr|t\—'LﬂU|t|(2/7T)Sign(t) log |t|}]
) 2242

_ it AT (1 — ity + olt| + ifo|t|(2/7)sign(t) log |t]] =
) £2,2

— M550 4 l4(1 4 i8(2/7)sign(t) log [¢]) — itu]

Ar2¢2

= [1 + oft|wa,s(t) — itp] ™
A

— 6i>\77t—

. 7_2 2
exp{int — 75~}
1+ o%t|%wq g(t) — iut

]

Analogous to the representation (2.24) of GGS distribution, we present the

representation for GNGS random variable as follows:

DA+ TVAZ + pW + (W/L)a LoHap(m(s — 1)), if a#1,
DA+ TVAZ 4+ W+ Wo K p(m(s — ). L) + oW B(2/m) log(cW),if v = 1,

(2.46)

where Hog(x) and K,p(x,y) are as defined in (2.8) and (2.9) respectively and,
W, L,Z and S are independent with W ~ G(1,\), L ~ exp(1),Z ~ N(0,1)
and S ~ U(0,1).
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The above representation provides a straightforward way to generate

pseudo-random deviates following a GNGS distribution.

2.16 Weighted sums of Independent GNGS

variates

Let Y’ ~ GNGS(n,1,\ «, 3,0, 1) be independent GNGS variates that are
identically distributed. Then the distribution of a weighted sum of these

variables with the weights a;, can be derived using a set of S(a, 3, 0,0) random

variables Xj. Define T' =Y a;y X}. Since,

D I P Zlau 7.0
il

where 27 = sign(z)|z|” (see, Kuruoglu(2001)) and W is gamma distributed
with scale parameter 1 and shape parameter A\, and is independent of X}. For

a # 1, define Yy = n\ + 7VAZ + uW + Wa X, then

ZakYk':Zak (77)\+T\/—Z+MW+W Xk

)
= (i a;mA) + (i akT\/X) ( Y ay ) W+ Wa (iaka)
= (i akn) A+ (i am) VAZ + (Z aku) W+ Wa (i aka)

~ GNGS (Zakn,ZakT A« %’“ 1’ak| B,Zakao,iaku)
k=1

k=1 k=1 k=1 k=1
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2.17 Slash generalized normal-geometric stable
distributions

Here we define the slash version of the generalized normal-geometric stable

distributions.

Definition 2.17.1. A random wariable Y has a slash generalized
normal-geometric — stable(SGNGS)  distributions, — denoted by Y ~

SGNGS(n,7,\, o, B,0,11,q), if Y = -, where ¢ > 0 and X is GNGS random
Ua

A
2,2
exp{int—T 2t :|

’

variable with characteristic function given by ¢x(t) = {Hoatl% =

where 0 < a < 2.X > 0,-1 << 1,7>0,0 >0, andn,u € R, and

U ~ U(0,1), which is independent of X.
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CHAPTER 3

GEOMETRIC GENERALIZED
GEOMETRIC STABLE
DISTRIBUTION

3.1 Introduction

Pillai(1990b) introduced the concept of geometric exponential distribution.
Jose and Seetha Lekshmi(1999) studied the properties and applications
of geometric exponential distribution. As a generalization of geometric
exponential distribution, Jayakumar and Ajitha(2003) introduced geometric
Mittag-Leffler distribution and developed autoregressive process with
geometric Mittag-Lefler marginals. Geometric Mittag-Lefler distribution
further extended to geometric Quasi Factorial gamma distributions. Seetha
Lekshmi and Jose(2004) introduced geometric Laplace and extended to
geometric a—Laplace distribution. Certain limit properties of geometric

Laplace distribution are derived. Seetha Lekshmi and Jose(2006) introduced
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Chapter 3. Geometric generalized geometric stable distribution

and studied Geometric Pakes generalized Linnik distribution.

In the present chapter, Geometric GGS distributions(GeoGGS) are
introduced and discussed its different properties. First order autoregressive
process with GeoGGS marginals are developed and are extended to k'
order. We have also introduced Geometric GNGS distributions(GeoGNGS)

and autoregressive time series models with GeoGNGS marginals are developed.

3.2 Geometric generalized geometric

stable(GeoGGS) distributions

A distribution with characteristic function (t)is geometrically infinitely

divisible if and only if

1
¢(t) = exp{l — W}’

where ¢(t) is an infinite divisible characteristic function (see, Klebanov et al.

(1984)).

Now, [1 + o®[t|%wa,p(t) — i“ﬂ—)\ = expq1l-— [1+)\10g(1+o'ﬂt|iw ﬁ(t)—iut)rl }

Since GGS distribution is infinite divisible, it follows that
-1
[1 + Alog (1 + o[t|*wa,p(t) — i,ut)}
is geometrically infinite divisible.

A distribution with characteristic function
-1
{1 + Aog (1 + o[t wa,s(t) — iut)}

is called GeoGGS distribution. It is denoted as GeoGGS(\, a, 3, o, )
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Definition 3.2.1. A random variable X is said to follow geometric generalized

geometric stable distribution and write X ~ GeoGGS(\, «, 8,0, 1) if it has the

characteristic function

o(t) = [1 + Alog (1 4 o[t wa,(t) — mt)] :

where A >0 and

1 —iBsign(x) tan(ma/2),

Wa,5(2) =

1+ ip(2/m)sign(z) log |x|,

-1

if a#1,

if a=1.

Special cases: Detailed list of special cases of GeoGGS laws is presented

in the Table 3.1.

‘ Distribution

‘ Charcteristic function

‘ Parametric values ‘

GeoGS

{1 +log (1 + o®[t|*wa,5(t) — iut)} -

0<a<2,A=1,-1<8<]1,
c>0,peR

Geometric Pakes generalized Linnik

1+ Alog (1 + o®Jt| )}

0<a<2,A>0,8=0,

geometric Quasi Factorial Gamma

1+ Alog (1+ 0%(— it)")]A

0<a<l1, o=ocos(T a)jt/e

B=land p=0, A>0

Geometric Mittag-Leffler

|
oc>0,u=0
Geometric Linnik {1 + log 1 + o%|t|* )] 0<a<2,A=1,8=0,
oc>0,u=0
Geometric generalized asymmmetric {1 + Alog (14 o?|t? — zut)] a=21>0,0=0,
Laplace oc>0,peR
Geometric generalized symmmetric {1 + /\log 1 +o?t)? )] a=2,A>0,8=0,
Laplace o>0,p=0
Geometric asymmmetric Laplace {1 +log (1 + o?[t]* - wt)] a=21=1,=0,
c>0,ueR
Geometric symmetric Laplace {1 + log 1 + o?t|? )] a=2,2=1,=0,
oc>0,u=0
|
|

(1+0 (—z‘t)a)] -

0<a<l, o= a[cos(%)}l/“,

B=land p=0, A=

—TI

Geometric Gamma [1+ Alog (1 — pit)] a=1,0=0,
B=Tland p >0, A>0
Geometric exponential [1 +log (1 — /Litﬂ B a=1,0=0,

f=land p >0, A=1

Table 3.1: Special cases of GeoGGS laws.

Theorem 3.2.1. Let X, Xo,...

be independent and identically distributed

as geometric generalized geometric stable random wvariables with parameter
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N, o, B, 0, 1 and that is, X; ~ GeoGGS(A\, o, B,0,1),i =1,2,... and N(v) be a
geometric with mean 1/v, PIN(y) =kl =~v(1 -1 k=1,2,...,0 <y < L.
Define Y = X1 + Xy + -+ Xny¢y), then Y ~ GeoGGS(%,a,ﬁ,a, 1)

Proof. Since X; ~ GeoGGS (A, «, 8,0, 1), then its characteristic function is ,

o (1) = {1 + Mog (1 + {0t wa s (t) — z’;uf})} B

Then the characteristic function of Y is

n

oy (1) = Y lox (B (1 =)t

_ ) 1ox(t)
1—(1—7)ox(t)
0% [1 + Alog (1 + {o®|t|*wa,p(t) — iyt})] (3.1)

1—(1-7) [1 + Alog (1 + {o|t|*wa5(t) — z',ut})} B
= [1 + %log <1 + {0 [t|*wa,p(t) — i,ut})] B

Hence Y ~ GeoGGS(%, a, 3,0, ). ]

Now we shall consider a limit property of the GeoGGS distribution and its

relationship with the GGS distribution.

Theorem 3.2.2. Suppose Xi,Xo,... be independent and identically
distributed as GGS(%,OJ,B,O’,/L) and N, independent of Xi1,Xo,... be a
geometric random wvariables with probability of success 1/n. Then Y =

Xi+ Xo+ -+ Xy distributed as GeoGGS(\, o, B, 0, 1t) as n — 0.

Proof.

3>

[1+ 0%[t|*wa,p(t) —ipt] ™ = {1 + [[1 + |t wa 5(t) — mt]% — 1]} :

(3.2)
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Hence by Lemma 3.2 of Pillai(1990b)

3>

)

is the characteristic function of Y. Taking limit as n — oo, we have

Gnlt) = {1 +n [[1 + 0%t *wa,5(t) — ipit]

Qb(t) = lim gbn@)

{[1 + %[t wa p(t) — wtﬁ - 1} } (3.3)

Il
—
—_

+
s E

S

-1
= [1 + Alog (1 4 o[t wa,p(t) — iut)]

[]

Theorem 3.2.3. Let X|A ~ GGS(\ a,B,0,1) with random A, where X is

exponential with mean n. Then X ~ GeoGGS(n, a, B, 0, 1b).

Proof.

o(t) = B ()

= By [1+ 0% [t|°wa,s(t) — it]
_ B { log[ 140 t|*wa, 5 (t)—iut] A] (3.4)
_E [ —Mog (140t *wa 5 (t)— mt)}

2l €

-1
[1 + nlog (14 o®[t|*wa,p(t) — i,ut)}
[l

Theorem 3.2.4. Let X1, X5, ... be independent and identically distributed as
GeoGGS(%,a,ﬁ,a,,u). ThenY = X; + Xo+ -+ X, a4 GGS(\, o, B, ) as

n — .
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Proof. The ch.f of GeoGGS(%, a, B, 0, 1) distribution is

-1
ox(t) = [1 + % log (14 o°[t|*wa,p(t) — iut)]

Then the characteristic function of Y is

by (t) = [1 + glog (1+ ot wa,s(t) — iut)] .

Hence,

lim ¢y (t) = [1+ 0%t *was(t) — iut]

n—oo

That is, Y LS GGS(\, o, B,0, ).
O

Theorem 3.2.5. Let X be a GeoGGS(%,a,ﬁ,cﬁa, op) random wvariable,we
write X ~ DeGS(d,«,,0,1). Then X becomes GS(«a, 3,0, ) with ch.fn

given in (1.18), as § — 0.

Proof. Since X ~ GeoGGS(%,a,ﬂ,éia, dp), the ch. fn of X is
-1
bx(t) = [1 + 6 og (14 60 [t|*wa,s(t) — z'é,ut)}
Therefore,

-1
(lslir(l] ox(t) = (lsliI(l) [1 + 6 og (1 + 60 [t *wa,s(t) — zéut)}

= [L+ 0®|tfwas(t) — int] ™

]

Note: In DeGS distributions the parameter § act as a pathway parameter
as its values varies, the distributions moves to its GS forms.

Special cases: Detailed list of special cases of DeGS distributions is presented
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in the Table 3.2.

‘ Distribution ‘ Charcteristic function ‘ Parametric values ‘

DeGS [1 + 67 og (14 60 [t|*wy g (t) — mm)} T o<a<25s0-1<8<1,
c>0,npeR

DeLinnik [1 +6 " og (1+ 60"‘\t|")} - 0<a<2,6>08=0,
oc>0,p=0

DeAsymmmetric [1 -1 log (1 + So?|t]? — 15uf)] o a=2,0>0,8=0,

Laplace oc>0,peR

DeSymmmetric [1 -1 log 1 + 502|t]? )} - a=2,§>0,0=0,

Laplace oc>0,p=0

DeMitag-Leffler(DeML) [1 + 67 tog (1 + 6o (—it)® )} - 0<a<l, o=occos(Z2)]"/e,
B=land u=0,5>0

DeExponential [1+ 6 log (1 — bpit)] - a=1,0=0,
B=landp>0,5>0

Table 3.2: Special cases of DeGS laws.

3.3 AR(1) model with GeoGGS marginals

In this section, we develop a first order new autoregressive process with

GeoGGS marginals. Consider an autoregressive structure given by,

€n;s w.p 7,

Xn—l + €n, W.D 1— e

where 0 < v < 1. Now we shall construct an AR(1) process with stationary

marginal as GeoGGS distribution.

Theorem 3.3.1. Consider an autoregressive process {X,} with structure
given by (3.5). Then {X,} is strictly stationary Markovian with
GeoGGS(\, v, B,0,1u) marginal if and only if {e,} are distributed
as  GeoGGS(YA\, «a, B,0,1)  provided that Xy is  distributed as
GeoGGS(\, «, B, 0, 1).

Proof. Let us denote the Laplace transform of {X,,} by ¥, () and that of ¢,
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by v, (t). Then the equation (3.5) in terms of characteristic function becomes

Px, (t) = YYe, (t> + (1 - V)anq (t)wen (t>

On assuming stationarity, it reduces to the form

bx () = 7Pe(t) + (1 = 7)¢x (H)¢e(t).

Write
Yx(t) = [1 + Alog (1 4 o[t wa,p(t) — i/ﬂf)] -
and hence
B Vx(t)
L (0 &0
becomes

0ult) = [14+4N0g (1 + 01w s(t) — in) | -

Hence it follows that €, <= GeoGGS(Y\, o, B, 0, ).
The converse can be proved by the method of mathematical induction as

follows: Now assume that X,,_; 2 GeoGGS(\, «, 8,0, ). Then

Vx, (t) = Ve, (O)[y + (1 = 7)bx,_, ()]

-1
= [1 + A log (14 o[t wa,p(t) — iut)]

(3.7)
-1
xfy+ (1 =) {1 + Mog (1 + 60° [t *wa 5(t) — wt)}
-1
= [1 + Alog (14 o[t wa,p(t) — iut)]
That is, X, 2 GeoGGS(\, «, B, 0, 1) ]
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The joint distribution of X, and X, _;

Consider the autoregressive structure given in (3.5). It can be written as
X, =1,X,_1+¢€,_1,whereP(I, =0)=~,P([,=1)=1—7

Then the joint ch.f of(X,,, X,,_1) is given by

wX”,l.Xn(tly fQ) —FE |:62',t1Xn—1+it2Xn}

—F |:€it1Xn,—1+it2(Ian,—1+En)i|

— E[fj(itl+it21n)xn—l],t/)€ (t2)
- . !
1+ yAlog (1 + 09t wap(ta) — ipts)
Y + (1 - 7) }
L+ Mlog (1 + oft1|wag(t1) —ipt1) 1+ Alog (1 + 02ty + ta|*was(ts + t2) — iu(ts + t2))

(3.8)

x|

This shows the process is not time reversible.

3.4 Generalisation to a k' order GeoGGS
autoregressive process

Lawrence and Lewis(1982) constructed higher order analogs of the

autoregressive equation(3.5) with structure as given below.

€n, w.p 7,

Xpo1+€, WPp i,

Xn—k+ €, WD Y,

where 71+ + ...+ =1 =790 < 7,7y < 1,i = 1,2,...,k and ¢, is

independent of {X,,, X,,_1,...}. In terms of characteristic function, equation
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(3.9) can be written as

U, (1) = Ve, (1) + ¥, (e, () + -+ 4 thx,_ (8)e, (1)

Assuming stationarity, we get

Vx(t)
Y4+ (1= )Yx(t)

e (t) =

This establishes that the results developed in the above section are valid in

this case also . This gives to the k" order GeoGGS autoregressive process.

3.5 Geometric generalized normal geometric
stable distributions

In this section, geometric generalized normal geometric stable(GeoGNGS)

distributions is introduced and its properties are studied.

A random variable Y is said to have generalized normal geomeric stable
distribuion GNGS(n, 7, A\, «, 8,0, i) if there are parameters 0 < a < 2, A >
0,-1<p5<1,7>0,0>0,and n, u € R such that its characteristic function,

¢(t) has the following form:

A
exp{int — %
Ol ke T —
+ 00t owa p(t) — ip
Now,
. 7242 A
1 er){zant— 5 } ] el | 1 _
oot was(t) — it (1 A2 — it + AMog(1 + 0°]tfowe (1) — ipt)|

(3.10)
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Since GNGS distribution is infinitely divisible, it follows that

—1
242
1+ )\TT — iAnt + Alog(1 + 0®[t|*wa,s(t) — iwf)]

is geometrically infinite divisible.

A distribution with characteristic function

-1
242
1+ ATT —idnt + Mog(1 4+ o®[t|"wa 5(t) — iut)]

is called GeoGNGS distribution. It is denoted as GeoGNGS(n, 1, \, o, B, 0, ).

Definition 3.5.1. A random wvariable X is said to follow geometric
generalized normal geometric stable distribution and write X =~

GeoGNGS(n, 1, \, 0, 8,0, 1) if it has the characteristic function

-1
242

t
ox(t) = |1+ )\TT — iAnt + Alog(1 + 0°|t|*wa.s(t) — ipt) (3.11)

wheren € R, 7>0,0<a<2.2>0,-1<<1,06>0,ucR.

Special cases of GeoGNGS laws listed in the Table 3.3 below
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Distribution

‘ Charcteristic function

Parametric values

GeoNGS

oo —1
{1 + 22 it + log(1 + 0% [t %wa 5(t) — i,m,)]

neR,T>00<a<2,A=1,-1<p4<1,
c>0,peR

Geometric generalized

normal-Linnik

—I
1+/\Tt —iAnt + Alog (1+0°\t\”)}

neER,T>0,0<a<2,A>0,=0,
c>0,p=0

Geometric normal-Linnik

=1
L+ 2 — int +log (1+ 0°1t]%)]

neR,T>00<a<2,A=1,5=0,
c>0,u=0

Geometric generalized 1+ )\7212 —iAnt + Mog (1 + o?t|? — i,u,t)] - neR,7>0,a=2,1>0,6=0,
normal-asymmmetric Laplace oc>0,peR

Geometric generalized 1+ —iAnt + Aog (1 + 02\t|2)] - neER,T>0,a=2,1>08=0,
normal-symmmetric Laplace oc>0,p=0

Geometric normal- neR,7>0,a=2,1=1,6=0,
asymmmetric Laplace oc>0,peR

Geometric normal- 1+ 5= —int +log ( + 02\t|2)} - neR,T>0,a=21A=1,4=0,
symmetric Laplace oc>0,p=0

Geometric generalized 1+ AT — it + Alog (1 + 0@ (—it)™ )} - neER,T>0,0<a<l, o=occos(Z2)/e,
normal-Mittag-Leffler B=land p=0,A>0

Geometric normal- 1+ 5 —int +log (1 + O’”(fit)”)} - nER,T>0,0<a<l, o=olcos(Z2)/,

Mittag-Leffler

B=landp=0 A=1

Geometric normal-Gamma

=T
1+ )\T 22 it + Alog (1 — ;m‘)]

neR,T>0,a=1,0=0,
B=1Lland p >0, A>0

Geometric normal-exponential

—TI

[
[
[
[1+2
i ﬁ—mf+log(1+”2\f|2*7l“‘)]1
[+
1+
[+
[
[

14+ 5~ t —int +log (1 7/1125)]

neR,7T>0,a=1,0=0,
f=landp>0, A=1

Table 3.3: Special cases of GeoGNGS laws.

The results presented below,

GeoGNGS distributions,

distributions.

Theorem 3.5.1. Let X, X, ...

shows some immediate properties of

which are analogous to the results of GeoGGS

be independent and identically distributed

as geometric generalized normal-geometric stable random wvariables with

parameters n, T, \, «, (3, o, u, that is, X; ~ GeoGNGS(n, 7, \, o, 5,0, 1), 1 =

1,2,...

Y1 =L k=1,2,...

Y ~ GeoGNGS(n, T

Proof. Since X;

function is ,

ox(t) =

o, 3,0, 1)

GeoGNGS(n, 1, \, o, 3,0, 1),

22

71

,0<y <1 DefineY =X1+Xy+--

and N(v) be a geometric with mean 1/, that is, P[N(y) = k| =

“+ Xn(y). Then

then its characteristic

1+ )\— —1Ant + Aog(1 + o[t wa,5(t) — iut)
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Then the characteristic function of Y is

n

oy (1) =) [ox(O)] (1 -7

_ : Yox (1)
1—(1—=7)ox(t)

242 -1
v [1 + A= — it 4+ Aog(1 4 o[t wa,s(t) — z',ut)}

-1
1—(1-%) [1 + )\% — 1At + Aog(1 + 0% [t|%wa 5(t) — wt)}

-1
A T2 A A
= |1+ —— —i—nt+ —log(l + o°|t|"wap(t) —iput
[72 St -+ Zlog(1L+ "t 5(1) = int)
(3.12)
Hence Y ~ GeoGNGS(n, T, %, a, B0, ). O
Theorem 3.5.2. Suppose Xi,Xo,... be independent and identically

distributed as GNGS(n, T, %,04,6,0, w) and N, independent of X, Xo,... be
a geometric random wvariables with probability of success 1/n. Then, Y =

X1+ Xo+ -+ + Xy distributed as GeoGNGS(n, 7, A\, a, 5,0, 1) as n — 0.

Proof.
r . 242 %
exp{int — 5
ox(t) = — :
1+ o%t|%wqa,g(t) — iut
_ 2
T . "

= |exp{—int + T}(l + o[t wa,5(t) — ipt)

- A ,

7242 n

=<1+ | |exp{—int + T}(l + ot wa p(t) —ipt)| —1

Hence by Lemma 3.2 of Pillai(1990b)

\ -1

n

7_22

t
exp{—int + — H1 + 0|t "wa,5(t) — i,ut)] —1
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is the characteristic function of Y. Taking limit as n — oo, we have

¢(t) =

lim 6,(¢)
n—oo
( N -1
7242 n
1+ lim n | |exp{—int + T}(l + 0%t wap(t) —ipt)| —1
n—oo

\

7_2t2 -
1+ )\T — 1At + Aog(1 + 0%t wa () — iut)

(3.13)

]

Theorem 3.5.3. Let X1, Xo,... be ii.d with GeoGNGS(n,T, %,a,ﬁ,a, 1).

Then, Y:X1+X2—|—-~~+XniGNGS(n,T,A,a,B,u) as n — oo.

Proof. The characteristic function of GeoGNGS(n, T, %, a, B, 0, 1) distribution

is

1 A\ T2t2 A
2 n

—1
A |
+ = — it + ~log (1 + 07t “wa5(t) — wt)]

Then the characteristic function of Y is

A\ T2 A A
oy (t) = [1 + ET— — igm‘ + log(1 4 o®|t|*wa.s(t) — iut)]

—n

2
Hence, R
. | explint — 7
am ov(t) = |73 aa\tyawaﬁ(;) — mt]
That is, YV a4 GNGS(n, 7, \,«, B, 0, ). ]
3.6 AR(1) model with GeoGINGS marginals

In this section, we develop a first order new autoregressive process with

GeoGNGS marginals.
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Theorem 3.6.1. Consider an autoregressive process {X,} with structure
given by (3.5). Then {X,} s strictly stationary Markovian with
GeoGNGS(n, 1, \, o, B,0,1) marginal if and only if {e,} are distributed
as GeoGNGS(n,7,y\, o, B,0,1) provided that Xy is distributed as
GeoGNGS(n, 7, \, o, 3,0, 11).

Proof. Let us denote the Laplace transform of {X,,} by ¥y, (¢) and that of ¢,

by v, (t). Then equation (3.5) in terms of characteristic function becomes

an (t) = 7¢en (t> + (1 - V)anq(t)wen (t>

On assuming stationarity, we get

bx () = 7Pe(t) + (1 =) ¢x (H)¢e(t).

Write
7242 -1
Uvx(t) = |1+ /\T — it + Mog(1 + 0% |t|*wa,5(t) — iut)
and hence
Vx(t)
Ye(t) = 3.14
R (s (319

becomes

-1
242

t
be(t) = |1+ 7)\% — iy At + YA log(1 + 0%t *wa 5 (t) — ipit)

Hence it follows that €, 4 GeoGNGS(n, 7,7\, «, B, 0, ).

The converse can be proved by the method of mathematical induction as
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follows. Now assume that X,,_; 4 GeoGNGS(n, 1, \, a, 8,0, 11). Then

U, (1) = Ve, O]y + (1 = 7)x, -, ()]

-1
T .
1+ 7)\7 — iyAnt + yAlog(l + o®[t|“wa.p(t) — z,ut)]

242

-1
1+ A — it + Alog(1 + 0°]t*wa s (t) — iut)]

x[y+(1-7) 5

—1
242
AT — gt + Ao (1 + 01w (1) - ww]

(3.15)

That is, X, 4 GeoGGS(n, T, A\, a, 5,0, 1n). ]
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CHAPTER 4

WRAPPED GENERALIZED
GEOMETRIC STABLE
DISTRIBUTIONS

4.1 Introduction

Researchers studied circular distributions extensively because of its
application in wide variety of fields. Gatto and Jammalamadaka(2003)
studied the cases of wrapped Cauchy, normal and stable distributions.
Jammalamadaka and Kozubowski(2004) discussed circular distributions
obtained by wrapping the classical exponential and Laplace distributions on
the real line around the circle. Gatto and Jammalamadaka(2007) introduced a
generalization of the von Mises distribution and studied many features of the
distribution. Jacob and Jayakumar(2013) proposed a new family of circular
distributions by wrapping geometric distribution. Adnan and Roy(2014)

derived wrapped variance gamma distribution and showed its applicability to
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Chapter 4. Wrapped Generalized Geometric Stable Distributions

wind direction. Joshi and Jose(2018) explored Wrapped Lindley distribution
and applied the model to a data set on orientations of turtles after laying eggs.
Varghese and Jose(2018) studied Wrapped hb-skewed Laplace distribution
and its application in meteorology. For more references see, Lévy(1939),

Jammalamadaka and Gupta(2001)and Rao et al.(2007).

The modeling of financial data such as stock returns, commodity prices,
foreign currency exchange rates, have attracted the attention of numerous
researchers. The first step towards the statistical modeling of stock price
changes was taken by Bachelier(1900)(see, Kozubowski(1994)). His approach
was based on three assumptions: independence, identical distribution and
finite variance of daily changes. Since the price change over a certain period of
time can be regarded as the sum of changes over shorter periods of time(weekly
change = sum of daily changes, daily change = sum of changes between of the
various transactions, etc.), Bachelier(1900) arrived at a normal model. Further
studies, however, showed that empirical distributions of stock returns had more
kurtosis, than was predicted by the normal distribution. Mandelbrot(1963a,
b) and Fama(1965) proposed the symmetric stable distribution as a model
for asset returns. The family of stable distributions seemed appropriate,
because they could allow independent and identically distributed returns
and, at the same time, account for the observed leptokurtosis in the data.
Later, studies showed that the characteristic exponent does not, as it should,
remain constant as the sampling period is increased. In response to these
empirical inconsistencies, alternatives to the stable laws have been proposed
for asset returns models. Mittnik and Rachev (1989, 1991, 1993) have
considered various probability schemes and extended the stability concept of
Mandelbrot, which arises from one specific (summation) scheme. These lead to

a variety of distributions, stable with respect to the underlying scheme. They
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also fitted these alternative stable distributions to the stock-index data and
compared the appropriateness. Their findings were that the (double) Weibull
distribution, which arises in the geometric summation scheme, dominates all
other alternative stable laws. The theory of geometric stable(GS) distributions
was studied extensively. Recently Jayakumar and Sajayan(2020) introduced
the generalized geometric stable distributions(GGS) as a generalization of
geometric stable distributions(GS)and discussed its application to financial

data modeling.

In this chapter, a new wrapped distribution namely Wrapped generalized
geometric stable(WGGS)distribution is introduced. The probability density
function and cumulative density function are derived and the shapes of
the probability density function for different values of the parameters are
presented. Expressions for characteristic function and trigonometric moments
are derived. Expressions for skewness, kurtosis etc. are derived. Maximum
likelihood estimation method is used for estimating parameters and a

simulation study is carried out to show the consistency of the MLEs.

4.2 Wrapped generalized geometric stable
distributions

We define the circular random variable
© =X mod (27) € [0,27) (4.1)
where X ~ GGS(A, «, 0,5, 1) with characteristic function

o(t) = [1+ 0°[t|*wa,5(t) — ipt] ™, (4.2)
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0<a<2,A>0,-1<p8<1,0>0,andu € R.
Since the Fourier coefficients for a wrapped circular random variable
corresponds to the characteristic function at integer values for the unwrapped
random variable(see, Mardia(1972)), ®g(p) : p = 0,£1,4+2,... of the

characteristic function of © is given by

Po(p) = ox(p)- (4.3)

Therefore, using (4.2), the characteristic function corresponding to the

wrapped generalized geometric stable(WGGS) angular random variable is

Do (p) = [1+ 0°[p|*wa,s(p) — in'p] (4.4)

where p* = g mod (27) € [0,27). Thus for p = 1,2,..., we have

[1+0%p*(1 —iftan(5)) —iw'p] ™, if a#1,
Po(p) = (4.5)

(14 0*p*(1+iB2log|p|) —ip*p]™, ifa=1.

We shall use the notation © ~ WGGS(\, a, f,0,1*) to denote that © is
distributed according to the wrapped generalized geometric stable distribution

under this parametrization.

Definition 4.2.1. An angular random wvariable © is said to follow WGGS

distribution with parameters \, «, B, o, u* if its characteristic function is

Do (p) = [1+ 0°[p|*wa,s(p) — in'p] (4.6)

where

1 —ifsign(z)tan(ra/2), if a#1,
Wa, () =
1+i8(2/m)sign(x)log |z|, if a=1.
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The characteristic function, ®g(p) can be written as
Po(p) = ppe**, p=0,£1,42,...

where

[(1+0%[p|*)? + (o%|p|*B tan(%E) + pp)?] =, ifa# 1,
Pp = a (4.7)

[(1+0®[p|*)? + (w'p — o®|p|*B2log |p])?] 2, ifa=1,

]
L

and

/\arctan(Uapaﬁltjiiﬁ)w*p) mod (27), ifa #1,

Hp =

ko a2
Aarctan (22 ifgfp’;bgm)) mod (27), ifa=1.

The probability density function of the WGGS angular random variable © €

[0,27), is given by

1

27

> ®o(p) exp(—iph)

p=—00

fw(e) =

1 - S 1— .
~or Z [1+ 0%|p|*wa,s(p) — ip*p]~* exp(—iph).

p=—00

On simplification, we get

fuw(@) = Qi 1+2 Z(ozp cos(pf) + B, sin(ph)) | , (4.8)

T
p=1
where

2
2

[(1+0°p™)? + (0°p“Btan(Z2) + p'p)?] * cos Aarctan(%ﬁ?m')) , ifa#1,

O[p:

=\ * OO 2 .
[(140%p™)? + (u*p — o°p*B2log |p|)?] * cos ()\ arctan(W)) , fa=1,
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and

=A o n(Te * .
[(1+0°p™)* + (0*p*Btan(ZE) + p*p)?] * sin )\arctan(%iﬁa)wp)) , ifa#1,

By = (
(

[(1+0%p™)? + (up — op* B2 log[p[)*]  sin

|1
ol

p*p—o®p* B2 log |p| e
)\arctan(W) , ifa=1.

Using (4.8), we get the distribution function F,(0) as

:27T

F(0) = 1+22{%sin(p9)+%(1—(}08(}99))} L 9

Special cases:

Let A = 1. Then (4.6) becomes Pg(p) = [1 + 0%|p|*was(p) — ip*p]~t, which
is the characteristic function of wrapped geometric stable distributions(see,

Jacob(2012)). The corresponding «y, and 3, are as follows:
For oo # 1

-1
2 o®p®Btan T + *
ap = |(1+ UQPQ)Q + (o*pp tan(%a) + M*p)Q] cos (arctan( p ﬁl = ( 2 )+ # p)>
O—sza

. 14 o0%p” -
- (1+0-apa)2+(0-apaﬁtan(%)_i_u*p)g? p=1LLs4...

and

-1

2
B, = |(1+ 0°p*)* + (c°p*B tan(B) + ,u*p)Q] sin (arctan(

2

_ o°p*ftan(’y) + pu'p b= 1.2
(1+0°p*)? + (o°p*Btan(Z2) + pp)?’ o

o“p*Btan(7r) + pu'p )
1+ oop>

Similarly for o =1

B 14 oc%p®
T T 0" + (p — 0°p* B2 In [p])?
pp — o®p® [ tan (%)
(14 oop™)2 + (u*p — o°p*B2 In |p|)?

and Bp =
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Analogous to the representation (2.23) of GGS random variable, we present
below, the representation of WGGS random variable as follows:

Let V~ WGGS(\, o, 8, 0, u*). Then

1Ow + (@W)é@S mod (27T>, if o 7& 1,
pOw + OwOs + 0OwH(2/m) log(Ow) mod (27), if a=1,

(4.10)

where Og ~WS(a, 3,0,0)(see, Pewsey(2008)). Ow is wrapped gamma,
WT(A 1) with characteristic function (1 — ip)~*(see, Coelho(2007))and is
independent of ©g. Note that Og ~ WS(«, 5,0, u*) has the characteristic

function ¢(p) = exp{—0c®|p|*was(p) + ip*p}, where p* € [0, 27).
Theorem 4.2.1. © ~ WGGS(\, «, B, 0, u*)is infinitely divisible

Proof. Let ©1,0,,...0, be identically and independently distributed random
variables with WGGS(%, a, B, 0, 1*) distribution. Define © = ©1+05+...0,
mod (27). Then the characteristic function of 0, is
N
Do(p)) = ([1+ 0°[p|"was(p) — '] )
(4.11)

= [1 + 0°®|p|*wa,s(p) — ip*p]

Hence O is infinitely divisible. O
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Figure 4.1: Densities of WGS(A = 1) and WGGS for various parameter values.

We draw the densities, five in each plot for A =0.5, 1, 5, 20 and 100
while keeping the other parameters constant. The values of (o, 0, 8, u*) are

(1,0,1,3),(0.5,2,1,0),(2,2,0,0),(2,2,0,6),(1.4,2,0,0),(1.4,10,-1,1) respectively.
4.3 Trigonometric moments and other

parameters

By the definition of trigonometric moments, we have
Qo(p) = ap +i6,, p==+1,%2,...

and, hence, the non-central moments of the respective distribution are given
by

ap = ppcos(py) and B, = ppsin(py).

So, we have, for o # 1

|
)
i

™

2

anpagt Ta *
ap = {(1 + 0%p|*)? + (o%|p|*Btan(—=) + u*p)Q} cos ()\ arctan(g p°ptan(5) + p)>

1 + O-(Yp(x

|
)
L

{opwNe} t juxes + *
and f, = {(1 +0%|p|*)* + (“|p|*B tan(%) +/L*p)2:| sin ()\ arctan(g peptan(y) + p p)) .

1 + O—upa
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For a =1,

-2
2 E 0 — ap*B21o
= [(1 +0%p|*)? + (u'p — o°|p|*f log pl)ﬂ cos <A arctan("2 1 faf]; elel ))) ,

-2
2 - *n — gOp® 210 .
and S, = [(1 +op|*)? + (u'p — U“|p\ab’; log p|)2} sin ()\ arctan(u P P55 log p|))> .

1+ oope

The mean direction, p = py € [0,27) is

Aarctan(%) mod (27), ifa #1,

M:

Aarctan(t£z)) mod (27), ifao = 1.

By substituting py, 1, and j1, we gets the central trigonometric moments

Qp = Pp COS (:“p - p,ul) )

and f, = p,sin (,Up - le) .

The circular variance is given by, V, = 1 — p, where

. [(1 +0%)? + (0*Btan(%2) + ,u*)2] & . ifa#1,

=2
2

[(14+0)>+ (1) ®, if a = 1.

The circular standard deviation is given by

AMog((1+0%)? + (o®Btan(%) 4+ p*)?), ifa # 1,
og = (412)

Mog((1+ )% + (u*)?), ifa=1.

The coeflicient of skewness is

C1:m~
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and the coefficient of kurtosis is,

4

0 dQ_p
CT e

Table 4.1 exhibits various features of WGGS distribution for different values
of the parameters A\, o, 5,0, u*.
Table 4.1: Values of different characteristics of WGGS distributions

with parametric values (A, «, 0,3, 1*) as A:(0.5,0.1,1,1,3); B:(0.5,0.5,2,1,0);
0:(0.5,2,2,0,0); D:(0.5,2,2,0,6); E:(0.5,1,1,1,3); F:(0.5,1,2,1,0); G:(0.5,1,2,0,0);

H:(0.5,1,2,0,6).

Properties A B C D E F G H
ai 0.4531 | 0.5769 | 0.4472 | 0.3240 | 0.4643 | 0.5773 | 0.5773 | 0.3284
B 0.2493 | 0.1565 0 0.1517 | 0.2484 0 0 0.2029
as 0.3182 | 0.5040 | 0.2425 | 0.2089 | 0.3562 | 0.4280 | 0.4472 | 0.2307
B 0.2288 | 0.1526 0 0.0663 | 0.2041 | -0.0733 0 0.1538
a 0.5172 | 0.5978 | 0.4472 | 0.3578 | 0.5266 | 0.5773 | 0.5773 | 0.3860
b1 0 0 0 0 0 0 0 0
s 0.3635 | 0.5120 | 0.2425 | 0.1847 | 0.3674 | 0.4280 | 0.4472 | 0.2408
B -0.1464 | -0.1230 0 -0.1180 | -0.1832 | -0.0733 0 -0.1376
p 0.5172 | 0.5978 | 0.4472 | 0.3578 | 0.5266 | 0.5773 | 0.5773 | 0.3860
vy 0.4827 | 0.4021 | 0.5527 | 0.6421 | 0.4733 | 0.4226 | 0.4226 | 0.6139
o0 1.1483 | 1.0143 | 1.2686 | 1.4336 | 1.1324 | 1.0481 | 1.0481 | 1.3796
0 -0.4365 | -0.4826 0 -0.2294 | -0.5625 | -0.2668 0 -0.2860
9 1.2528 | 2.3761 | 0.6628 | 0.4081 | 1.2965 | 1.7741 | 1.8815 | 0.5799

4.4 Maximum likelihood estimation

In this section, we discuss the method of maximum likelihood estimation to
estimate the parameters of the WGGS model. Let 64,605, ...,60, be a random
sample of size n from WGGS (A, «, 0, B, u*). Then, the log-likelihood function

is given by,

log L = —nlog2m + > ", {log(l +23° 7 [ay cos(pti) + B, sin(p@i)])}
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Equating the partial derivative of log-likelihood function with respect to the

parameters to zero, for a # 1 we get

dlog L i 22?:1[(‘12 + b2)7%{31 log((a® + b*)71/2) + A, arctan(b/a)]} o
o fi B

i=1

Olog L _ i 232 Ma® + v2)~2 g {(aB tan(%¥) — b)Ay — Bi(a + bftan(%Y))} + (ady — bBy)aas]

Oa = fi
dlogL i 230 Ma® + v2)~2 [ Ao (af tan(%) —b) — Bion(bBtan(7) +a)] 0
do p fi -
dlogL z": 257 Aa? + )73 [(0%p® tan(Z2))(ad, — bBy)]
B = fi -
dlogL Z 2572 Ma? + %) 72 p(ad; — bBy)] .
Oy - i=1 h o
where

= (a® + b2)*% cos(Aarctan(b/a)), B1, = (a® + b2)*% sin(Aarctan(b/a)), oy, = ac® ' p®

(E

a = 1+0%p“, b = oc“p® [ tan 5 )+17p, fr = 14237 [any cos(pbi)+51 , sin(pd; )]

Ay = cos(\arctan(b/a)) sin(p#;) — sin(\ arctan(b/a)) cos(pb;), arp = o®p®B(7/2) sec?(7/2),

By = cos(Aarctan(b/a)) cos(pb;) + sin(A arctan(b/a)) sin(pd;), ar; = o“p®log(op)

Similarly, for a =1,

dlogL i 232+ d?) =2 {log((c® 4 d2)~Y/2) By + arctan(d/c) A3}] B

oN p f
dlogL Z”: 257 [N + d?) 2 H{pBy(dB(2/) log(p) — ¢) — pAs(d + cB(2/m) log(p))}] 0
do — fo -
dlog L zn: 232 M+ d2)’%’1p0(2/7r) log(p){dBy — cAs}] B
o8 i=1 f2 B
dlog L i 2220:1[)‘(02 + d2)7%71P{CA2 —dB,}] B
o i=1 f2 a
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where,

o, = (c® + dz)_% cos(Narctan(d/c)), Bap = (¢* + dz)_% sin(Aarctan(d/c)),c =1+ op,

d=p'p—opp(2/m)log(p), By = cos(Aarctan(d/c)) cos(pb;) + sin(A arctan(d/c)) sin(pb;),

Ay = cos(Aarctan(d/c)) sin(pf;) — sin(A arctan(d/c)) cos(pfi), fo = 1+ 232 [, cos(pi) + Bz, sin(pd;)].

Since the above normal equations cannot be solved analytically, a numerical
technique is to be adopted to get the estimates of the parameters. The
log-likelihood of the WGGS(\, «, 3, 0, 1*) density can be computed numerically
to a given level of precision for ¢ = > " logf(6;) using finite sum
approximation to (4.8) for the given set of independent observed directions
0T = (01,05, ...,0,). The optim function in the R stats package used for the
numerical optimization of ¢ over the parameters. We opted the the L-BFGS-B

algorithm as it allows box constraints for any or all the parameters.

We carry out a simulation study to obtain the maximum likelihood estimate
of the parameters. We generate samples of size 30,50,100 and 200 and replicate
the program N=1000 times to get the estimates. The results are presented in

Table 4.2.
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Table 4.2: Average values of bias and MSEs using different values of
AN a,B,0 and p*, for sample sizes n=30, 50,100,200 corresponding to
WGGS(\, «, B, 0, ux) distribution

Bias MSE

(N a, B, 0, %) Est | n=30 50 100 200 n=30 50 100 200
3.006 1.034 0.790 0.004 | 6.000 4.060 1.011 0.011
0.463 0.260 0.179 0.000 | 0.608 0.410 0.114 0.030
0.803 0.631 0.200 0.002 | 12.588 5.333 1.401 0.002
6.011 3.055 1.554 0.001 | 16.002 7.022 2.031 0.006
4.002 3.909 2.555 0.011 | 8.005 6.075 2.011 0.110
3.002 1.202 1.072 0.010 | 5.545 4.505 2.805 0.003
0.712 0.522 0.250 0.001 | 5.076 4.012 2.052 0.010
0.643 0.404 0.220 0.002 | 8.054 5.056 0.045 0.001
3.112 1.001 0.043 0.000 | 12.332 6.355 2.001 0.011
2.044 1.011 0.874 0.001 | 6.062 4.033 0.022 0.000
1.021  1.002 0.065 0.000 | 4.023 2.025 0.701 0.010
1.005 0.783 0.343 0.002 | 6.421 4.062 1.113 0.005

(20,0.6,0.9,10,6)

(10,0.8,0.7,6,4)

(5,1.2,0.5,4,2) 0.499 0.182 0.005 0.000 | 3.121 1.000 0.005 0.000
1776 1.009 0.336 0.010 | 8.055 2.022 1.609 0.098
1.0665 0.652 0.004 0.002 | 4.055 3.023 2.011 0.000
1.021 1.008 0.507 0.001 | 2.010 1.014 0.048 0.002
1.663 0.811 0.100 0.001 | 8.831 4.921 1.001 0.003
(1,1.5,0.3,2,1) 0.352 0.221 0.106 0.002 | 3.114 1.224 0.440 0.000

1.101 0.654 0.340 0.002 | 5.011 3.211 0.531 0.031
0.775 0.018 0.004 0.000 | 3.110 1.001 0.512 0.004
0.605 0.321 0.023 0.000 | 2.010 0.773 0.023 0.001
1.967 1.611 0.608 0.006 | 12.333 7.001 1.092 0.004
0.221 0.110 0.103 0.001 | 2.897 1.089 0.355 0.012
0.893 0.342 0.109 0.003 | 2.887 1.005 0.701 0.001
0.615 0.311 0.015 0.001 | 2.751 1.011 0.044 0.001

(0.5,1.8,0.1,2,0.5)

T3 M H e D M HH e D M D T D D >

It can be seen that as sample size increases, the average values of bias and

MSE decreases.

4.5 Wrapped generalized normal geometric
stable distributions

We define the circular random variable

© =X mod (27) € [0,27) (4.13)
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Since the Fourier coefficients for a wrapped circular random variable
corresponds to the characteristic function at integer values for the unwrapped
random variable(see, Mardia(1972)), ®o(p) : p = 0,+1,£2,... of the

characteristic function of © is given by

Do(p) = dx(p)- (4.14)

Therefore, from (2.42), the characteristic function corresponding to the

wrapped generalized geometric stable(WGNGS) angular random variable is

. % 2p2
_ | el — 5}
1+ o%|p|*wa,s(t) — ip*p

®x(p) (4.15)

where n* =7 mod (27) € [0,27),7 > 0,0 < a <2, A>0,-1< <10 >

0, = p mod (27) € [0,27). Thus, for p=1,2,..., we have

oA P_ATp[l +op*(1 —iftan(Z2)) —ip*p] ™, if a #1,
Pe(p) =

AT2p2

NP L4 0p (1 + B2 log p|) — ipp] Y, if a=1.

(4.16)

We shall use the notation © ~ WGNGS(n*, 7, A\, a, 5, 0, u*) to denote that © is
distributed according to the wrapped generalized geometric stable distribution

under this parametrization.
Definition 4.5.1. An angular random variable © is said to follow WGNGS

distribution with parameters n*, 7, \, a, 8, 0, u* if its characteristic function is

. 72p2
_ | el — 5}
1+ o%|p|*wa,s(t) — ip*p

Do (p) (4.17)
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where

1 —iBsign(x) tan(ma/2), if a #1,
Wa,p(T) =
1+ ip(2/m)sign(z)log |x|, if a=1.

The characteristic function, ®g(p) can be written as

Pg(p) = ppeiup7 p=0,+1,+2,...

where
_Ar2p? Al a2 Al o T %, \2 %A :
ez [(1+0%p|*)? + (o®|p|*Btan(Z2) + u*p)?] 2, fa#1,
pp = Ar2p2 9 9 9 =X .
e [(1+0%p|*)? + (w'p — o®[p|*BElog |p)?] %, fa=1,
(4.18)
and

An*p + Aarctan(gapaﬁlf2i§)+“*p) mod (27), ifa #1,
Hp =

*p—c2p®B2 o .
A*p + Aarctan(22 1+pgfp’;l gw)) mod (27), ifa=1.

The probability density function of the WGNGS angular random variable © €

[0,27), is given by

I © .

= 2— E p) exp(—iph)
1 g frp-72r |

exp{in*p — S .

S § —iph).

2w £~ |1+ 0°p|*wes(t ) —ipp xp(~ipf)
On simplification, we get
1 & :
Ful0) = 5 | 1+2 3 (e cos(p) + By sin(ph) | (1.19)

p=1
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where

22,2 . 57 S22 o .
e [(1+0%p®)? + (0°p*Btan(Z2) + pp)?] * cos ()vr;*p +A arctan(%)) , ifa#1,
a, = . . garag2
e~ — [(1 +0%p*)? + (u*p — a“p‘*ﬂ% log |p\)2] 2 cos (M}*p + A arctan(%iﬁbgm)) , fa=1,
and
e [(1+0°p™)? + (o°p*B tan(Z2) + 1*p)?] 7 sin <)\n*p + Aarctan(%)) , ifa#1,
ﬁp = 22
K ) . Y e 52 lox .
e [(1+0%p™)2 + (u'p — 0°p*B2 log |p|)?] * sin <)\'r]*p + /\arctan(%W)) , ifa=1.

Using (4.19), we get the distribution function F,(0) as

1

Fu(0) = o 1+2Z{—Slnp9 B(l—cos(p@))} . (4.20)

Special cases:

Let A = 1,7 = 0,7 = 0. Then (4.17) becomes ®g(p) = [1 + 0%|p|*was(p) —
ip*p]~t, which is the characteristic function of wrapped geometric stable
distributions(see, Jacob(2012)). The corresponding «, and f3, are as follows:

For a # 1

-1
e o“p“ftan +
ap = |(1+0%p*)* + (¢*p*B tan(w )+ u*p)*|  cos | arctan( P tan() + 1 p)
2 1+ oope
1+ o%p®

(L4 02p™)2 + (oop®Btan(Z2) + prp)?’

p=1,2 ...

and

-1

2

sin (arctan(a ptan(y) +p p)>

Bp _ (1+Gapa)2+( O‘Btan(T; )"‘,U p) :| 1+O'a o

_ op*Btan("F) + p'p
(1+0°p®)? + (0°p aﬂtan(“;>+u*p>2’

p=12,...
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Similarly, for o = 1

1+ o0%®
N, =
T (L o)+ (wp — oopeBtan(F))?
p—o“p*[tan(t2
and  f = wp — o°p*Btan(F)

(1+0°p*)* + (wp — o°p*f tan (7))

Analogous to the representation of GNGS random variable in Proposition
2.15.1, we present below, a representation of WGNGS random variable as

follows:

Let V~ WGNGS(n, 7, \, a, 5,0, 11*). Then

A+ 7VAO, 4 11Oy + (Ow)=0s mod (2r), if o1,
A+ 7VAOz + Ow + OwOgs + 0OwB(2/7) log(Ow) mod (27), if o= 1,

(4.21)

where ©; ~ WN(n,7%), ©s ~WS(a,,0,0)(see, Pewsey(2008)). Ow
is wrapped gamma, WT(A, 1) with characteristic function(1 — ip)~*(see,
Coelho(2007))and is independent of ©g. Note that Og ~ WS(a, S, 0, u*)
has the characteristic function ¢(p) = exp{—o®|p|*was(p) + ip*p} where

p* €0, 2m).

Theorem 4.5.1. © ~ WGNGS(n*, 7,2, , B, 0, u*)is infinitely divisible

Proof. Let ©1,0,,...0, are identically and independently distributed random
variables with WGNGS(n*, 7,2, a, B, o, i) distribution. Define © = ©,+0,+

...0,, mod (2m). Then the characteristic function of O, is

A n

s x T2p2 n
Bo(p)) = exp{in*p — =~}
° 1+ 0°|p|*wa,p(t) —ipp

(4.22)

[ % 72p2 A
_ | el — 5}
| 1+ 0%plowa,s(t) — ipp
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Hence © is infinitely divisible. O]

4.6 Trigonometric moments and other
parameters

By the definition of trigonometric moments, we have
Qo(p) = ap+iB,, p==+1,%2, ...

and, hence, the non-central moments of the respective distribution are given
by

ap = ppcos(pp) and B, = pysin(uy).

So, we have, for o # 1

>

N

—ar2p? uyes

0y =5 (ool + Pl ) +

*p [ tan () + p*)
cos()\n*pr/\arctan(Upﬁ n(5) up)>

1+ o%p

o !
w
L

2

=ar?p? a2 al, o T *.\2
and B,=e 7 |[(140%p|")* + (c®|p|*Btan(—) + u"p) T onpe

op*Btan(%) + p*
sin <)\n*p+ A arctan( L () +/ p)> .

For a =1,

o
oL

—ar?p?

p 2 p
ap=e¢ 2 {(1 +0®|p|™)? + (p*p — aa\p\“[)’; log \p|)z} cos <)\77*p + Aarctan

(#*p — op*B2log p| )
1+ oope ’

i
ol

—ar2p?
2

and f,=¢e

An*p + Aarctan

ap, ol a2 . 'p — a*p*p2log p|
[ o1l + G = a5 Toglp?| s ( n).

1+ oop™

The mean direction, p = u; € [0,27) is

A <77* + arctan(%)) mod (27), ifa #1,
[/L —_=
A (77* + arctan(li‘;a)) mod (27), ifoo=1.
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By substituting py, 1, and j1, we gets the central trigonometric moments

Qp = pPp COS (:Up - p,ul) )

and 3, = p,sin (up — pul) :

The circular variance is given by V) = 1 — p, where

Y
e [(1+ 090 + (0Btan(Z2) + u)2] * , ifa #1,
p:

=

% [(1+0)?+ (u)?] 2, ifa=1

The circular standard deviation is given by

L \/)\{7_2 +1log((1+0%)? + (c*Btan(%) + p*)?)}, ifa#1, (4.23)

VAT log((1+0)2 + (1*)?)}, ifa=1.

The coefficient of skewness is given by,

o - B
(=)
The coefficient of kurtosis is given by,
. 4
Qg — p
@=L
(1—p)

Table 4.3 exhibits various features of WGNGS distribution for different values

of the parameters n*, 7, \, o, o, B, u*.
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Table 4.3: Values of different characteristics of WGNGS distributions
with  parametric  values (n*,7,\, a,0,6,1%) as A:(3,1,0.5,0.1,1,1,3);
B:(0,2,0.5,0.5,2,1,0); C:(0,2,0.5,2,2,0,0); D:(3,2,0.5,2,2,0,6); E:(3,1,0.5,1,1,1,3);
1:(0,2,0.5,1,2,1,0); G:(0,2,0.5,1,2,0,2); H:(6,2,0.5,1,2,0,3).

Properties A B C D E F G H
a1 -0.1688 | 0.2122 | 0.1645 | -0.0473 | -0.1675 | 0.2124 | 0.1854 | -0.1730
B 0.3657 | 0.0576 0 0.1229 | 0.3744 0 0.0561 | -0.0444
Qs -0.1278 | 0.0092 | 0.0044 | -0.0040 | -0.1403 | 0.0078 | 0.0068 | 0.0065
B -0.0668 | 0.0028 0 -0.0007 | -0.0558 | -0.0013 | 0.0024 | 0.0010
ai 0.4028 | 0.2199 | 0.1645 | 0.1316 | 0.4101 | 0.2124 | 0.1937 | 0.1786
b1 0 0 0 0 0 0 0 0
@ 0.1338 | 0.0094 | 0.0044 | 0.0034 | 0.1352 | 0.0078 | 0.0070 | 0.0062
B2 -0.0539 | -0.0023 0 -0.0022 | -0.0674 | -0.0013 | -0.0018 | -0.0022
p 0.4028 | 0.2199 | 0.1645 | 0.1316 | 0.4101 | 0.2124 | 0.1937 | 0.1786
Vo 0.5972 | 0.7801 | 0.8355 | 0.8684 | 0.5898 | 0.7876 | 0.8063 | 0.8214
o0 1.0154 | 0.7048 | 0.5995 | 0.5313 | 1.0275 | 0.6910 | 0.6563 | 0.6273
0 -0.1167 | -0.0033 0 -0.0027 | -0.1488 | -0.0019 | -0.0025 | -0.0030
9 0.3012 | 0.0116 | 0.0053 | 0.0041 | 0.3072 | 0.0093 | 0.0086 | 0.0076

4.7 Maximum likelihood estimation

In this section, we discuss the method of maximum likelihood estimation to
estimate the parameters of the model. Let 6;,6,...,6, be a random sample

of size n from WGGS(A, a, 0, 5, 1*). Then, the log-likelihood function is given

by,
logL = —nlog2m + > ", {log(l +23 7 [oy, cos(pli) + By sin(p&i)])} .

Equating the partial derivative of log-likelihood function with respect to
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the parameters to zero, for a # 1 we get,

Olog L _ i 22;’;1 [{al,p sin(pf;) — Bip cos(p@,,)})\p] _
on* — fi
DlogL &2 [(@rpcos(phs) + B sin(p8:)) (3] ;
orr z:zl fi a
Dlogl & 2320, {e’AT(az +82) 2 {B,Cy + Ay ("p + arctan(b/a))}}
= - =0
DY I3
dlog L i 25, e (a2 + b?) > o {(af tan(Z2) — b)A, — Bi(a + b tan(2))} + (ad; — bB;)ass] B
Oa prt fi
2,2
dlogL z": 2570 AT (a2 + 07) "3 [Ayony (aB tan(52) — b) — Bion (b3 tan(%) +a)]
do — fi
2,2
dlog L _ z": 22;‘;1 ez (a®+ bQ)*%*l[((r“p"‘ tan(%a))(aAl —bBy)] _
B h -
2p? .
dlog L z": 250 e 5 (a4 07) "2 plaAy — bBy)]
opr py fi
_/\72p2 9 2 A % _)\7'2;72 2
where, ay, = e 2 (a®+b%)"2 cos(A\n*p+ Aarctan(b/a)), B1p, =€z (a*+

b2)~2 sin(An*p + Aarctan(b/a)), a

1p, iy

o“p*log(op), ais

= 1+ 0% b = o"p*Btan(F) +

opB(m/2) sec?(m/2), Ay

= = cos(An*p +

Aarctan(b/a)) sin(pd;) — sin(An*p + A arctan(b/a)) cos(pb;), By = cos(An*p +

Aarctan(b/a)) cos(pb;) + sin(An*p + Aarctan(b/a)) sin(pb;),Cy
b2>—1/2) _

T2p2

2 7

log((a® +

o = ao® 'p*and fi = 142377 [ay, cos(ph;) + B, sin(ph;)].

Similarly, for « =1,

dlogL Z": 2377 [{an,sin(pt;) — Ba, cos(pt;) } Ap] B
on* - Py fo B
Dlog L o 2250 | (@2 cos(ph) + o, sin(p0i)) (33|
or? - ; fo =0
OlogL =2 D oale” 2t (2 + d2)~2{ByCy + (*p + arctan(d/c)) Ay} 7
on Z fo a
=1 o
dlogL Z 257 [Ae™ 7 (a2 + 1) "2 Y{pBa(dB(2/)log(p) — ) — pAa(d + cB(2/m)log(p)}) 0
do p fo B
dlogL Z 257 A7 (a2 + 0%) "3 po(2/m) log (p){d B, — cAs}]
o5 & f2 B
dlog L Z 25 e (a2 4 02) 3 pleds — dByY]
o f2 ;

i=1
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Ar2p2

where, g, = e (2 4+ d®)2cos(Ap + Aarctan(d/c)),

_ A72p2

Bop = e 2 (A + d2)*%sin()\77*p + Aarctan(d/c)), ¢ = 1 + op,

d=p'p—opB2/m)log(p), fo=1+423 7, [as,cos(pdi) + Bzpsin(pd;)], As =

cos(An*p + Aarctan(d/c)) sin(pb;) — sin(An*p + Aarctan(d/c)) cos(pb;), By =

cos(An*p + Aarctan(d/c)) cos(pb;) + sin(An*p + Aarctan(d/c)) sin(pb;)),Co =

2,2

log((c? +d?)~'/%) — =,

Since the above normal equations cannot be solved analytically, a numerical
technique is to be adopted to get the solutions for the estimates of the
parameters. The log-likelihood of the WGGS(A, o, 5,0, u*) density can be
computed numerically to a given level of precision for log L = Y, log f(6;)
using finite sum approximation to (4.19) for the given set of independent
observed directions 67 = (6,,6,,...,0,). The optim function in the R stats

package used for the numerical optimization of ¢ over the parameters.
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CHAPTER 5

MULTIVARIATE GENERALIZED
GEOMETRIC STABLE
DISTRIBUTIONS AND PROCESSES

5.1 Introduction

A geometric stable law is defined as a limiting distribution of appropriately
normalized sums of a random number of independent identically distributed
random variables, where the number of terms has a geometric distribution.
Geometric stable distributions generalizes distributions like exponential and
Laplace distribution.  Generalized geometric stable(GGS)distributions is
the univariate generalization of geometric stable distributions. Kozubowski
and Panorska(1999)introduced a multivariate generalization of geometric
stable distribution and used it for modeling multivariate financial portfolios
of securities.  The normal-Laplace distribution, which results from the

convolution of independent normal and Laplace random variables is introduced
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by Reed and Jorgensen (2004). Manu(2013) introduced a multivariate
normal-Laplace distribution, and studied its properties and applications in

multivariate financial data modeling.

The geometric stable distribution has found applications in a variety of areas
such as economics, insurance mathematics, reliability and queuing theories,
and other fields. This distribution is often used for modeling phenomena with
heavier tails. We know that a random variable V' is said to follow a generalized
geometric stable distribution with parameters 0 < a < 2, A > 0,—1 < g <

1,0 > 0, and p real, if its characteristic function, ¢(¢) has the following form:

o(t) = [1+ ot *wa,p(t) —ipt] ™ (5.1)

where

1 —ifsign(x) tan(ra/2), if a#1,
wa’g(l’) = (52)
1+ ip(2/m)sign(z)log x|, if a=1,

and

1, if x>0,

sign(x) =0, if x=0,

-1, if z<0.

\

The special cases of GGS distributions include geometric stable, Laplace,
exponential, Linnik etc. Multivariate extensions of symmetric and asymmetric
Laplace distributions discussed in Kotz et al.(2001). Multivariate generalized
asymmetric Laplace distributions and its applications are studied in
Kozubowski et al.(2013). Many properties in the univariate laws can be

extended to this class of distributions. For more details (see, Ernst(1998)).
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We have, the characteristic function of GNGS distributions as

exp{int — =X
t) = : 5.3
ox(t) 1+ o|t|*wap(t) —ipt | (5:3)

where n € R, 7> 0,0<a<2,A>0,-1<<1,06>0,ueR.

The special cases of GNGS distributions include normal-Laplace,
normal-Linnik etc. ~ Manu(2013) introduced multivariate normal-Laplace
distribution and developed first order autoregressive processes with

multivariate normal-Laplace marginals.

Kozubowski and Panorska(1999) introduced a multivariate extension of
geometric stable distributions. As shown in Mittnik and Rachev(1991), there
is a one-to-one correspondence between characteristic functions of geometric
stable and a-stable distributions: Y is geometric stable if and only if its

characteristic function ¢ (t) has the form

T(t) = (1 - logo(t)) " = /O "0 ()]Fedx. (5.4)

Utilizing (5.4) and the spectral representation of a-stable laws(see,
Samorodnitsky and Taqqu(1994)), a multivariate geometric stable distribution
was introduced in Kozubowski and Panorska(1999): A geometric stable
random vector Y = (Y1,Y,,...,Y;) can be described by its characteristic
function as

-1

Py (t) = |1 +/ |t's|®wa 1 (t's)T(ds) —ip't|
Sq

where 0 < o < 2, T' is a finite measure on the unit sphere Sy € R, pu € N is
the location vector, and w, g is given by (5.2). Measure I is called the spectral

measure of the vector Y.
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A representation of GS, (T, u) random vector presented below.

Lemma 5.1.1. Y ~ GS, (T, u) if and only if

1 .
v L nz + Z«X, ifa # 1,

pZ+ 72X+ (Z(2/m)log(2)) g, if a=1,

with

[e.e]

g=(01,92,...,94) and ng/ siI'(ds),
S

d
where X ~ S, (T, 0)(a-stable distribution with spectral measure T' and
location parameter p, (see, Samorodnitsky and Taqqu(1994))) , Z ~ exp(1),

and X and Z are independent.

In the present chapter, we introduce multivariate GGS distributions, and
study its properties. Also multivariate GeoGGS distributions are introduced.
First order autoregressive processes with multivariate GeoGGS distributions
is developed. Multivariate GNGS distributions is introduced, as an extension
of multivariate normal-Laplace distribution. We introduced the GeoGNGS

distributions and studied its properties.

5.2 The multivariate generalized geometric
stable distributions

Here we introduce multivariate generalized geometric stable laws . Let
(X = (Xl(n),XQ(”),...,XC(Zn)),n > 1} be independently and identically
distributed random vectors in ¢, and let N, be an NB random variable

with parameters p € (0,1), A > 0, independent of {X™},

T(A+ k)

— mpm—p)k-l, E=1,2,.... (5.5)
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GGS laws are the only possible limits, and therefore, good approximations,
of properly scaled and centered random sums of random vectors. Namely,

Y = (Y1,Y,,...,Yy) is GGS, if there exist a(p) > 0, and b(p) € R¢ such that

a(p) f (X(i) + b(p)) LY, asp — 0 (5.6)

The random vectors X appearing in (5.6) are in the domain of attraction of

the GGS vector Y.

A GGS random vector Y = (Y7,Y5,...,Y;) can be described by its
characteristic function ¥ (t) = Eexp{it'Y}, we can write the characteristic
function of GGS vector as

—-A

1+ [ |t's|%wa1(t's)T(ds) —ip't| (5.7)
Sq

Uy (t) =

where 0 < av < 2, A > 0, T is a finite measure on the unit sphere S; € R, u €
R, and w, 5 is given by (5.2). Measure I is called the spectral measure of the
vector Y, and carries the information about the dependence structure between

its components. We denote Y ~ GGS,(\, T, ).

Similar to the univariate case, multivariate GGS distributions also possesses
the infinite divisibility property.
Infinite divisibility. The characteristic function ®x(t) of GGS, (A, T, p) can

be written as

n

dx(t) = (1 +/S |t's|“wa.1 (t's)T(ds) — iu’t) ,

for any integer n > 0. The term in brackets is the characteristic function of a

GGS.(2,T, )
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The class of elliptical distributions. The class of elliptical distributions is

a generalization of multivariate normal distributions (see, Kelker (1970)).

Definition 5.2.1. A random wvector X has a multivariate elliptical

distribution, if. its characteristic function can be expressed as
-/ 1 /
X(t) = exp(iv t)w(it 3t) (5.8)

for some column vector v, positive matriz 3 and for some function ¥ (t) € ¥,

which is called the characteristic generator.

GGS distributions with g = 0, = 2, A = 1 are elliptically contoured, as
their characteristic function depends on t only through the quadratic form

t'3t. With a non-singular ¥, they are also elliptically symmetric.

5.2.1 Representation

In this section, we present a useful representation of GGS random
vectors analogous to geometric stable random vectors, which extends the

representation of univariate GGS laws given in Proposition 2.7.2.

Theorem 5.2.1. Y ~ GGS,(\, T, ) if and only if

1 .
Yi MW—l_W”‘-X) ZfCl{#l,

pW + WX+ (W(2/r)log(W)) g, ifa=1,

with

[e.e]

g=(91,92,-.-,9a) and ng/ spI'(ds),
s

d
where X ~ S,(T",0)(a-stable distribution with spectral measure I" and
location parameter p, (see, Samorodnitsky and Taqqu(1994))), W ~ G(1,\),

and X and W are independent.
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Proof. Case 1: a# 1.Let Yy = pW + WaX

Uy, (t) = E[eitlYl]

—E, {E [eit/Yl \WH

exp {it’ (,u,W + Wix)} |W]
= By, [exp{it' pW}O(Wt)]

= By [exp{it uW} (@ ()"

By [0(t) explit/ )]

= Elexp{—{—(log ®(t) + it'pe) } W}]

=Lk, | Ex

This is the Laplace transform of W, that is, Fe™*", with s = —(log ®(t)+it'w).
Thus, representation (5.9) holds for o # 1.
Case 2: a=1. Let Yo = pW + WX + W (2/7)log(W)g, with the variables

defined in the statement of the theorem. Conditioning on W produces

Uy, (t) = B[]
—E, {E [e“’Yz \WH

=Ly

Ex {exp {zt (LW + WX + W (2/7) log(W )g)} |WH

= By, [exp{it' uW + W (2/7) log(W)it'g}(Wt)]

where @ is the characteristic function of X ~ S,(T',0). Note that for any

t € R¢ and w > 0, @ satisfies

O(wt) = [P(t)]™ exp{—w% log(w)it'g}.
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Therefore,
Uy, (t) = Ew([®(t) exp{it'p}]"

Thus, representation (5.9) holds for a = 1.

Remarks:

1. When a = 2, the characteristic function of a GGS vector can be written
as
1 -2
() = |1+ 'St it
where 3 is a dxd positive-definite symmetric matrix. This

is the characteristic function of multivariate generalized Laplace

distribution(see, Kozubowski et al.(2013))

2. When T' = 0(T'(A) = 0, for any Borel set in R¢), th characteristic

function becomes

1A
Y(t) = [1—ip't] .
It admits the representation Y ~ puW, where W ~ G(1, \).

3. Summation: Let X ~ GGS,(A\, T, u) and Y ~ GGS, (v, T, pn), X and Y

are independent, then X +Y ~ GGS,(A+ v, T, p).

4. If d = 1, the unit sphere consists of only two points: S; = {1,—1}.
Denoting I'y = I'({1}) and I'_; = I'({—1}), in case a # 1, characteristic

function (5.7) becomes

P(t) = |1+ [¢1]* <1 — isgn(t1) tan(%)) I+ [t(=1)* <1 - isgn(t(—l))tan(%)) r,-— it,u,:|

-\

o rn-r- ’
1+ ((Fl + F,l)i> [£]* (1 — isgn(t)ri mn F—i tan(%)) I, — it,u,:|
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Comparing the above expression with (5.1), we see that a univariate
GGS random variable with spectral representation GGS, (A, ', 1) has

parameters
ry—-r_

1
—— oo=IT1+T_1)~,
T, +T_, ( 1 1) 2

>\7a’/8:

The skewness parameter (3 is zero if the spectral measure is symmetric.

Similar result holds for o = 1.

5.3 Multivariate slash generalized geometric
stable distributions

Now let us define the slash version of the generalized geometric stable

distributions.

Definition 5.3.1. A random vector Y € R¢ has a d-variate slash generalized
geometric stable (SGGSy) distributions, denoted by Y ~ SGGS,(\, T, pu,q),
if Y = X, where ¢ > 0 and X is GGS random vector with characteristic
Ua
Y
function given by Vx(t) = [1 + de [t's|*wa 1 (t's)T(ds) —ip’'t| , where 0 <
a < 2,A>0, T is a finite measure on the unit sphere S; € R, u € R and

U ~ U(0,1), which is independent of X.

5.4 The multivariate geometric generalized
geometric stable distributions

In this section, multivariate geometric generalized normal geometric
stable(GeoGGS) distributions is introduced and its properties are studied.
A GGS,(\, T, u) random vector Y = (Y7,Y5,...,Yy) can be described by
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its characteristic function as

—-A

1+ [ |t's|%wa1(t's)T(ds) —ip't| (5.10)
Sa

Uy (t) =

where 0 < av < 2, A > 0, T is a finite measure on the unit sphere S; € R, u €
R is the location vector, and w, 5 is given by (5.2). Measure I is called the
spectral measure of the vector Y,

Now, we can write,

-2

L+ [ |t's|®wai(t's)T(ds) —ip't
Sq

as

1
expq 1 — —

[1 + Alog (1 + de |t/s| w1 (t's)T(ds) — i,u’t)}

Since GGS, (A, T', u) distribution is infinitely divisible, it follows that

-1

1+ Mog (1 + [ |t's|wa1(t's)T(ds) — iu’t)

Sq

is geometrically infinite divisible.

A distribution with characteristic function

-1

1+ Alog (1 + / |t's|wa1 (t's)T(ds) — iu't)
Sa

is called GeoGGS distribution. It is denoted as GeoGGS, (A, T, )

Definition 5.4.1. A d-variate random wvector X s said to follow

multivariate geometric generalized geometric stable distribution and write X ~
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GeoGGS,(\,T', ) if it has the characteristic function

-1

[t's|®wa1(t's)T(ds) — iu't) :

¢x(t) = |1+ Alog <1 +
Sq

where 0 < a < 2, > 0, T is a finite measure on the unit sphere Sq € R, pu €

R is the location vector, and w, g(z) is given by (5.2).

Theorem 5.4.1. Let Xy, X,,... be independent and identically distributed
d-variate geometric generalized geometric stable random wvectors, that 1is,
X; ~ GeoGGS,(A\, T, u),i = 1,2,... and N(v) be a geometric with mean
1/v,PIN(v) = k] = y(1 =)Lk = 1,2,...,0 < v < 1. Define Y =
Xi+ Xy 4+ Xn(y), then Y ~ GeoGGSa(g, T, u)

Proof. Since X; ~ GeoGGS, (A, T', ), then its characteristic function is ,

-1

dx(t) = |1+ Alog (1 + [ |t's|"wa1(t's)T(ds) — iu’t)

Sq

Then the characteristic function of Y is

n

dy (t) =) [ox(6)]F (1 — )"

k=1
Yox(t)
1 —(1—7)px(t)

-1
~y [1 + Alog (1 + de |t's| w1 (t's)T(ds) — i,u’tﬂ

1—(1—7) {1 + Mo (14 [, [#sl7wo. (¢)(ds) — i“lt)l _1

-1

1+ A log {1+ [ |t's|"wa1(t's)T(ds) —ip't
7 Sq
(5.11)

Hence Y ~ GeoGGSa(g, ' p). O
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Theorem 5.4.2. Suppose Xi,Xs,... are independently and identically
distributed as GGSQ(%, I', u) and N, independent of Xy,Xs, ... be a geometric
random variables with probability of success 1/n. Then Y = X;+Xo+- -+ Xy
distributed as GeoGGS,(\,T', u) as n — oo.

Proof.

1+ | [t's|%wa1(t's)T(ds) —ip't

Sa

Sa

)y

-1

N
1+ | [t's|wa1(t's)T(ds) —ip't = {1 + {

Hence by Lemma 3.2 of Pillai(1990b)

A
n

Gn(t) =< 14+n |14+ [ [t's|Wai1(t's)T(ds) —ip't| —1

Sq

is the characteristic function of Y. Taking limit as n — oo, we have

¢(t) = lim ¢n(t)

n—oo

r N -1
=1+ limn||1+ t's|%w, 1 (t's)T(ds) —ip't| —

{1+ 1im [ esp (65T — i 519

\

- -1
= |1+ Alog (1 + [ |t's|%wa1(t's)T(ds) — z',u/t)

Sa
[

Theorem 5.4.3. Let X|A ~ GGS,(\T,u) with random X, where \ is

exponential with mean n. Then X ~ GeoGGS,(n, T, ).
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Proof.
o(t) = B (%)
- Y
=FE\ |1+ [ |[t's|"wa1(t's)T(ds) —ip't
Sq
:1 [14 [, 1t/s]wa,1 (¢'s)T(ds) i '1;]7A
_ og s|%waq,1(t's S)—i
= Exjet ] (5.13)
_ B, _6—A10g<1+fsd |t’s|o‘wa,1(t’s)I‘(ds)—ip/t):|
i -1
= [1+nlog (1 +/ |t's|*wq 1 (t's)T(ds) — iu't)
Sa
]

Theorem 5.4.4. Let X, Xo,... be independent and identically distributed
with GeoGGSa(%, Ip). ThenY =X, +Xo+ -+ X, A GGS,(\, T, ) as

n — oQ.

Proof. The characteristic function of GeoGGS, (2, T, ) distribution is

-1

A
ox(t) = |1+ - log (1 + [ t's|wa1(t's)T(ds) — ip/t)
Sq

Then the characteristic function of Y is

—-n

oy(t) = |1+ A log (1 +/ |t's|*wq1 (t's)T(ds) — iu't)
n Sy

Hence,
-
lim ¢y(t) = |1 +/ |t's|*wa 1 (t's)T(ds) — ip't
That is, Y % GGS,(\, T, p). 0
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5.4.1 AR(1) model with multivariate GeoGGS marginals

Consider the linear additive autoregreessive equation
X, =pXp1+€,n=0,+1,+2 ... |p| <1 (5.14)

where X,, and innovations €, are independent d- variate random vectors.
Lawrence(1978) derived the gamma and the Laplace solution of equation
(5.14). In this section, we develop a first order new autoregressive process
with multivariate GeoGGS marginals. Consider an autoregressive structure

given by,

€n; wp 7,
X, = (5.15)

X 1+€, wp 11—,

where 0 < v < 1. Now we shall construct an AR(1) process with stationary

marginal as multivariate GeoGGS distribution.

Theorem 5.4.5. Consider an autoregressive process {X,,} with structure given
by (5.15). Then {X,} is strictly stationary Markovian with GeoGGS,(\, T, u)
marginal if and only if {€,} are distributed as GeoGGSy(Y\, T, ) provided
that Xy is distributed as GeoGGS,(\, T, ).

Proof. Let us denote the Laplace transform of {X,,} by ¥x, (t) and that of €,

by e, (t), equation (5.15) in terms of characteristic function becomes

VX, (8) = Ye, (8) + (1 = 7)x, - (), (B)-

On assuming stationarity, it reduces to the form

Yx(t) = 7e(t) + (1 — 7)x (t)e(t).
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Write
—1
x(t) = |1+ Alog (1 +/ |t's|wq1 (t's)(ds) — iu’t)
Sq
and hence
Px(t)
Ye(t) = 5.16
®) = i o (516)
becomes

-1

Ye(t) = |1+~ log (1 + [ |t's|"wa1(t's)T(ds) — iu't)

Sq
Hence it follows that €, < GeoGGS, (YA, T, )

The converse can be proved by the method of mathematical induction as

follows. Now assume that X,,_; 4 GeoGGS,(A\,T,u). Then

¥x, (t) =, (t) [y + (1 — )vx, , (t)]

( -1
=< [1+9Alog (1 + [ |t's|%waq(t's)T(ds) — iu’t) X

\

Sq
-1

v+ (1—7) [1+ Alog <1 + [ |t's|%wa1(t's)T(ds) — iu't)

Saq

_ -1

= |1+ Alog (1 + [ |t's|%wa1(t's)T(ds) — z',u/t)
Sa

(5.17)

That is, X, < GeoGGS,(\, T, ) O
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The joint distribution of X,, and X,,_;

Consider the autoregressive structure given in (5.15). It can be written as

X, =1,X,-1+¢€,1,whereP([, =0)=p,P(Il,=1)=1—p

Then the joint characteristic function of(X,,, X,,_1) is given by

UK, 1 X, (b1, 62) =F {ﬁm‘x”’]ﬂﬂ"x"}

-FE [en;x,, A ﬁen)]
:E[e(lhﬂtzlﬂ)’xn ]]L“l} <t2>

1
1+ ~yAlog (1 + _[Sd [ths|%Wa,1 (ths) T (ds) — iu'tg)

P 1-p
x +
{1 T Alog (1 + [, [th5l0wa (t45)T(ds) iu'tl) 1+ Alog (1 + i, (b + o)l (b2 + bo)'$)T(ds) — i (b1 + t2>)

(5.18)

This shows the process is not time reversible.

5.5 Generalisation to a k' order multivariate
GeoGGS autoregressive process

Consider the higher order process, analogs of the autoregressive equation (5.15)

with structure as given below.

(

€n; w.p 7,

Xpo1+ €, wWp 7,
X, = (5.19)

Xn—k + €n, W.D Vg,

\

where v + v + ...+ % =1 —790 < v,v < 1,0 = 1,2,...,k and €, is
independent of {X,,, X,,_1,...}.
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In terms of characteristic function, equation (5.19) can be written as

Ux, (t) = Ve, () + 1Ux,_, (D)e, () + - . + Whx,_,, (E)e, (1)

Assuming stationarity, we get

Vx (1)
1L —y)Yx(t)

%(t):w(

This establishes that the results developed in the above section are valid

in this case also. This gives to the k' order GeoGGS autoregressive process.

5.6 Multivariate generalized normal-geometric
stable distributions

Definition 5.6.1. A d-variate random wvector X is said to follow

multivariate generalized normal-geometric stable distribution and write X ~

GNGS,(n, T, A\ T, u) if it has the characteristic function

—A

1
ox (t) = exp{izt'n — §>\t’7't} 1 +/ [t's|®wa 1 (t's)T(ds) —ip't|
Sq

where n € RE,T > 0,0 < a < 2,\ > 0, T is a finite measure on the unit

sphere Sq € R, p € R, and w, 5(x) is given by (5.2).

When A = 1, we get multivariate normal-geometric stable distributions.
The characteristic function is given by

-1

1
ox(t) = exp{it'n — Et’Tt} 1 +/ [t's|wa,1 (t's)T(ds) — ip't
Sa

Some properties:
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Let X ~ GNGS,(n, T, A\, T, u), then X can be expressed as
d
X=Z+Y

where Z and Y are independent random vectors with Z following a
d-variate normal distribution with mean vector An and dispersion matrix X7~
(Ng(An,A\T)) and Y following a d-variate GGS distributions GGS, (A, T', ).

Remarks:

1. When o = 2 the characteristic function of a GNGS vector can be written
as

1 1 —A
Y(t) = exp{iXt'n — §At’7't} 1+ §t’2t — it

where X is a dxd positive-definite symmetric matrix.

2. Summation: Let X ~ GNGS,(n, T ,A\T,p) and Y ~
GNGS,(n,T,v,T,u), X and Y are independent, then X+Y ~
GNGS&(">T7)\+’Y’I‘7“)

3. If d = 1, the unit sphere consists of only two points: S; = {1, —1}.
Denoting I'y = T'({1}) and I'_; = T'({—1}), in case « # 1, characteristic

function (5.7) becomes

-
1. . Ta 0
»(t) =exp{irtym — 5/\t127'“} 1+ Je1)® (1 — isgn(t1) tan(%)) Ty + t(=1)]" (1 —isgn(t(—1)) tan(%)) Ty — it/1:| .

1 .
=exp{i\tin — 5/\7'112511}

Y
a I -T- T
1+ ((Fl + F,])%) [t]® (1 - z’sgn(t)ﬁ tan(%)) I — itu:| .

Comparing the above expression with (2.42), we see that a
univariate GNGS random variable with spectral representation

GNGS,(n, T, T, u) has parameters

rh—-r.

1
L =T, +T )
1—‘1+F7170 ( 1+ 1) ) K

77:77177_:7—117)\705’6:
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Similar result holds for o = 1.

Proposition 5.6.1. Y ~ GNGS,(n, T,\,T', n) if and only if

L+ VAAZ + p R X, ifo # 1,
Y =
AN+ VAAZ + pW + WX+ (W(2/m)log(W)) g, if a=1,

(5.20)
with

[e.e]

g=(91,92,...,94) and ng/ siI'(ds),
S

d

where Z ~ Ny(0,I)(d-variate standard normal random vector ) and
A is a dxd invertible matrix such that 77 = ATA = AAY, X ~
Sq (T, 0)(a-stable distribution with spectral measure I' and location parameter
p, (see, Samorodnitsky and Taqqu(1994))), W ~ G(1,A), and Z, X and W
are independent.

The class of elliptical distributions: The multivariate normal and
multivariate GGS distributions with a =2, A =1, u = 0 belong to elliptical
family, since their characteristic functions can be factorized as (5.8). The
multivariate generalized normal-geometric distribution a =2, A=1,u = 0
belongs to the class of elliptical distributions, as, the sum of elliptical
distributions is elliptical(see, Fang et al. (1987)).

Infinite divisibility:.  Multivariate GNGS distributions possesses the
infinite divisibility property. Since the characteristic function ®x(t) of

GNGS,(n, T, \T',u) can be written as

n

2
n

A 1A
Dx(t) = exp{igt’n — 55’5/7"5} (1 + [ |t's|wa1(t's)T(ds) — iu't)
Sa

116



Chapter 5. Multivariate generalized geometric stable distributions and
processes

5.7 Multivariate slash generalized
normal-geometric stable distributions

Now we define the slash version of the generalized normal-geometric stable

distributions.

Definition 5.7.1. A random wvector Y € R¢ has a d-variate slash
generalized normal-geometric stable (SGNGSy) distributions, denoted by Y ~
SGNGS,(n, T, \\T,u,q), if Y = U%, where ¢ > 0 and X is GNGS
random vector with characteristic function given by ¢x(t) = exp{irt'n —
ATt} [1 +fsd |t's|Ywa,1 (t's)T(ds) —z'/,l,’t] _/\, where 7§ € R T > 0,0 <
a < 2,\ >0, T is a finite measure on the unit sphere Sy € R, u € R?, and

U ~U(0,1), which is independent of X.

5.8 Multivariate geometric generalized normal
geometric stable distributions

A GNGS,(n, T, A\ T, u) random vector Y = (Y1,Y5,...,Yy) can be described

by its characteristic function as

—-A

14 [ |t's|®wa1(t's)T(ds) —ip't

1
oy (t) = exp{irt'n — - M'Tt}
2 S,

where 7 € R4, T > 0,0 < o < 2,A > 0, ' is a finite measure on the unit

sphere S; € R, u € R, and w, g(z) is given by (5.2). Now, we can write

—-A

1+ [ |t's|%wa1(t's)T(ds) — ip't

1
exp{iit'n — 5)\‘5’7"5}
Sq
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as

1

expg 1— —
1+ ATt —iAt'n + Alog <1 + fsd |t/s|*wq. 1 (t/s)T(ds) — mrt)}

Since GNGS,(n, T, \, T, u) distribution is infinitely divisible, it follows that

-1

1
1+ 5)\‘6’7"5 —iAt'n + Alog (1 + / |t's|*wq1 (t's)T(ds) — iu't)
Sq

is geometrically infinitely divisible.

A distribution with characteristic function
1

1
1+ éAt’Tt — iAt'n + Mog (1 + [ |t's|"wa1(t's)T(ds) — iu't)

Sq

is called GeoGNGS distribution. It is denoted as GeoGNGS,(n, T, A\, T', ).

Definition 5.8.1. A d-variate random vector X is said to follow multivariate
geometric generalized normal-geometric stable distribution and write X ~

GeoGNGS,(n, T, A\, T, n) if it has the characteristic function

-1

1
dx(t) = |1+ 5)\’5'7"5 —iAt'n + Alog (1 + [ |t's|*wa1(t's)T(ds) — i,u't) :

Sa
where m € RET > 0,0 < a < 2,A > 0, T is a finite measure on the unit

sphere Sq € R, p € R is the location vector, and w, g(z) is given by (5.2).

Theorem 5.8.1. Let X, Xo, ... be independent and identically distributed as
d-variate geometric generalized normal-geometric stable random vectors, that
is, X; ~ GeoGNGS,(n, T, AT, ), i=1,2,... and N(v) be a geometric with
mean 1/, that is, P[N(y) =kl =~v(1 —9)* 1 k=1,2,...,0 <~ < 1. Define
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Y =X, +Xo+ -+ Xy, then Y ~ GeoGNGS,(n, T, %,I‘,p,)

Proof. Since X; ~ GeoGNGS,(n, T, T', n), then its characteristic function
is,

-1

1
ox(t) = |1+ éAt/Tt —iAt'n + Alog (1 +/ |t's|wa1 (t's)T(ds) — iu't)
Sq

Then the characteristic function of Y is

n

oy (t) = Z[be(t)]kV(l — )t

] “/¢x(t)
L —(1—7)px(t)

—1
5 {1 + IMWTt — ixt'n + Alog (1 + [, I8 w1 (t's)T(ds) — iu’t)}

—1
1—(1-7) {1 + STt — iAt'y + Alog <1 + de [t/s|wa.1(t's)T(ds) — iu’t)}
-1

1
= |1+ fét'Tt — iét'n + A log [ 1+ / t's|“wq 1 (t's)T(ds) —ip't
2y ¥ ¥ Sa

(5.21)
Hence Y ~ GeoGNGS,(n, T, %, ' p) ]
Theorem 5.8.2. Suppose Xi,Xs,... are independently and identically

distributed as GNGSa(n,'T,%,F,;L) and N, independent of Xi,Xo,... be

a geometric random variables with probability of success 1/n. Then Y =

X+ Xo + -+ -+ Xy distributed as GeoGNGS,(n, T, A\, T, u) as n — oo.
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Proof.

L+ [ |t's|*waa(t's)D(ds) —ip't

A 1A
Px(t) = —t'n — =—t/Tt
x(t) =espliZn — 70T 14 |

= |exp{—it'n + %t’Tt} (1 +/ [t's|wa,1(t's)T(ds) — iu't)]
Sa

|
3>

-1

n

[t's|wa,1(t's)T(ds) — iu't)] -1

1
=1+ {exp{it’n + 5t”l't} (1 +
Sa

Hence by Lemma 3.2 of Pillai(1990a)

\ -1

on(t)=<¢1+n {exp{z’t'n + %t'Tt} (1 + / |t's|“wa,1(t's)T(ds) — iu't)] -1
Sa

is the characteristic function of Y. Taking limit as n — oo, we have

¢(t) = lim ¢n(t)

n—oo

N -1
n

1
=<1+ limn {exp{—it'n + §t'7't} (1 +/ [t's|“wq,1 (t's)T(ds) — iu't)] -1

-1
1
= |1—iM'n+ )\it"Tt + Alog (1 + [ |t's|%waq(t's)(ds) — iu’t)]
Sa

(5.22)

]

Theorem 5.8.3. Let X, Xo,... be independent and identically distributed
as GeoGNGS,(n, T,2T,p). Then Y = Xy + Xy + --- + X, >
GNGS,(n, T, \T,u) as n — oc.

Proof. The characteristic function of GeoGNGS,(n, T, %,I‘,u) distribution
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is

-1
A Al

A
ox(t) = |1 —i=t'n+==t'Tt+ =log (1 + [ |t's|wa1(t's)T(ds) — iu/t)
n n2 n S,

Then the characteristic function of Y is

—n

1
by (t)=|1— iit’n + é—1:”7'1: - A log (1 + [ |t's|%waq1(t's)T(ds) — iu’t)
n n2 n S,

Hence,

-2
1
lim ¢y (t) = exp{iAt'n — 5)\1:’7"5} 14+ [ |t's|%wa1(t's)T(ds) —ip't
n—oo Sd
That is, Y % GNGS,(n, T, AT, ). 0

5.8.1 AR(1) model with multivariate GeoGNGS

marginals

We shall now construct an AR(1) processes with stationary marginals as

multivariate GeoGNGS distributions.

Theorem 5.8.4. Consider an autoregressive process {X,} with structure
given by (5.15).Then {X,} is strictly stationary Markovian with
GeoGNGS,(\ T, n) marginal if and only if {€,} are distributed as
GeoGNGS, (YA, T, p) provided that Xq is distributed as GeoGNGS,(\, T, p)

Proof. Let us denote the Laplace transform of {X,} by ¢x, (t) and that of €,

by e, (t), equation (5.15) in terms of characteristic function becomes

X, (8) = Ye, (8) + (1 = 7)x, . ()¢, (B)-

On assuming stationarity, it reduces to the form
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Ux(t) = e(t) + (1 = 7)Px (t)de(t).

Write

-1

1
Px(t) = |1+ 5)\‘5’7'1: —iAt'n + Alog (1 + [ |t's|wa,1(t's)T(ds) — iu’t)

Sq

and hence

(5.23)

becomes

-1

1
Ve(t) = |1+ 57)\’5’7"& — iyAt'n + yA log <1 +
Sq

t's|*wq.1 (t's)T(ds) — z',u’t)

Hence it follows that €, 4 GeoGNGS,(n, T v\, T, n)
The converse can be proved by the method of mathematical induction as

follows. Now assume that X,,_; 4 GeoGNGS,(n, T,\T',pn). Then

Ux,, (b) =the, (6)[7 + (1 = 7)vx,_, (t)]

~1
1
= { [1 + iﬂ/At’Tt — iy At'n + A log (1 + [ |t's|%wa(t's)T(ds) — ip't)] } X
Sa
—1
1
{h +(1—7) |:1 + 5)\t’7't —idt'p + Mog (1 + [t's|“wq 1 (t's)T(ds) — iu't)] }
Saq

-1
1
= [1 + iAt/Tt —iAt'n + Alog (1 + [ |t's|%wa1(t's)T(ds) — iu't>:|

Sa

(5.24)

That is, X,, < GeoGNGS,(n, T, AT, p). O
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CHAPTER 6

APPLICATIONS

6.1 Introduction

Kozubowski(2001) examined the S&P index data and illustrated the
potential of geometric stable distributions in modeling financial data.
Mittag-Leffler distribution has been used to model random phenomena in
finance and economics. Jose et al.(2010) applied the generalized Mittag-Leffler

(GML) distribution in astrophysics and time series modeling.

Circular data analysis, and more generally spherical data analysis, has
been practiced in areas like astronomy, ornithology, demography, geology,
geography, meteorology, earth sciences, oceanography, and in biology. In
ornithology, the nest orientation of birds, migration direction or general flight
pattern is studied(see, Bergin (1991), Squires and Ruggiero(1996), Beason
(1980), Bryan and Coulter(1987), Matthews(1974), Schmidt-Koeing (1963)).
In biomathematics, the idea of circular distributions in animal behavior studies

on homing, migration, escape, and exploratory behavior etc are well accepted.
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In demography, circular data analysis has been used to study the concepts
such as geographic marital patterns, occupational relocation in the same city
and settlement trends(see, Coleman and Haskey(1986), Clark and Burt(1980),

Upton (1986)).

In the present chapter, we consider the applications of univariate generalized
geometric stable distributions to financial data. We used the currency exchange
rates for validation of GGS model over other models. We modeled the data set
of ordered remission times of bladder cancer patients to the DeML distribution.

Applications of wind data to the wrapped GGS distributions also discussed.

6.2 Modeling price exchange rates

Here we study the distribution of the Japanese currency (Yen) exchange rates
(in relation to US dollar). The data are daily exchange rates from 1/1/80 to
12/7/90. We consider the change in the log(price) from time ¢ to i+ 1, that is,
each data point P; equals P; = log(X;1) — log(X;), where X; represents the
closing price on day ¢. We shall compare the fit of normal, geometric stable and
generalized geometric stable models. For comparison, we shall use histograms,

QQ plots ad Kolmogorov Smirnov Statistic.

We use maximum likelihood method to estimate the parameters of assumed
normal model, which resulted in mean 0 and standard deviation 0.07. For
the geometric stable model, we applied estimation procedure based on method
moments. It results in o = 1.7. Since distribution appears to be symmetric,
B is taken as 0. The parameters of generalized geometric stable are estimated
based on the estimation procedure, proposed in Chapter 2. The estimates are
obtained as A = 1.23,a = 1.21,8 = 0.01,0 = 1.99,u = .02. The solutions

of the non linear equations in the estimation techniques are obtained through
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the R programming package 'nlegqslv’. We calculated the values of trigamma
and psigamma functions using trigamma() and psigamma() functions in R.
We have simulated random samples from the above distributions and compare
visually the histograms (see, Figure 6.1). Compared to normal, geometric
stable and GGS models are more appropriate to the data. But histograms
suggest slight improvement of GGS model upon the geometric stable model.
We use the empirical QQ-Plots to validate the model. The fit is measured
by the closeness of the graph to the straight line(straight line shows perfect
fit). Figure 6.2 and Figure 6.3 represents the results. Further, we used the
Kolmogorov-Smirnov distance to measure the goodness-of-fit, and present the
results in Table 6.1. It also shows the GGS model fits the data better than

the other models considered.

1 A A

-0.04 0.00 0.04 -0.04 0.00 0.04

g
0 200

150
80

‘_-,f n
o ﬂ*_‘ o i.‘*_‘
-0.04 0.00 0.04 -0.04 0.00 0.04

gs ggs

Figure 6.1: Histograms of model fit to the yen data. Clockwise from the top
left: the data, the normal, the gs and ggs.
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Figure 6.2: QQ plot of Yen data with geometric stable

126



Chapter 6. Applications
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Figure 6.3: QQ plot of Yen data with generalized geometric stable.

Table 6.1: Kolmogorov distance for three models.
Normal GS GGS
0.39168 | 0.25443 | 0.15532

The Kolmogorov distance test numerically supports the results that GGS

models dominates all other models considered.

6.3 Modeling remission times data using DeML

distribution

In this section, we model the data set of ordered remission times (in months)
of a random sample of 128 bladder cancer patients, reported in Lee and

Wang(2003) to show the appropriateness of the proposed model to real life
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situations. The data set is given in Table 6.2

Table 6.2: The Remission Times (in Months) of 128 Bladder Cancer
0.08 2.09 348 487 694 8.66 13.11 23.63 0.2 2.23
052 498 697 9.02 1329 04 226 357 5.06 7.09
0.22 13.8 2574 0.5 246 346 509 726 947 14.24
0.82 0.51 2.54 3.7 517 728 9.74 1476 2631 0.81
0.62 3.28 532 7.32 10.06 14.77 32.15 2.64 388 5.32
0.39 10.34 14.38 34.26 0.9 269 418 534 7.539 10.66
0.96 36.66 1.05 2.69 423 541 7.62 10.75 16.62 43.01
0.19 275 426 541 763 17.12 46.12 1.26 2.83 4.33
0.66 11.25 17.14 79.05 1.35 287 562 7.87 11.64 17.36
04 302 434 571 793 11.79 181 1.46 4.4 5.85
0.26 11.98 19.13 1.76 3.25 4.5 6.25 8.37 12.02 2.02
0.31 451 6.54 853 12.03 20.28 2.02 336 6.76 12.07
0.73 207 336 639 865 1263 22.69 549

Here we compare the fit of three distributions, namely DeM L(4, A, «), L(0)
and F(\) to the data set. Note that £(0) is the Lindley distribution with the
probability density function

(92

fx) = 7 1(1 + ) exp(—0z),z > 0,6 > 0,

and E()) is exponential distribution with probability density function

f(x) = Xexp(=Ax),z > 0, A > 0.

We use maximum likelihood method to estimate the parameters of assumed
models, which resulted in A = 0.11688 for exponential and 6 = 0.21322 for
Lindley distribution. For the DeML model, we applied estimation procedure
based on method of moments based on empirical characteristic function. The
estimates are obtained as & = 0.857,5 = 3.871 and \ = 3.923. The solutions
of the non linear equations in the estimation techniques are obtained through
the R programming package ’nlegslv’. We have simulated random samples

from the above distributions and compare visually the histograms (see, Figure
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6.4). Compared to exponential and Lindley, DeML model is more appropriate
to the data. We use the empirical QQ-Plots to validate the model. The fit
is measured by the closeness of the graph to the straight line. Figure 6.5
represents the results. Further, we used the Kolmogorov-Smirnov distance to
measure the goodness-of-fit, and present the results in Table 6.3. It also shows

the DeML model fits the data better than the other models considered.
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Figure 6.4: Histograms of model fit to the remission data. Clockwise from the
top left: the data, the exponential, the Lindley and DeML.
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Figure 6.5: QQ plots of remission times data with the models

Table 6.3: Kolmogorov distance for three models
Exponential | Lindley | DeML
0.11719 0.0625 | 0.0423

The Kolmogorov distance test numerically supports the results that DeML

distribution dominates all other models considered.

6.4 Applications to wind data

In this section, we study wind data set reported in Fisher(1993) to show the
appropriateness of the proposed WGGS model to real life situations. The data
set of directions (in degree) are given in Table 6.4. The performance of the
model is compared with that of wrapped variance gamma distribution and

generalized von Mises distribution using log-likelihood, AIC, and BIC.
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Table 6.4: Wind data set
0 15 50 90 150 182 220 235

240 245 250 255 265 270 280
285 300 315 330 335 340 345

Here we compare the fit of three distributions, namely
WGGS(\, o, B,0,10%),  WvG(u, A\, o, 5,v) and  GvM(pq, 2, k1, K2,9)  to
the data in Table 6.4. Note WvG(u, A, , 3,7) is the wrapped variance gamma

distribution with pdf

f(0)

_ v exp{B(0 — u)} i exp{fm2m} K, _1 (|0 4 2mm — p))
VAN 2a) 2 = 10+ 2mm — p*

for 6 € [0,27),a0 > 0,8 > 0,0 < |B] < a, A > 0,0 < |p| < a,y =

Va2 — %2 >0 where K(.) is the modified Bessel function of the third kind.

GvM (1, pi2, K1, ke, 0) is generalized von Mises distribution with pdf

1
N QWGQ((S, K1, KQ)

(6 exp{ky cos(d — p1) + ko cos2(0 — ps)},

for 0 € [0,27m), 1 € [0,27), 2 = [0,7),0 = py — p2 mod (27), k1, k2 > 0,
where Go(6, k1, k) = [

o exp{r1 cos 0 + ko cos2(0 + 6) }do
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Table 6.5: Summary of fits of distributions to the data
Distribution Estimates log L AIC BIC

WGGS A=1.68 -58.1171 76.448 73.160
(A, 8,0, u1") & =1.02
B =0.53
o =0.22
W =2.13
WvG = 4.07 -63.40  136.8 136.8
(py A, e, By 7y) A = 2.00
a = 0.90
B =210
4 =0.50
GvM w1 = 95.02 -67.20 144.4 141.11
(uhug,m,/@,c?) Ho = 5.70
k1 = 1.04
ke = 0.0003
0 =0.68

The MLE’s of the parameters corresponding to WGGS, WvG and GvM
distributions along with the values of log-likelihood (log L), AIC and BIC are
presented in Table 6.5. From the Table, it is clear that WGGS distribution has
highest log-likelihood and smaller AIC and BIC values compared to the other

two models. Hence WGGS is an appropriate model for modeling the data set
in Table 6.4.
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RECOMMENDATIONGS

Based on the works carried out in Chapters 2 to 6, we present the following

recommendations:

e The most important applications of the GS laws come from the area
of finance. The appropriateness of the four parameters GGS family of
distributions over the GS models, to price exchange rates established in
Chapter 6. We recommend GGS distribution as a flexible model in the

area of heavy modeling, especially in modeling of financial data.

e The parameter estimation problem for the GS model is addressed by
Kozubowski(1999), which proposes an estimation procedure based on
characteristic functions. But it requires suitable constants prior to the
computations of estimates. The estimation procedures for Mittag-Leffler
and Linnik distributions proposed in Kozubowski(2001) also requires
pre-selection of constants. But practically such pre-selection of values is
infeasible. We recommend the estimation procedure based on moments

of log transformed GS and GGS random variables proposed in the present
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work to address this drawback.

Reed(2007)introduced an infinitely divisible distribution namely the
generalized normal Laplace distribution(GNL), represented by the
characteristic function defined in equation(2.41). It arises as the
distribution of convolution of independent normal and generalized
Laplace random variables. GNL distribution is particularly well suited
for modeling logarithmic price returns which exhibit excess kurtosis
with more probability mass near the origin and in the tails and less
in the flanks than would occur for normally distributed data. We have
introduced generalized normal geometric stable(GNGS) distribution with
characteristic function(2.42) in Chapter 2 as a generalization of GNL
distribution which we recommend in similar contexts, since it provides

more modeling flexibility.

The works on the concept of geometric extensions of different models
such as geometric exponentials, geometric Mittag-Leffler etc. and their
applications are discussed in Chpater 3. The GeoGGS distributions
introduced in the present work generalizes most of the geometric
extensions in the literature. It helps unified framework for future works
and applications. Theorem 3.2.5 establishes how the § parameter act
as a pathway parameter between GS and GeoGGS distributions and
which makes the GeoGGS distributions more siginificant. Hence it is
highly recommendable for further studies to explore the full potential
of GeoGGS distributions and its further extended model, GeoGNGS

distributions.

Circular models have applications in diverse field which are discussed
in Chapter 4. Circular models, WGGS and WGNGS are

proposed by wrapping GGS and GNGS dostributions and some data
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analysis conducted in Chapter 6, to justify that generalizations are

recommendable models over the existing distributions.

e Multivariate extensions presented in Chapter 5 opens up new areas of

research and we propose detailed study on each distributions proposed.

Based on the findings of the present study, we recommend some future works:

e Since we have developed an estimation procedure for the parameters
of GS(\,a, 8,0,0) and GGS(\, «a, 3,0,0) distributions based on log
moments of its representations. We propose further studies for the

extension of the estmation procedure, also for p # 0 cases of the models.

e Extensive study on  generalized normal geometric stable

distributions(GNGS) to explore the full potential of the model.

e Detailed study on geometric versions of GGS and GNGS models and its

applications.

e A discrete analogue of Mittag—Leffler distribution was obtained in Pillai
and Jayakumar (1995) as geometric sum of Sibuya random variables
having probability generating function (pgf) d(s) = 1 — (1 — s)*,|s| <
1,0 < a < 1. We say that a random variable X has discrete
Mittag-Leffler distribution if its pgf is 7(s) = m,c > 0,0 <
a < 1. (see, Jayakumar et al.(2010)). Researchers worked on different
extensions of this discrete version of Mittag-Leffler distribution. Since,

Mittag-Leffler distribution is a special case of GGS distributions, we

propose further studies for similar discrete extensions to GGS models.

e The properties and applications of the newly introduced multivariate

models will be explored in the future works.
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