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Correlated Studies of Spectral and Timing
Aspects of X-ray Binaries

Abstract

X-ray Binaries (XRBs) are a class of binaries which emit in X-rays. They consist
of a compact object, which could be a White Dwarf, Neutron Star or a Black Hole,
in orbit with a normal companion star. Black Hole Binaries (BHBs) are XRBs in
which the compact object is a Black Hole. BHBs are studied in pursuit of a better
understanding of physics in extreme gravity. The physical processes behind the
origin of X-ray radiation has been the subject of many studies. Although direct
imaging of the sources is next to impossible, spectral and temporal analysis of
BHBs can help us ‘see’ the nature and geometry of the sources.

Transient BHBs are interesting systems which remain in quiescence for a long
period of time but show occasional flaring activity, recurring at different timescales.
These flares or ‘outbursts’ are often accompanied by changes in both spectral and
temporal properties. Over the last few decades, the sources have been found to
undergo various phases or ‘states’ in a specific order during an outburst, which
are classified as canonical outbursts. In the present studies, we focus on different
sources which do not conform to the accepted picture of the canonical outbursts.
We perform a comparative study on the nature of the outbursts and attempt to
understand the physical processes which drive them.

We begin with a brief introduction to different topics like types of X-ray bi-
naries, radiation processes, the evolution of an outburst and the various states
associated with them, and so on in Chapter 1. The instruments used to obtain
data from these sources and the reduction methods are detailed in Chapter 2.
For instruments with a large Field of View (FOV), like Large Area X-ray Propor-
tional Counter (LAXPC) onboard AstroSat, contamination from other sources in
the FOV is a challenging issue to be dealt with, while performing spectral analysis.
A complete section is dedicated to the method followed to minimize the effects of
contamination in such cases in the second half of Chapter 2.

We study three such BHB sources in this work - 4U1630-472, MAXI J0637-
430 and Swift J1753.5-0127 in subsequent chapters. 4U 1630-472 is a recurrent
X-ray binary, which exhibits two different types of outbursts, called ‘mini’ and
‘super’-outbursts. We focus on the 2016 and 2018 ‘mini’-outbursts of the source
in Chapter 3. The primary instrument used for analysis is the Indian multi-
wavelength astronomy satellite AstroSat. The source was initially known to re-
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main in the disc-dominant state throughout the outburst. The initial transition
from a low/hard state to an intermediate state is observed for the first time using
AstroSat during its 2016 outburst. The transition occurred within a span of ~ 11
hrs, which was not caught by any pointed instrument previously. The Hardness
Intensity Diagram (HID) seems to follow a ‘c’- shaped profile instead of the gener-
ally accepted ‘q’ shaped profile observed for BHBs. We also attempt to establish
a link between ‘mini’-outbursts and the ‘super’-outbursts, by comparing the HIDs
of the ‘mini’-outbursts in 1998 and 1999, and the HID of the ‘super’-outburst of
2002-2004. The spectra are fit using both phenomenological and physical models.
Classification into states is performed based on the phenomenological modelling.
We also fit the spectra using a two component flow model and comment on the
accretion parameters. Mass estimation of the compact object is also obtained
from three different methods.

MAXT J0637-430 is a relatively new transient source discovered on 2 November
2019, which seems to share some of its properties with the BHB 4U 1630-472.
Apparently, this source also remained in the soft state for the most part of the
outburst. Similar to 4U 1630-472, no Quasi periodic Oscillations (QPOs) are
observed in the Power Density Spectra (PDS). As with the source 4U 1630-472,
we perform spectral fits using phenomenological and physical models and try to
divide the outburst into different states. We also obtain mass estimates using
different methods. We try to establish a possible link between the two sources
by studying the individual HID patterns. Finally, we comment on the underlying
physical mechanisms which could possibly drive the two sources. This is presented
in Chapter 4.

In Chapter 5, we move on to the source Swift J1753.5-0127, which remained
in the hard state for most of the outburst. This is diametrically opposite to the
two sources studied in previous chapters. Prominent QPOs are observed in the
PDS and the duration of the outburst is much longer than that observed for the
other two sources. Here, we adopt a different approach and try to comment on
the accretion geometry using Frequency Resolved Spectroscopy (FRS). We find
that the comparison of the QPO and time-averaged spectra hint at the presence
of a stable disc even in the low/hard state of the source.

In Chapter 6, we present a summary of our results and comment on the future
studies based on the obtained results. The recommendations based on this work
are listed in Chapter 7.
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Chapter 1

Introduction

Sometimes you get to what you
thought was the end and you
find its a whole new beginning.

Anne Tyler, Ladder of Years

Gazing up at the night sky and pondering over the mysteries of the universe has
been one of mankind’s oldest hobbies. The shiny bright points of light, staring
solemnly down towards the Earth, forming numerous beautiful patterns in the sky,
have always captivated our interest. Although unsure of the physical processes
behind them, cultures all over the world shared equal interest in observing these
bright objects, cataloguing them and meticulously charting their paths across the
magnificent night sky. In India, the oldest records of sophisticated astronomical
data is found in the Rig Veda which dates back to at least 2000 BCE. Things
became more interesting when astronomy was expanded to include the whole
range of electromagnetic waves, from low energy radio to high energy gamma
rays, aided by multiple observatories and instruments, both in space and on the
ground. Some stars were found to be sources of highly energetic X-rays, prompting
the birth of a new branch of astronomy called X-ray astronomy. Digging into the
physical origin of these radiations gave rise to theories suggesting that stars were
not the permanent beacons of light that they were assumed to be. Rather, it would
seem that the stars in the sky were at different stages in their lives, characterized
by the emission of radiation in different wavelengths, each unique to the physical
process underlying their origin. In this introductory chapter, we will cover the
various stages in the life cycle of a star, with our primary focus on the objects
capable of giving rise to high energy. Next, we move on to the radiation processes
capable of generating such a huge amount of energy. Following sections deal with
specifics and more details on the production of energy when compact objects are



considered. We then narrow down our discussion to the object(s) of interest in
this study and finish with a description of the motivation for this work.

1.1 Beyond the death of a star

Famous American author Jack Kornfield says in Buddha’s Little Instruction Book,
that “Everything that has a beginning, has an ending”. Although the author
meant it in a philosophical sense in that context, the statement holds true even
in the literal sense. It can also be said of stars - they are born and hence, need to
die. A star is born from a gas cloud and passes through about 7 stages! before
turning into an extremely dense object with strong gravitational pull. These end
objects are called compact objects. These are stars in which there is no fuel left to
burn and hence cannot rely on thermal pressure against the gravitational pressure.
They are White Dwarfs (WD), Neutron Stars (NS) and Black Holes (BH). WD
and NS are supported by pressure of degenerate electrons and degenerate neutrons
respectively. When a star completely collapses on itself to form a singularity, it
becomes a BH. The final stage a star can reach, and the time it takes to do so,
is governed by the initial mass of the star. Stars like our sun end up as White
Dwarfs, while the more massive stars can turn into Neutron Stars or Black Holes.
Compact objects are of a much smaller size when compared to normal stars of
similar masses. A 1 Mz WD has a radius similar to that of Earth. However, the
density of WD lies between 107 - 10 kg/ m3, which is roughly more than 200,000
times the density of the Earth. A NS has a higher density approximately equal
to 1017 kg/m?3 and a radius of the order of tens of kilometres (Shapiro et al.,
1976). Compact objects in general, and black holes in particular, are tough to
detect directly and hence, indirect methods are relied upon. The super-massive
black holes at the centre of a galaxy can be detected only by the motion of objects
closer to it. One would assume that the task of identifying compact objects in
the night sky is rather tedious and long-winded one. Fortunately, most of the
stars seem to be formed in pairs or systems, rather than in isolation. In fact,
multiple companions have been proposed for our own sun, with the latest one
being HD186302 (Adibekyan, V. et al., 2018). So now, instead of sifting through
data related to millions of stars, one could just study the interaction in the star
system, either binaries or multiple-star systems, to arrive at the nature of the
object. These interactions are more pronounced when one of the objects involved
in the system is a compact object. Such systems which consist of a normal star and
a compact object are called X-ray binaries (XRBs) - so named (unimaginatively)
as they emit mostly in X-rays. XRBs can be classified into two subclasses based
on the mass of the companion star, which is also a deciding factor in determining

lhttps://imagine.gsfc.nasa.gov/educators/lifecycles/stars.html
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the physical processes in play.

Before diving into the different classes of XRBs, it is necessary to provide a
short outline of the physical process which gives rise to X-rays. Consider a binary
system formed with two stars of varied masses. The more massive star burns up
its hydrogen faster and turns into a compact object, while the less massive one
continues to be in the main sequence stage. In such a case, the compact object
begins to accrete matter from the companion star. The accreted matter possesses
angular momentum, courtesy of the rotation of the companion star, and hence
cannot fall into the compact object directly. This infall flattens into a disc in
a direction perpendicular to the compact object’s rotation axis. This is called
an accretion disc. As the accreted material falls or spirals inwards, gravitational
potential energy is converted into radiation released as X-rays. For the matter
to fall into the accretor, it needs to lose its angular momentum. This is achieved
due to viscosity and turbulence. X-rays can be generated by other means as well.
However, our primary focus will be the emission of X-rays by accretion process.
In the following sections, we define different types of XRBs and their accretion
process.

1.1.1 High Mass X-ray Binaries

XRBs in which the mass of the companion star is > 10 My are typically clas-
sified as High Mass XRBs (HMXBs). The companion is generally an O or B
type star whose optical/UV luminosity is likely to be dominant (Conti, 1978;
Petterson, 1978). Matter is ejected from the OB companion star through stellar
winds, which can then be captured by the black hole in a sufficiently closer orbit,
enough to power the X-ray source. Figure 1.1 shows the schematic diagram of a
HMXB in the left panel. The accretion occurs via capture of the ejected stellar
wind material by the compact object. This happens through spherical accretion
or Bondi-Hoyle accretion (Bondi and Hoyle, 1944). The critical gravitational po-
tential lobe around the system is also shown. Supplementary mass accretion can
also occur by transfer of mass via the inner Lagrangian point. The difference in
the mode of energy supply is discernible in the luminosity emitted by the source.
A constant X-ray radiation, with luminosity in the range 103° — 1037 erg s, is
observed when the accretion is through stellar wind, whereas, accretion via Roche
Lobe overflow can generate a luminosity > 1038 erg s (Lewin and Livingston,
1995). HMXBs are mostly clustered in the spiral arms of our Galaxy. Cyg X-1 is
a well-known example of a HMXB. The X-ray luminosity of Cyg X-1is (2—5.5) X
1037 erg s1 (Sunyaev and Truemper, 1979; Meyer-Hofmeister et al., 2020, etc).



Stellar Wind

Compact Object Accretion disk

(a) HMXB (b) LMXB

Figure 1.1: Schematic diagram of HMXB and LMXB systems is shown in a and b panels of the figure
respectively. The inner Lagrangian point is shown in both cases through which mass is transferred. In HMXBs,
mass is also transferred through stellar winds. Image courtesy : Moret et al. (2003).

1.1.2 Low Mass X-ray Binaries

If the mass of the companion star is close to the solar mass, we call it a Low Mass
XRB (LMXB). The companion star is type A or later and even white dwarfs
in some evolved cases. The X-rays from the system and the companion star
dominates the optical light and hence, they appear as faint blue stars (Bradt
and McClintock, 1983, and references therein). The stellar wind is not strong
enough to power the X-ray radiation. As seen from panel (b) of Figure 1.1, mass
transfer occurs only through Roche lobe overflow. The Roche lobe radius is a
function of the orbital separation and masses of the two stars. Mass transfer
is triggered when the envelope of the companion star expands and fills its Roche
lobe or when the binary separation between the two objects shrinks due to angular
momentum losses. This matter forms an accretion disc around the compact object,
as mentioned earlier, due to conservation of angular momentum. The heating of
the accretion disc gives out X-ray radiation. The population of LMXBs is mostly
concentrated in the Galactic bulge. LMXBs, specifically those with a black hole
as compact object, form the focus of our studies and so their various properties
will be discussed in detail later on. GRS 1915+105 is a very well-known member
of this class (Castro-Tirado et al., 1996).

1.1.3 Intermediate Mass X-ray Binaries

The above classification only accounts for those systems, whose companion stars
have masses less than 1.5M¢ or greater than 10 M. Astronomers have been
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puzzled for years about the population of stars lying between these two ranges.
These are termed as Intermediate mass XRB (IMXB). However, recent studies
have shown that IMXBs are just LMXBs in earlier stages of evolution. It is
possible that the companion in the IMXB transferred most of its mass and evolved
into an LMXB (King and Ritter, 1999; Podsiadlowski and Rappaport, 2000; Kolb
et al., 2000). Hence, they are generally studied together with LMXBs.

In this work, we focus only on a few LMXBs. Specifically, we focus on those
which contain a black hole. These are called Black Hole Binaries (BHB). Before
moving onto their nature and evolution, it is necessary to brush up on a few
fundamentals of radiation processes which occur in space. In the next section,
we talk about different types of radiation and the processes which give rise to
them. This topic is exceptionally vast and has huge tomes dedicated to it in itself
(Rybicki and Lightman, 1986; Knoll, 1989, etc.). Here, we will merely summarize
the basics and focus primarily on those which we are likely to encounter in the
study of LMXBs.

1.2 A brief introduction to Radiation processes

Any discussion on X-ray binaries and accretion is incomplete without the inclusion
of terms like thermal and non-thermal radiation, the state of the matter involved,
and the effect of the interaction of radiation with matter. Basically, we need to
equip ourselves with the knowledge of how a particular interaction between matter
and radiation is likely to effect the visible entities i.e, intensity, spectrum and so
on. To do so, the starting point is always the radiative transfer equation given by,

dly
ds
dI

where “3¥ gives the variation of specific intensity (Iy) along a ray, ds is a differ-
ential element along the length of the ray, oy and j, are coefficients related to
absorption and emission respectively. The intensity in an emitting and absorbing
medium can be obtained by solving equation 1.1. As we navigate across different
physical processes, we only need to find the physical forms of these coefficients
corresponding to each of them.

Another useful way of writing the equation is obtained if we consider Ty instead
of s, where Ty is the optical depth. This is measured along the path of the travelling

ray. It is defined as:

= —(lev +JV (11)

dTV = Oy ds (].2)

Ty(s) = /SS ay(s') ds’ (1.3)
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A medium is optically thick or opaque when Ty > 1 and optically thin or
transparent if Ty < 1. This quantifies the interaction a photon has while traversing
a medium. Therefore, the transfer equation can now be written as,

dly

=-I 1.4
Ty v + Sy (1.4)

where Sy is the source function defined as ratio of emission to absorption coeffi-
cient.
Below, we discuss a few of the emission processes in detail.

1.2.1 Black Body Radiation

Black body radiation is emitted when all the photons are in thermal equilibrium
with each other. Photons can be treated as perfect Bose-Einstein gas as the in-
teractions between them are negligible. Also, they travel with the speed of light
and therefore have zero rest mass. The law for intensity of radiation emitted at
different frequencies v, was first derived by Planck. This also marks the first ap-
pearance of the Planck constant h, in thermal radiation. The intensity of radiation
is given by,

B 2hv3 /c?

~ exp(hv/kT) ~ 1
Equation 1.5 expresses the Planck law. The derivation for the same is presented in
Rybicki and Lightman (1986) (Section 1.5), which we do not reproduce here. At
lower frequencies, equation 1.5 reduces to the Rayleigh-Jeans law and applies in the
radio region in the electromagnetic spectrum. At larger frequencies (hv >> kT),
we obtain the Wien law. This states that the brightness of the blackbody decreases
rapidly with frequency when the maximum is reached. The peak frequency of the
blackbody law shifts linearly with temperature and is represented as,

Iy = By(T)

(1.5)

AmaxT = 0.290 cm deg (1.6)

called Wien displacement law. Another important result that can be derived from
equation 1.5 is the Stefan-Boltzmann law, which gives the energy flux (F) leaving
the surface of the body as

F=oT? (1.7)

where F is in units of erg cm 2 s 1 and o is the Stefan-Boltzmann constant. This
implies that the thermal radiation from the surface of an opaque body rises very
quickly with temperature. It is clear from the above that all bodies, irrespective of
their composition, emit the same continuum, provided that they are at the same
temperature. Hence, the continuum radiation of a star can only provide infor-
mation about the temperature of the surface and not details of the composition.
This can be done only by looking at lines in the spectrum.
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Another term that needs to be introduced in this context is the effective tem-
perature (Tog). Total amount of flux, integrated over all frequencies, radiated at
a source is obtained. This is equated to the flux of the blackbody at temperature

Tefy-
F= /cose Iy dv dQ = 6Tk (1.8)

In XRBs, and black holes in particular, the source of continuum radiation is the
accretion disc. This can effectively be defined as blackbody radiation emitted
from different radii of the thermal disc. The flux produced by an accretion disc at
a certain inclination is derived in Mitsuda et al. (1984); Makishima et al. (1986)
and the local temperature at a radius r is derived as,

-\ 4
T(r) = <3GMM) (1.9)

8nors

where G is the gravitational constant and M is the mass accretion rate.

1.2.2 Bremsstrahlung

Bremsstrahlung, which originates from the German words bremsen and Strahlung
meaning ‘to brake’ and ‘radiation’ respectively, quite literally means ‘braking ra-
diation’ i.e., radiation emitted due to deceleration of a charged particle in the
Coulomb field of another charge. This is also termed as a free-free emission as
radiation is generated by particles which are free before and after the emission of
a photon. Bremsstrahlung due to collision of like particles like electron-electron
and proton-proton is not considered, as the dipole moment, proportional to the
centre of mass, is simply a constant of motion. Therefore, two different particles
need to be considered. In electron-ion bremsstrahlung, electrons are considered
as primary radiators since ions are comparatively more massive.

In X-ray astronomy, we deal with temperatures above 10° K, where the plasma
is likely to be ionized. In such cases, an electron travelling through plasma is
accelerated. As the acceleration is non-uniform, it emits photons with a range of
wavelengths i.e., continuum spectra.

We assume that the electron moves rapidly such that the deviation from its path
in a straight line is negligible. This is called the small-angle scattering regime.
In this regime, we first obtain the emission from a single collision. This can be
extended to find the total spectrum for a medium with ion density nj, electron
density ne and for a fixed electron speed v. The total emission per unit time per
unit volume per unit frequency range is then,

AW % dW(b)
m = neHIQTCV/b W bdb (110)

min
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where b, is some minimum value of impact parameter. The value of by,;, can be
estimated in two cases. The first is when the straight line approximation becomes
invalid and the second is when the quantum nature is considered and uncertainty
principle plays an important role. In either case, equation 1.10 can be written as,

dW  16med
dodV dt B 3\/§C3m2v

where gg is the Gaunt factor which is a function of energy of electron and frequency
of emission.

When matter in thermal equilibrium is considered, one needs to apply the above
equation to the thermal bremsstrahlung case. This is obtained by averaging the
single-speed expression obtained in equation 1.11 over a thermal distribution of
speeds. This gives,

neniZ%ggr(v, 0) (1.11)

dW 257566 o 1/2 - B )
AVdtdy ~ 3me? (Skm) T 1/QZ2nenie hv/kTgff (1.12)

Therefore, in CGS units, the emission is obtained as,

g dW

& = Vv — constant x ZQneniT_l/Qe_h\’/kTgff (1.13)

gere is the velocity averaged Gaunt factor. The factor e /AT comes from the
lower-limit cutoff in the velocity integration due to photon discreteness (i.e., pho-
ton cannot be created below a certain value of velocity) and Maxwellian shape of
velocity distribution. The equations 1.12 and 1.13 also show that bremsstrahlung
gives a flat spectrum in a log-log plot upto the cutoff of hv ~ kT only for optically
thin sources. Similar to the above process, to obtain formulae for non-thermal
bremsstrahlung, the actual distribution of velocities needs to be known and equa-
tion 1.11 must be averaged over that distribution. In optically thick medium, the
spectrum is constrained to be not more effective than a black body spectrum.
This is thermal bremsstrahlung self-absorption. The spectrum turns over at low
frequency with a power-law dependence identical to the drop-off in intensity at
low frequency seen in the Rayleigh-Jeans part of the blackbody spectrum. Galaxy
clusters are a prominent source of X-ray Bremsstrahlung radiation.

1.2.3 Synchrotron radiation

Synchrotron radiation, also known as magneto-bremsstrahlung radiation, is the
emission of relativistic electrons gyrating in a magnetic field. Radio emission from
the Galaxy, supernova remnants and extragalactic radio sources can be attributed
to this process. It is also responsible for non-thermal optical and X-ray emission



from Crab nebula and continuum emission of quasars. The usage of the term ‘non-
thermal’ is one that will be encountered multiple times in the discussion on high
energy astrophysics. However, it could be a misnomer, as the origin of all processes
is ‘thermal’ in some sense. It is generally meant to convey that the continuum
emission cannot be described by black body radiation or thermal bremsstrahlung
i.e., the velocity distribution of the particles involved is not Maxwellian.

For non-relativistic electrons, the radiation is known as cyclotron radiation and
is at the gyration frequency ® = eB/mec. It becomes synchrotron radiation, when
relativistic particles are considered, as mentioned above.

Consider a particle of charge q and mass m, moving in a magnetic field B.
Larmor’s formula can be extended to relativistic particles to obtain the total
power in rest frame. We then find the components of acceleration in direction
parallel and perpendicular to the velocity and obtain the following formula,

4
P= gcsTcBQYQUB (1.14)

where 6T = 87t(2) /3 is Thomson cross section and Up is the magnetic energy density
B2/8m. In case of relativistic particles, radiation is beamed in the direction of
motion of the particle. Therefore, before calculating the synchrotron spectrum,
we need to consider the beaming effects. The observer sees a pulse of radiation
emitted in a smaller time interval than the gyration period. The spectrum will
thus be spread over a broader region than of the order of wg/2w. As Longair
himself puts it in Longair (2011), "I am not aware of any particularly simple
way of deriving [synchrotron spectrum]”, we will not go into the details of the
derivation. The derivations are available in Longair (2011); Rybicki and Lightman
(1986). Here we just summarize the steps as done in Longair (2011). First, we
obtain the energy emitted per unit bandwidth for an arbitrarily moving electron,
then select a suitable set of coordinates to compute the field components radiated
by the electron spiralling in a magnetic field and finally work out the algebra to
obtain the spectral distribution of field components. The power per unit frequency
emitted by each electron is given by,

P(0) = ﬁquﬂF(m)

2T mc? ¢
where o is the angle between the field and the velocity called pitch angle, F is a
dimensionless function and . is the critical frequency ® = %730)Bsinoc to which
the spectrum extends before falling away:.
Often the electrons emitting the synchrotron radiation have a power-law distri-
bution of energies, i.e., N(E)dE o« E'P dE or N(y)dy < Y P dy. Then the spectrum
is given by an integral over the electron energy distribution,

P(®) x / dyy PF (2) (1.16)

®c

(1.15)
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Changing the variable from 7y to x = 0)%, the integral becomes a dimensionless
integral over x. We find,
P(0) o o P1)/2 (1.17)

One of the distinguishing features of synchrotron radiation is that it is strongly
polarized. For particles with powerlaw distribution of energies, the degree of

polarization is given by,
1
m-L21o (1.18)
P+3
This is used to map out the the magnetic fields of spiral galaxies. Synchrotron
emission has also been used to explain the spectra from X-ray binaries like Cygnus

X-1 and GX 339-4 (Wardzinski et al., 2002; Malzac, 2012).

1.2.4 Compton and Inverse Compton scattering

Scattering is a common emission process which depends entirely on the amount
of radiation falling on the medium. Flectron scattering is the most important
mechanism of this type. Compton scattering causes the exchange of momentum
between a photon and a charged particle. For low energy photons, hv << mc2,
scattering of radiation from free charged particles reduces to Thomson scatter-
ing. However, here as we deal with high energy photons, Compton and inverse
Compton scattering play an extremely important role. For Thomson scattering,
the energy of the incident and scattered photon are equal and the Thomson cross-
section is given by op = %’trg, where 1 is the classical electron radius. This is
when the scattering is elastic or coherent.

When quantum effects are taken into consideration, kinematic effects also should
be taken into account, as the photon now possesses a momentum of hv/c along
with energy hv. The scattering cannot be considered elastic due to the recoil of
the charge. Using the expressions for conservation of momentum and energy, we

obtain the energy of the scattered photon (&) as,
. €
1+ mLCQ (1—cosB)

£ (1.19)

which in terms of wavelength is given by,
AM—A=Ac(1l-cosH) (1.20)

where A¢, the Compton wavelength, is defined as A, = h/mc. For A >> A, the
scattering is approximately elastic and there is no change in photon energy.
The differential cross-section for unpolarized radiation is given by Klein-Nishina
formula as,
2 o2

do & (& & . o

— =——|—+ — —sin“0 1.21

dQ 2 € (81 * € (1.21)
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Therefore, the cross-section reduces from the classical value as the photon energy
becomes large. The total cross-section can be given as,

c— GTZ 1);}{ <2}i(i;;) (14 2X)) 4 %111(1 +2x) - (11:—23)32 (1.22)
where x = hv/mc?. In the non-relativistic regime, it reduces to

c~or(l-2x+..), x<<1 (Thomson) (1.23a)

c = gGTXl (ln 2x + %) , x>>1 (Extreme KN) (1.23b)

When the moving electron has sufficient kinetic energy compared to the photon,
the net energy may be transferred from the electron to the photon. This is called
inverse Compton scattering. Before moving on to the mathematical aspects of the
process, let us first place it in an astrophysical context. If a plasma is embedded in
a radiation field of temperature T\, 4, the energy between photons and electrons is
continuously transferred via scattering. If the temperature of the electrons, T, is
greater than T, 4, the electrons cool by transferring energy to the photons through
inverse Compton scattering. In the alternate scenario, wherein Te << T} .q,
the photons cool down by Compton scattering. In astrophysical phenomena, we
mainly deal with inverse Compton scattering, which is the mechanism for the
origin of high energy photons. We also encounter a term called Comptonisation in
this context, which will be used frequently throughout this work. Comptonisation
refers to multiple Compton scatterings by thermal electrons which results in the
distortion of the energy spectrum.

The complete mathematical treatment for obtaining the spectrum for Comp-
tonisation is detailed in Rybicki and Lightman (1986). One needs to first obtain
the evolution of the photon phase space density due to scattering from multiple
electrons using Boltzmann equation. For simplicity, we consider the case where
electrons are non-relativistic, wherein the Boltzmann equation can be approxi-
mated to the Fokker-Planck equation. The Fokker-Planck equation for photons
scattering off a non-relativistic, thermal distribution of electrons was first derived
by Kompaneets (1957) and is known as Kompaneets equation. This is given by,

on kT'\ 1 9

where t. = (neome)t is the time measured in units of mean time between scatter-
ings and n is the photon phase space density. Detailed analysis of the Compton
spectra requires a solution of equation 1.24.The condition at which the scattering
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process affects the total photon energy is obtained using the Compton y parame-
ter, which is defined as,

y = (average fractional energy change per scattering) X (mean number of scatterings)
(1.25)
In general, when y > 1, the total photon energy and spectrum will be altered,
whereas the total energy remains almost same when y << 1. Approximate analy-
sis for both cases i.e., modified black body (y << 1) and saturated Comptonisation
(y >> 1) are sufficient. However, a detailed treatment with equation 1.24 is re-
quired for intermediate cases (i.e., unsaturated Comptonisation). In the present
studies, we have used Comptonisation models where a soft photon input is consid-
ered. This particular case corresponds to the media where inverse Comptonisation
is important, but not saturated to the Wien spectrum for most photons (y ~ 1).
Considering a steady-state solution, equation 1.24 can be modified as,

0= <£) L9 )]+ Q) — (1.26)

mc? ) x2 ox Max(Tes, T2)

Here, Q(x) is the photon source. Also, since photons scatter multiple times, it
can be approximated that the the probability for a photon to escape per Comp-
ton scattering time is equal to the inverse of the mean number of scatterings,
Max(Tes, T2 ). Assume that Q(x) is non zero only for x < x5, where x5 << 1 as
the source seed photons are ‘soft’. For x >> 1, an approximate solution isn oc e X,
that is, the spectrum falls off exponentially at photon energies much above the
electron temperature. On the other hand for xg << x << 1, we get the power-law
solution n o< x™, where,

3 9 4
S R 1.2
m= g 4+y (1.27)

Here, y is the Compton y-parameter, given by y = %MaX(TQS,TgS) for non-
relativistic thermal distribution of electrons. A high-energy cutoff is incorporated
in the models of Comptonisation used for the present analysis related to the
temperature of the thermal electrons in an optically thin medium close to the
compact object (see for eg., Belloni et al., 2006). Current models incorporate
the presence of a ‘hybrid’ plasma, which contains both thermal and non-thermal
components. The optical depth of thermal electrons is 1, while those of non-
thermal electrons is << 1 (Ghisellini et al., 1993).

1.2.5 Fluorescence

Another phenomenon that needs to be introduced is fluorescence. Originally
coined by Sir George Stokes to explain the observation of anomalous colours under
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different illuminations, fluorescence means the emission of light by a substance
that has absorbed electromagnetic radiation. When an X-ray photon interacts
with matter, the energy is transferred completely to a bound electron in the inner
shell. The electron is knocked out, creating a vacancy. This results in an electron
jumping from a higher orbit to fill its place, giving out an X-ray with energy cor-
responding to the difference in energy be