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                                                    Abstract of the thesis 

The thesis is primarily concerned with the construction of non-linear time 

series models and their applications in real-world data. Non-linear models excel 

at accommodating non-Gaussian and heavy tailed distributions enabling more 

precise modelling of extreme events and outliers. So the analysis of financial 

time series requires non-linear modelling using non-Gaussian distributions. 

Within the range [0,1], we propose a novel distribution termed the uniform 

truncated Poisson distribution (UTPD) and investigate its features, parameter 

estimates, and applicability in real-world scenarios. There is also a comparison 

with the power function distribution and generalization to this distribution. The 

non-linear applicability of this distribution is investigated by introducing 

processes with the UTPD under a variety of assumptions. We build a uniform 

truncated Poisson autoregressive process of order 1 (UTPAR(1)) with UTPD as 

the marginal function. Investigates the new process's attributes, estimating 

methodologies, and real-world application. Another process is the uniform 

truncated autoregressive conditional duration process (UTPACD(1,1)). We talk 

about analytical characteristics and traditional techniques. Estimation and 

application are also looked upon. We address the analytical characteristics, 

traditional estimating methodologies, and real-world applications of the 

process. This thesis also includes spatial analysis of child mortality data using  

spatial lag models, spatial Durbin models, and spatial error models that 

incorporate non-linearity.  Minification procedures with two distinct structures 

are presented, with UTPD acting as a marginal. The processes are known as Type 

I uniform truncated minification process (Type I UTPM) and Type II uniform 

truncated minification process (Type II UTPM). The key attributes, estimation 

methods, and application are also investigated. The relevance of non-linear non-

Gaussian time series model is emphasized at the end of this thesis. This thesis 

concludes by underlining the significance of non-linear non-Gaussian time series 

models in time series analysis and suggesting future directions. 

Key Words: Truncated uniform distribution, Non-linear time series,                   

Spatial auto-correlation, ACD, Minification process. 

  



സംഗ്രഹം 
ഈ പ്രബന്ധം പ്രാഥമികമായി അരേഖീയ സമയ രേണി രമാഡലുകളുടെ 

നിർമ്മാണവുമായം  യഥാർത്ഥ രൊക ഡാറ്റയിടെ  അവയടെ പ്രാരയാഗികതമായം 
ബന്ധടെട്ടിേിക്കുന്നു. അരേഖീയ സമയരേണി രമാഡലുകൾ രനാൺ ഗൗസിയൻ, 
ടഹവിടെയിൽഡ് വിതേണങ്ങൾ എന്നിവ ഉൾടകാള്ളുന്നതിൽ മികവ് പുെർത്തുന്നു. 
അത് അരങ്ങയറ്റടെ സംഭവങ്ങളുടെയം ഔട്ട് ടെയറുകളുടെയം കൂടുതൽ 
കൃതയമായ രമാഡെിംഗ് സാധ്യമാക്കുന്നു. അതിനാൽ സാമ്പെിക സമയ 
രേണിയടെ വിശകെനെിന് രനാൺ ഗൗസിയൻ വിതേണങ്ങൾ ഉപരയാഗിച്ച ്
അരേഖീയ രമാഡെിംഗ് ആവശയമാണ്. യൂണിര ാം ട്രരേറ്റഡ് രപായിസൺ 
വിതേണം (യ െി പി ഡി) എന്ന് വിളിക്കുന്ന ഒരു പുതിയ വിതേണം [0,1]  എന്ന 
പേിധ്ിക്കുള്ളിൽ ഞങ്ങൾ മുരന്നാട്ട് ടവക്കുകയം അതിൻടെ സവിരശഷതകൾ, 
പോമീറ്ററുകളുടെ മതിെ്, യഥാർത്ഥ രൊക സാഹചേയങ്ങളിടെ പ്രാരയാഗികക്ഷമത 
എന്നിവ അരനേഷിക്കുകയം ടചയ്യുന്നു. ഈ വിതേണെിന് പവർ  ംഗ്ഷൻ 
വിതേണവുമായള്ള താേതമയവും ഇതിടെ സാമാനയവത്കേണവും നെത്തുന്നുണ്ട്. 
ഈ വിതേണെിടെ അരേഖീയ പ്രാരയാഗികക്ഷമത വിവിധ് അനുമാനങ്ങളിൽ    
യ െി പി ഡി യമായി പ്രക്രിയകൾ അവതേിെിച്ചുടകാണ്ട് അരനേഷിക്കുന്നു.                 
യ െി പി ഡി നാമമാത്ര വിതേണമായി ഓർഡർ 1 ആയ  യൂണിര ാം ട്രരേറ്റഡ് 
രപായിസൺ ഓരട്ടാെിഗ്രസ്സീവ് പ്രക്രിയ (യ െി പി  എ ആർ (1)) നിർമ്മിക്കുന്നു. പുതിയ 
പ്രക്രിയയടെ സവിരശഷതകൾ, എസ്റ്റിരമറ്റിങ് േീതിശാസ്ത്രങ്ങൾ, യഥാർത്ഥ 
രൊകെിലുള്ള പ്രാരയാഗികത എന്നിവടയ കുെിച്ച ് അരനേഷിക്കുന്നു.                         
യ െി പി ഡിയമായി നാമമാത്ര വിതേണമായി നിർമിക്കുന്ന മടറ്റാരു പ്രക്രിയ ഓർഡർ 
(1,1)  ആയ യൂണിര ാം ട്രരേറ്റഡ് ഓരട്ടാെിഗ്രസ്സീവ് കണ്ടീഷണൽ ഡേരെഷൻ          
(യ െി പി എ സി ഡി (1,1)) പ്രക്രിയയാണ്. പുതിയ പ്രക്രിയയടെ വിശകെന 
സവിരശഷതകൾ, പേമ്പോഗത എസ്റ്റിരമറ്റിംഗ് േീതികൾ, യഥാർത്ഥ രൊകെിടെ 
പ്രാരയാഗികതകൾ, എന്നിവയിലും േദ്ധ ടചലുെിയിട്ടുണ്ട്. സ് രപഷയൽ ൊഗ് 
രമാഡലുകൾ, സ് രപഷയൽ ഡർബിൻ രമാഡലുകൾ, സ് രപഷയൽ എെർ രമാഡലുകൾ 
എന്നിവയിൽ അരേഖീയത ഉൾടെടുെി ശിശു മേണനിേക് ഡാറ്റയടെ സ്ഥാനിക 
വിശകെനവും ഈ പ്രബന്ധെിൽ ഉൾടെടുന്നു. യ െി പി ഡി ഒരു നാമമാത്ര 
വിതേണമായി േണ്ടു വയതയസ്ത ഘെനകൾ ഉള്ള മിനി ിരകഷൻ പ്രക്രിയകൾ 
അവതേിെിച്ചിേിക്കുന്നു. ടെെ് I യൂണിര ാം ട്രരേറ്റഡ് രപായിസൺ  
മിനി ിരകഷൻ (ടെെ് I യ െി പി എം)  പ്രക്രിയ എന്നും ടെപ് II യൂണിര ാം 
ട്രരേറ്റഡ് മിനി ിരകഷൻ (ടെെ് II യ െി പി എം) പ്രക്രിയ എന്നും  ഈ പ്രക്രിയകൾ 
അെിയടെടുന്നു.  പ്രധ്ാന സേഭാവ സവിരശഷതകൾ, എസ്റ്റിരമറ്റ് േീതികൾ, 
പ്രാരയാഗികതകൾ എന്നിവയം അരനേഷിക്കുന്നു. സമയ രേണി വിശകെനെിൽ 
അരേഖീയ രനാൺ ഗൗസിയൻ രമാഡലുകളുടെ പ്രാധ്ാനയം അെിവേയിടുകയം     
ഭാവി ഗരവഷണ ദിശകൾ നിർരേശിക്കുകയം ടചയ്തുടകാണ്ട് പ്രബന്ധം 
ഉപസംഹേിച്ചിേിക്കുന്നു. 

 
പ്രധ്ാന പദങ്ങൾ : ട്രരേറ്റഡ്  യൂണിര ാം വിതേണം, അരേഖീയ സമയ രേണി, 
സ് രപഷയൽ ഓരട്ടാ-രകാെിരെഷൻ, എ സി ഡി, മിനി ിരകഷൻ പ്രക്രിയ. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The data obtained from successive observations over a long span of time are very

common. Monthly interest rates, annual sales data, hourly wind speeds, crop pro-

duction etc. are some examples of time series data. Main area of focus in recent

research on time series analysis has been on exploring and studying the assumption

that the structure of the series can be effectively described by linear time series mod-

els. However, there are instances in which the subject, theory, or facts indicate that

the linear models are not always reliable. It is preferable to consider non-linear alter-

natives in those circumstances. Most often, linear time series models use Gaussian

distributions for errors or residuals, which may not accurately reflect many sets of

7
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data from the real world. In contrast, non-linear models excel at accommodating

non-Gaussian and heavy tailed distributions enabling more precise modelling of ex-

treme events and outliers. So the analysis of financial time series requires non-linear

modelling using non-Gaussian distributions. Non-linear time series models exhibit

great significance across multiple fields since they capture intricate patterns and dy-

namics that linear models fail to capture.

Non-linear features such as cycles, asymmetries, bursts, jumps, chaos, thresh-

olds, heteroscedasticity etc. were exhibited by many of the time series encountered

in practice. Simple time series models typically do not provide comprehensive ex-

planations for the different aspects of economic and financial data. The economic

and financial systems experience both structural and behavioral changes over time,

so it is logical to consider the necessity of employing distinct time series models to

elucidate the empirical data at various points in time. Non-linear time series models

are essential for analyzing and capturing the dynamics of these types of changes in

economic and financial data.

One of the objectives of the study is to construct non-linear autoregressive models

with different marginal distributions. This prompted us to build several non-linear

time series models connected to the newly created distribution and to investigate

classical estimation techniques for real-world data applications. In the following sec-

tions, we present a compilation of fundamental concepts that aid in the systematic

progression of the thesis.
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1.2 Stochastic process

A collection of random variables {Xt, t ≥ 0} defined over the sample space is called

a stochastic process. In this sense, a stochastic process is a collection {Xt, t ∈ T} of

random variablesXt, where T is some indexed set, usually an interval of real numbers.

For the stochastic process {Xt, t ≥ 0}, ω : Xt (ω) is a function of T, namely sample

function or realisation of the process. It is usually represented by X (t) or Xt. The

mean function of the process is defined as µt = E (Xt). The variance function of the

process is, σ2
t =V ar (Xt)=E (Xt − µt)

2.

To draw inferences about the structure of a stochastic process, on the basis of an

observed record of that process, some assumptions have to be made regarding the

structure. The most important assumption discussed below is stationarity.

1.2.1 Strong stationarity

The fundamental concept of stationarity is that the probability laws that govern

the behavior of the process do not change over time. In other words the process

is in statistical equilibrium. A process {Xt} is said to be strictly stationary if

the joint distribution of Xt1 , Xt2 , ..., Xtn is identical with the joint distribution of

Xt1−k , Xt2−k , ..., Xtn−k that of for all choices of time points t1, t2, ..., tn and for all

choices of time lag k. If a process with strict stationarity conditions has a finite

variance, then the covariance function must depend only on time lag.
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1.2.2 Weak stationarity

A definition that bears resemblance to the definition of strict stationarity, but is

mathematically weaker is weak stationarity. A stochastic process {Xt} is said to be

weakly (or second-order) stationary if

1. The mean function is constant over time.

2. The covariance function γt,t−k = γ0,k for all time t and lag k

1.3 Time series

A time series is a series of data points that are typically measured over time. It can

be expressed mathematically as a set of vectors X(t), t = 0, 1, 2, ..., where t denotes

the time elapsed. The variable X(t) is deemed to be random. In a time series, mea-

surements gathered during an event are grouped in chronological order. A univariate

time series is one that contains just records for a single variable. However, if records

from more than one variable are included, it is referred to as multivariate. A time

series might be discrete or continuous. Observations in a continuous time series are

measured at every instance of time, whereas observations in a discrete time series

are measured at discrete time points. Hourly temperature readings, monthly rainfall

data etc. can be recorded as a continuous time series. On the other hand, discrete

time series can represent the population of a certain region, a firm’s output, exchange

rates between two distinct currencies, and so on. Typically, successive observations
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in a discrete time series are recorded at equally spaced time intervals such as hourly,

daily, weekly, monthly, or yearly time separations. In a discrete time series, the

variable being observed is considered to be measured as a continuous variable on

a real number scale. Furthermore, by combining data across a predetermined time

interval, a continuous time series may be readily changed to a discrete one. Time

series analysis entails evaluating and modelling observations in order to obtain the

important information contained within the data.

Mathematical models are now employed to describe the behavior of physical phe-

nomena. In particular, we may determine the value of a time-dependent quantity

almost or exactly at a given instant in time. A deterministic model is one in which

accurate computations are achievable. In many cases, a time-dependent phenomena

must be addressed. As a result, we can build a model that may be used to determine

the likelihood of a future value falling within two given boundaries. These models

are known as stochastic models or probability models. It is critical to distinguish

between the probability model, commonly referred to as a stochastic process, and the

observed time series. An observed time series (x1, x2, ..., xn) can be interpreted as a

specific realization function from a given stochastic process. We may examine and

simulate the data using various statistical and probabilistic approaches by seeing the

time series as a representation of a stochastic process. We may make conclusions,

discern patterns, identify trends, and estimate future values based on the stochastic

process’s underlying probabilistic behavior. As a result, the series (Xt, t = 1, 2, ..., n)

may be seen as a realization of a particular stochastic process. Time series analysis
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has several objectives, subject to its application background. Statisticians consider

a time series as an outcome derived from a stochastic process as mentioned earlier.

The crucial aim is to reveal the probability distribution that governs the observed

time series. By discerning this probability law, we gain insights into the underly-

ing dynamics, enabling us to forecast future events and exercise control over them

through interventions. These constitute the three primary goals of time series anal-

ysis. When dealing with finite observations, multiple stochastic processes can pro-

duce the same observed data, leading to an infinite number of possibilities. However,

certain processes are more reasonable and offer better interpretations compared to

others. Without additional constraints, identification of the underlying process from

a finite set of observations becomes unattainable. To handle this, a common strategy

is to restrict the probability law to a defined family of processes and then choose the

most plausible member within that family. The former is called modelling and the

latter is called estimation, or generally statistical inference.

Modelling of a time series indicates the process of creating a mathematical or

statistical representation that depicts the underlying patterns, relationships, and be-

haviors present in a sequence of data points ordered over time. The main objective

of time series modelling is to understand, describe, and forecast the future values

of the series based on its historical behavior. The observations in a time series are

always dependent and often exhibit patterns or relationships with their past and

future values. This inherent structure of dependence is a fundamental feature of

time series data and has remarkable implications for the analysis and modelling of
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such data. Better understanding of the nature of dependence among observations

in a time series is crucial for making accurate predictions and informed decisions

in various fields such as finance, economics, environmental science, and more. This

requires the development of stochastic and dynamic models for time series data and

the use of such models in important area of application. The models for time series

that are needed are really stochastic models. When the probability laws within a

family are specified, a model is labeled as a parametric model except for certain

finite-dimensional defining parameters. A non-parametric model is distinguished by

either defining parameters that belong to a subset of an infinite-dimensional space

or when the form of the probability laws is not completely specified. The underpin-

ning of time series analysis lies in the utilization of appropriate statistical modelling.

When selecting a probability model for time series analysis, the first step involves

identifying essential characteristics from the observed data. Subsequently, a suitable

model is chosen, considering these identified features. Once parameters or functions

in the model are estimated, the next step is to assess whether the model adequately

captures the data and to seek potential enhancements if feasible. Different objectives

in the analysis may call for the adoption of distinct models. For instance, a model

that fits the data well and allows for a clear interpretation may not necessarily be

the best choice for forecasting purposes.
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1.3.1 White noise

The white noise process is a very important example of a stationary process. It is de-

fined as a sequence of independent and identically distributed (iid) random variables

say {εt, t ≥ 1} with mean zero and variance σ2
ε . It is also referred to as innovation

or shock at time t. Its covariance function is given by

γ (k) =


σ2
ε if k = 0

0 if k ̸= 0

(1.3.1)

1.3.2 Autocovariance function

If {Xt, tϵT} is a process such that V ar(Xt) <∞ for each tϵT, then the mean function,

µt = E (Xt) for tϵT . In general, µt can be different at each time point t. The

autocovariance function (ACVF),

γt,s = Cov(Xt, Xs) = E [(Xt − µt) (Xs − µs)] = E (XtXs)− µtµs for t, s ∈ T.

1.3.3 Autocorrelation function

The autocorrelation function (ACF), ρt,s = Corr(Xt, Xs) for t, sϵT

ρt,s =
Cov(Xt, Xs)√
V ar(Xt)V ar(Xs)

(1.3.2)
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1.3.4 Partial autocorrelation function

The partial autocorrelation function (PACF) of a staionary process {Xt} denoted by

ϕk,k, k = 1, 2, ... is defined by

ϕ1,1 = Corr (X1, X0) = ρ1

and

ϕk,k = Corr(Xk − X̂k, X0 − X̂0), k ≥ 2,

where X̂k = l1Xk−1 + l2Xk−2 + ...+ lk−1Xk−1 is known as the linear predictor. Here

both
(
Xk, X̂k

)
and

(
X0, X̂0

)
are correlated with {X1, X2, ..., Xk−1}. Under station-

arity, the PACF is defined as the correlation between Xt and Xt−k obtained by fixing

the effect of Xt−1, ..., Xt−(k−1).

1.4 Box-Jenkins modelling techniques

The Box-Jenkins methodology is a procedure for time series analysis and forecasting.

It was developed by Box and Jenkins (1970). It is mainly based on the use of ARIMA

models. The four stages in Box-Jenkins approach are listed below.

1. Identification

2. Estimation

3. Diagnostic Checking
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4. Forecasting

1.4.1 Identification of the model

The plots of original time series data, autocorrelation, and partial autocorrelation are

considered in the primary stage. Model identification can be performed by observing

the behavior of these plots.

1.4.2 Estimation of the parameters

The estimation of the parameters involved in the model is considered in the second

step. There are several methods of estimation available in the literature. One may

refer to Box et al. (1994). The main approaches related to Box and Jenkins models

are non-linear least squares and maximum likelihood estimation.

The least squares estimator (LSE) of the parameters is obtained by minimizing

the sum of the squared residuals. For autoregressive models, the LSE leads to the

linear ordinary least Squares (OLS) estimator. The maximum likelihood estimator

(MLE) maximizes the log likelihood functions corresponding to the model specified.

Here, explicit distributional assumptions for the innovations are necessary. There

are a few additional methods for estimation, like the method of moments (MM), the

generalized method of moments (GMM), the Gaussian estimation method, and the

Yule-Walker estimation method.
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1.4.3 Diagnostic checking

Diagnostic checking refers to the testing of the model’s adequacy by checking the va-

lidity of the assumptions imposed on the errors. This can be done by using techniques

like overfitting and residual plots and checking that the residuals are approximately

uncorrelated. A good time series model should be able to produce residuals that are

approximately white noise. There are statistical tests like the Box-Pierce test that

can be used to check the above. ACF and PACF plots are also used for checking the

significance of autocorrelation and partial auto correlation.

Akaike information criteria (AIC) and Bayesian information criteria (BIC) are

two model selection criteria commonly used.

AIC = −2logL+ 2k (1.4.1)

BIC = −2L+ kln (n) (1.4.2)

where L, k, and n respectively are the likelihood function, the number of parameters,

and the number of samples used for fitting respectively. A model with the lowest

AIC or BIC values is considered the model with the best fit.

1.4.4 Forecasting

Forecasting refers to the prediction of future values. One of the primary objectives

of time series analysis is the forecasting of the future based on the observed values in
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the time series data. The minimum mean square error (MMSE) is a useful method

for forecasting time series data. In this method, an optimum value of prediction is

obtained by minimizing the mean squared error.

1.5 Models of time series

1.5.1 Linear time series models

A time series {Xt} is said to be linear, if it can be represented by

Xt = µ+
∞∑
i=0

φiεt−i (1.5.1)

where µ is the mean of Xt, ψ0 = 1 and {εt} is a white noise sequence. The dynamic

structure of Xt is dominated by the coefficients ψi, named as ψi weights of Xt in

the literature. The most widely used category of linear time series models includes

autoregressive moving average (ARMA) models, encompassing purely autoregressive

(AR) and purely moving average (MA) models as special instances. ARMA models

are commonly used to represent linear dynamic patterns, explain relationships among

lagged variables, and facilitate linear forecasting. Within this group, autoregressive

integrated moving average (ARIMA) models are particularly valuable since they

incorporate stationary ARMA processes as a subclass.
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1.5.1.1 Autoregressive Processes

Autoregressive processes are regressions on themselves. The pth-order autoregressive

process {Xt} denoted as AR(p), satisfies the equation

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + εt. (1.5.2)

Here, the current value of the time series Xt is represented as the linear combination

of the most recent past values of itself. The term εt incorporates everything new in

the series at time t that is not explained by the past values. Also, εt is indepen-

dent of Xt−1, Xt−2, Xt−3, ... The term autoregressive was popularized by the British

statistician George Udny Yule. Yule’s work focused on the theoretical development

of autoregressive models and their application to time series data.

The AR characteristic polynomial of the process in equation (1.5.2) is given as

ϕ (x) = 1− ϕ1 (x)− ϕ2

(
x2
)
− ...− ϕp (x

p)

and the corresponding AR characteristic equation is

1− ϕ1 (x)− ϕ2

(
x2
)
− ...− ϕp (x

p) = 0

The resulting AR(p) process is weakly stationary if and only if the p roots of the AR

characteristic equation each exceed 1 in absolute value.
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For a stationary AR(p) process, the autocorrelation function ρx (k) can be found by

solving a set of difference equations called Yuler-Walker equations given by

ρ (k) = φ1ρk−1 + φ2ρk−2 + ...+ φpρk−p, for k ≥ 1.

The ACF of an AR(p) process generally exhibits a decreasing pattern, with correla-

tions becoming statistically insignificant (falling within the confidence bounds) after

lag p. This decline in autocorrelation assists in determining the appropriate value of

p for the model selection process.

The first-order autoregressive process

Due to its simplicity and capability to capture specific patterns in data, the AR(1)

model finds various practical applications and uses. An AR(1) model, assuming the

stationarity condition is given by

Xt = ϕXt−1 + εt. (1.5.3)

The stationary condition (weakly) for {Xt} is |ϕ| ≤ 1. For a stationary AR(1) pro-

cess, E (Xt) = 0 , V ar (Xt) =
σ2
ε

1−ϕ2 and the autocorrelation function is given by

ρX (k) = ϕk, k = 0, 1, 2, ...

Since ρX (k) = ϕk, k = 0, 1, 2, ..., the magnitude of the autocorrelation function

decreases exponentially as the number of lags, k increases. It can follows that the

ACF plot of a weakly stationary AR(1) series decays exponentially in k. If we assume

the innovation sequence {εt} is iid, then the AR(1) sequence is Markovian.
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1.5.1.2 Moving average processes

Moving average models were first considered by Slutsky (1927) and World (1938). A

moving average of order q, represented by MA(q) is given by

Xt = εt − θ1εt−1 − θ2εt−2 − ...− θpεt−q (1.5.4)

where θi’s are constant and {εt} is a white noise sequence. Here Xt is obtained by

applying the weights 1, −θ1, −θ2, ..., −θq to the variables εt, εt−1, εt−2, ..., εt−q,

and {Xt+1} are obtaining by moving the weights and applying them to εt+1, εt+2, ...,

εt−q+1.

From (1.5.4),

E (Xt) = 0; V ar(Xt) = σ2
ε

∑q
i=1 θ

2
i .

The ACF is

ρk =


−θk+θ1θk+1+θ2θk+2+...+θq−kθq

1+θ21+θ
2
2+...+θ

2
q

for k = 1, 2, ...q,

0 for k > q.

(1.5.5)

It can be seen that ACF cuts off after lag q.

The first-order moving average process

The moving average process of order 1, represented by MA(1) is given by

Xt = εt − θεt−1. (1.5.6)
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Then, E (Xt) = 0 and V ar (Xt) =
σ2
ε

(1+θ2)
. The ACF of MA(1) process is

ρ (k) =


− θ

1+θ2
if k = 1,

0 if k = 2, 3, ...

(1.5.7)

1.5.1.3 The mixed autoregressive moving average model

If we assume that the time series is a combination of both autoregressive and moving

average components, we can represent the model as an autoregressive moving aver-

age (ARMA) model. The ARMA model combines the autoregressive terms, which

depend on past values of the series, and the moving average terms, which depend on

past error terms. The general form of an ARMA model of order (p,q) (ARMA(p,q))

is as follows:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + εt − θ1εt−1 − θ2εt−2 − ...− θpεt−q (1.5.8)

In the context of the ARMA model, the stationarity of the entire model depends

on the autoregressive component being stationary, and the invertibility of the model

relies on the moving average component being invertible.

ARMA(1,1) Model

Let p=1, q=1 in (1.5.8), The ARMA(1,1) process is given by

Xt = ϕXt−1 + εt − θεt−1. (1.5.9)
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The ACF is given by,

ρk =
(1− θϕ) (ϕ− θ)

1− 2θϕ+ θ2
. (1.5.10)

As the lag k increases, the ACF exhibits exponential decay with a damping factor ϕ.

However, the decay begins from an initial value ρ1, which is also influenced by the

parameter θ. The specific shape of the ACF, denoted by ρk, can vary depending on

the signs of ρ1 and ϕ.

1.5.1.4 Autoregressive integrated moving average

The autoregressive integrated moving average (ARIMA) model, in the context of time

series analysis, extends the ARMA model to incorporate differencing for achieving

stationarity in the data. In time series analysis, the AR component of ARIMA implies

that the variable of interest is regressed upon its own previous values. The MA

component indicates that the regression error is a linear combination of error terms

occurring simultaneously and at different time points in the past. The integrated

(I) part signifies that the original data values have undergone differencing, which

involves computing the differences between consecutive values. This process may

have been applied more than once to achieve stationarity, making the data more

amenable to analysis.
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An ARIMA(p,q) model is written as,

Yt = (1 + ϕ1)Yt−1 + (ϕ2 − ϕ1)Yt−2 + (ϕ3 − ϕ2)Yt−3 + ...+ (ϕp − ϕp−1)Yt−p − ϕpYt−p−1

+εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q. (1.5.11)

Now the equation (1.5.11) is called the difference equation of the model. It is the

form of ARMA(p+1,q) form.

1.6 Non-linear time series models

Linear Gaussian time series models have undergone significant advancements over the

course of several decades, which has led to their widespread use in both theoretical

research and practical applications. It can be noticed from the work of Yule (1927),

where he introduced AR modelling to understand the patterns in sunspot numbers

as time progressed, to the work of Box and Jenkins (1970), which exhibits the level of

maturity attained by ARMA modelling in terms of theory and methodology, linear

Gaussian time series models prospered and ruled both theoretical investigations and

empirical applications. In applied research, it has frequently been figured out that

basic linear time series models normally leave specific parts of financial data unex-

plained. Moran (1953) pointed out some limitations of the linear models. He revealed

the fact that the residuals for the sample points greater than the mean were signif-

icantly smaller than those for the sample points smaller than the mean, which can
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now be well explained by the term regime by Tong (1990). The early 1980s denoted

a critical turning point in the literature as non-linear time series analysis (NTSA)

began acquiring significant consideration. This expanded interest originated from

the acknowledgment that linear time series models proved inadequate in capturing

numerous crucial real world phenomena. Some of these peculiarities involve assym-

metric business cycles, sustained animal population cycles, stock market volatility,

regime switching, and various other intricate patterns that demanded more sophisti-

cated analytical approaches. We cannot mathematically define a non-linear process

in the same way we have defined a linear one, as mentioned in equation (1.5.1).

Since there can be departures from linearity in different directions; we can only de-

fine a non-linear phenomenon through those features that cannot be exhibited by

linear processes. and that has been observed in various disciplines like modelling

of the regime effect or other non-standard features, which include non-normality,

assymmetric cycles, bimodality, non-linear relationships between lagged values, vari-

ation of prediction performance over the state space, time reversibility, sensitivity to

initial conditions, and others. Tong (2022) has given an extensive record of signifi-

cant improvements to the new subject in the 1980s. It can be said that this period

was overwhelmed by the advancement of parametric models. In specific, two classes

of models, the threshold autoregressive (TAR) models and the generalized autore-

gressive restrictive heteroscedastic (GARCH) models, introduced during these early

days appear to have endured consideration among professionals in the more exten-

sive scientific and financial networks, which incorporate science, dynamical systems,
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nature, financial matters, econometrics, financial engineering, and many others. The

huge development of non-linear time series analysis occurred in numerous signifi-

cant fields in the 1990’s. According to Tong (2022), the following are the five most

promising directions: the interface between NTSA and chaos, the non-parametric

or semi-parametric approach, non-linear state space modelling, financial time series

(in both discrete and continuous time), and non-linear modelling of panels (spatially

distributed) of time series.

There are two categories of modelling non-linear features: implicit and explicit.

In the implicit case, retaining the general ARMA framework, choose the distribution

of the white noise appropriately so that the resulting process exhibits a specified non-

linear feature. Here, the conditional expectation of the random variables given their

lagged values may well be non-linear. Though the modelling capacity of this approach

is highly large, identification of the distribution of white noise is a tedious task. So

explicit models, which typically express a random variable as a non-linear function of

its lagged values, are widely used. According to Tong (1990) and Tjøstheim (1994),

the early development of time series analysis has been concentrated on various non-

linear parametric forms. Autoregressive conditional hetroscedastic (ARCH) model

by Engle (1982), GARCH models by Bollerslev (1986), and threshold modelling of

biological and economic data by Tong (1990), Tiao, and Tsay (1994) are examples.

Volatility models like ARCH, GARCH, etc. are used to model data sets showing

high volatility over time, such as the financial time series. An ARCH model was

introduced by Engel (1982) is given below.
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Xt = σtεt, σ2
t = a0 + b1X

2
t−1 + ...+ bqX

2
t−ia0 ≥ 0 , bj ≥ 0 and {εt} ∼ iid (0, 1)

(1.6.1)

A class of non-linear ARCH model were introduced by Higgins and Bera (1992)

is given by .

ht =
⌊
ϕ0

(
σ2
)δ

+ ϕ1

(
ε2t−1

)δ
+ ...+ ϕp (εt−p)

δ
⌋ 1
δ

(1.6.2)

where, σ2 > 0, ϕi ≥ 0, δ > 0, for i=0, 1, 2, ...,p;
∑p

i=0 ϕi = 1

Bollerslev (1986) introduced GARCH model by replacing the term σ2
t in (1.6.1) with

σ2
t = a0 + a1σ

2
t−1 + ...+ apσ

2
t−p + b1X

2
t−1 + ...+ bqX

2
t−q (1.6.3)

where aj ≥ 0 and bj ≥ 0.

To overcome some weaknesses of the GARCH model in handling financial time series,

Nelson (1991) proposed the exponential GARCH (EGARCH) model.

Tong (1983) discussed the idea of using probability switching in non-linear time

series analysis. Hamilton (1989), emphasizing aperiodic transition between various

states of an economy, introduced Markov switching autoregressive(MSA) model given

by

Xt =


C1 +

∑p
i=1 ϕ1.ixi−1

+ a1t if St = 1

C2 +
∑p

i=1 ϕ2.ixi−1
+ a2t if St = 2

(1.6.4)
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St assumes values in {1, 2}, and is a first order markov chain with transition proba-

bilities ,

P (St = 2/St−1 = 1) = ω1

P (St = 1/St−1 = 2) = ω2

St assumes values in {1, 2} and {a1t} are sequences of random variables with

mean zero and finite variance and are independent of each other.

Bilinear model was introduced by Granger and Anderson (1978)

Xt = C +

p∑
i=1

Xi−1 −
q∑
j=1

θjat−j +
m∑
i=1

s∑
j=1

BijXt−jat−j + at (1.6.5)

where p,q,m and s are non negative integers.

TAR model, contained within the state-dependent (regime-switching) models

family, introduced by Tong (1983). In this model the different linear forms were

assumed in different regions of the state space. They are piece wise linear models in

which the linear relationship varies with the values of the process. Here the division

of the state space is usually based on the threshold variable, denoted by Xt−d.

Xt = b
(i)
0 + b

(i)
1 Xt−1 + ...+ bipXt−p + εit, ifXt−d ∈ Ωi (1.6.6)

where {Ωi} forms a non overlapping partition of the real line and {εit} ∼ iid (0, σ2) .

The simplest class of TAR models, Self Exciting Threshold Autoregressive (SETAR)
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models of order p introduced by Tong (1983) is given by,

Yt =


a0 +

∑p
j=1 ajYt−j + εt if Yt−d ≤ r

(a0 + b0) +
∑p

j=1 (aj + bj)Yt−j + εt if Yt−d ≥ r

(1.6.7)

Properties of general SETAR models are found very difficult to obtain. Further more

some of them can be found in Tong (1990), Chan (1993), Chan and Tsay (1998),

and the references therein. The fundamental idea behind these non-linear models

involves allowing the time-evolution of the conditional mean, denoted as µt, to follow

a relatively simple parametric non-linear function. Recent advancements in compu-

tational techniques has led to the development of various non-linear models. Notable

advancements encompass the non-linear state-space model proposed by Carlin, Pol-

son and Stoffer (1992), the functional-coefficient autoregressive model introduced by

Chen and Tsay (1993a), the non-linear additive autoregressive model presented by

Chen and Tsay (1993b), and the multivariate adaptive regression spline method de-

veloped by Lewis and Stevens (1991). The basic idea of these extensions is either

using simulation techniques to describe the conditional distribution of xt or using

data-driven methods to find the non-linear characteristics of a series. Moreover, we

can investigate the presence of non-linearity within time series data by employing

non-parametric and semi-parametric strategies, including kernel regression and arti-

ficial neural networks etc.

In the upcoming sections, we will deal with the non-linear time series models,
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such as non-linear AR models, autoregressive conditional duration (ACD) models

and minification models. These models will be discussed in detail since our thesis

primarily focuses on constructing them, utilizing the newly constructed distribution

as marginal distribution.

1.6.1 Non-linear autoregressive models

Time series analysis employs a technique called non-linear autoregressive (NAR)

modelling. By taking into account non-linear relationships between the prior obser-

vation and the present value, the linear AR models are thus expanded. As a result,

they are able to capture the intricate and non-linear patterns found in real-world

data. Numerous areas in corporate finance, economics, weather forecasting, and

other disciplines where the study of time dependency data is prevalent are covered

by the applications of NAR models. Given is a non-linear AR(1) model,

Xn+1 = λ (Xn) + Zn+1, n = ...,−1, 0, 1, ... (1.6.8)

where λ (.) is a fixed real function of real argument, called autoregression function

of the process, and the series {Zn} is a sequence of iid random variables.

A generalisation of (1.6.8) is defined as,

Xt = C + f1 (Xt−i) + f2 (X2 − i2) + ...+ fp (Xt − ip) + εn. (1.6.9)
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Benrhmach et al. (2020) described the applications of non-linear autoregressive

models in neural networks. They examined the use of the non-linear autoregressive

neural network method as a prediction technique for financial time series and the

intended Kalman filter algorithm for improving the accuracy of the model. Blasques

et al. (2020) introduced a non-linear autoregressive model with time-varying coeffi-

cients.

Hunt et al. (1995) proved that every non-linear system with a Volterra series expan-

sion can be represented as a non-linear AR model of infinite order.

1.6.2 Autoregressive Conditional Duration models

The majority of empirical studies in finance are carried out using daily data ob-

tained by retaining either the first or the last observation for the variable under

study. Here, all the intraday events were neglected. However, due to the advanced

growth of automation in financial markets and the rapid developments in computer

power, intraday databases that record every single transaction and their character-

istics are easily made available. Now the analysis of high-frequency data (HFD)

provides a deeper understanding of market activity. The identifying feature of this

data is that the observations are irregularly time-spaced. This aspect presents a chal-

lenge for researchers, as the conventional econometric methods developed over time

are no longer directly suitable. Now, recent models from the market microstructure

literature argue that time carries important information and should be taken into

account when constructing the models.
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Engel and Russel (1998) developed the autoregressive conditional duration (ACD)

model to analyze the dynamic behavior of financial duration data. This can be con-

ceived as a marginal model of durations xi. Consider the time of the occurrence of

an event or transaction ti.

Let t0 = 0, Xi = ti− ti−1, i = 1, 2, 3, ... denotes the ith duration between two events

that occur at times ti−1 and ti.

Let

ψi = E (Xi/Fi−1 ) , (1.6.10)

ψi represents the conditional expectation of the adjusted duration. It is the informa-

tion known at time (i− 1). Let Fi−1 be the information set available at the (i− 1)th

trade, and ψi be the expected adjusted duration given Fi−1 . The main assumption

of the model is that the standardized durations

εi =
xi
ψi

(1.6.11)

are iid with E (εi) = 1.

For the ACD(1,1) model, Engle and Russell (1998) derived its first two moments,

while Bauwens and Giot (2000) computed its autocorrelation function.
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The conditional mean of xi is ψi.The unconditional mean,

E (Xi) =
ω

1−
∑m

i=1 αi −
∑q

j=1 βj
, (1.6.12)

The conditional variance of xi based on (1.6.10) is that

V ar(Xi/Fi) = ψ2
i V (εi) .

The model allows both conditional overdispersion and underdispersion. The basic

ACD model, as proposed by Engle and Russell (1998), relies on a linear parameter-

ization of (1.6.10) in which ψi depends on m past durations and q past expected

durations:

ψi = ω +
m∑
j−1

αjXi−j +

q∑
j=1

βjψi−j. (1.6.13)

The equation (1.6.13) is referred to as the ACD (m,q) model. Here ω ≥ 0, αj ≥ 0,

βj ≥ 0. Carrasco and Chen (2002) established sufficient conditions to ensure β-

mixing and finite higher-order moments for the ACD(m, q) model. Fernandes (2004)

derived lower and upper bounds for the density of stationary ACD (m, q) models.

The equations (1.6.10) and (1.6.11) are general models that can be constructed by

choosing different specifications for the expected duration, ψ and distributions for ε.

Engle and Russell (1998) used the standard exponential distribution (the shape pa-

rameter is equal to one), which results in the exponential autoregressive conditional

duration ( EACD ) models. It provides quasi-maximum likelihood (QML) estima-
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tors for the ACD parameters Engle and Russell(1998), and Engle (2002). Drost and

Werker (2004) showed that consistent estimates are obtained when the QML esti-

mation is based on the standard gamma family (hence including the exponential).

The exponential specification results in a flat conditional hazard function, which is a

highly constrained assumption often invalid in practical financial applications. One

may refer to Engle and Russell (1998), Dufour and Engle (2000a,2000b), Feng et

al. (2004), and Lin and Tamvakis (2004) for details. To achieve more flexibility

in the model, Engle and Russell (1998) use the standardized Weibull distribution

with a shape parameter equal to γ and scale parameter equal to one, the resulting

model being called Weibull autoregressive conditional duration (WACD). Grammig

and Maurer (2000) proposed the use of a Burr distribution that contains the ex-

ponential, Weibull, and log-logistic as special cases. The model is then called the

Burr-ACD model. However, not all the moments necessarily exist for the Burr dis-

tribution without imposing restrictions on the parameters. Lunde (1999) introduced

generalized gamma ACD (GACD) and derived their related hazard functions and

conditional log-likelihood functions. Bauwens and Giot (2000) introduced the loga-

rithmic version, the log-ACD model.

The ACD model and the GARCH model introduced in Bollerslev (1986) share

common features. The autoregressive nature of the ACD model, as given in (1.6.11),

enables it to capture the clustering of durations observed in high-frequency data ef-

fectively. It implies that, in a manner similar to how the GARCH model explains

the clustering of volatility, shorter (longer) durations are often succeeded by consec-
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utive shorter or longer durations. In the realm of removing dependencies in squared

returns, a GARCH(1,1) model is often found to be adequate. When dealing with

temporal dependencies in durations, a relatively simple ACD model of low order

frequently proves successful.

ACD model can be formulated as an ARMA(max(m, q), q) model for durations

xi, taking ηi ≡ xi − ψi which is a martingale difference by construction and rear-

ranging the terms, equation (1.6.13) becomes

xi = ω +

max(m,q)∑
j=1

(αj + βj)xi−j +

q∑
j=1

βjηi−j + ηi. (1.6.14)

Hautsch (2002) proposed different ACD models based on the generalized F distribu-

tion that includes, as special cases, the generalized gamma, Weibull and log-logistic

distributions.

1.6.3 Minification process

In the literature, minification structures have been proposed as a feasible and ef-

fective alternative to non-Gaussian time series models. This model deviates from

traditional approaches that depend on generating functions and often lack closed-

form expression. We assume a stochastic model and the presence of a stationary

sequence of random variables with a specified marginal distribution, subject to cer-

tain conditions. Numerous properties of additive autoregressive models are shared
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by minimization models. Using the survival function of the underlying random vari-

ables, the existence of these models and characteristics can be facilitated.

Tavares (1980) introduced an autoregressive process of the form

Xn =


X0 if n = 0

kmin (Xn−1, εn) if n ≥ 1

(1.6.15)

where k > 1, is a constant and {εn} is a sequence of iid random variables such that

{Xn} is a stationary markov process with a specified marginal distribution function

FX0 (x). Due to its structure (1.6.15) is called the minification process. Hydrological

issues served as the primary source of inspiration for Tavare’s work, which included

modelling runoff data. These data have long tails, making it impossible to model

them using an exponential process like the linear autoregressive process of Graver

and Lewis (1980). Weibull or extreme value distributions are frequently employed

to represent the marginal distribution functions of run-off series, although processes

involving these marginal distributions cannot be extended using linear random coef-

ficient models. Therefore, minification procedures play a crucial role as a source of

time series for such a procedure.

Sim (1986) developed a first-order autoregressive Weibull process and described

its properties. Here {Xn} are stationary Weibull random variables with a survival

function e
−θxc
kc−1 if and only if {εn;n = 1, 2, ...} is a sequence of iid Weibull random
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variables with survival function e−θx
c
.

Lewis and Mckenzie (1991) gave a detailed description of minification processes

and their transformations. If the survival function of Xn in (1.6.15) is F̄Xn (x) for

n ≥ 1, then the survival function of {εn} is obtained such that

F̄εn(x) =
F̄X(kx)

F̄X(x)
. (1.6.16)

If F̄εn (x) is not strictly a proper survivor function, having an atom of probability

p located at infinity, then (1.6.15) can be written as

Xn =


kXn−1 with probability p ,

kmin (Xn−1, ε
∗
n) with probability 1-p

(1.6.17)

where 0 < p < 1.

Here,

F̄ ∗
ϵn (x) =

F̄εn (x)− p

1− p
.

Now all the properties can be derived similarly using

F̄εn (x) = p+ (1− p)F̄ ∗
ϵn (x)

Arnold and Robertson (1989) constructed a minification process with a logistic
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marginal distribution. Another form is

Xn =


εn with probability p

min (Xn−1, εn) with probability 1-p

(1.6.18)

where 0 < p < 1, and {εn} is the innovation series such that {Xn} is a stationary

Markov process with a given marginal distribution.

Autoregressive semi-logistic process presented in Jayakumar and Thomas (2004).

Adke and Balakrishna (1992) have estimated the parameters of the exponential mini-

fication model. Balakrishna (1998) discussed the estimation problems in the semi-

Pareto and Pareto processes. The minification process with discrete marginals was

discussed in Kalamkar (1995). Ristic (2008) provided a three-parameter version of

the two-parameter semi-Pareto minification process. The process is,

Xn =



εn with probability q

p
−1
α Xn−1 with probability p(1-q) , n ≥ 1

min(p
−1
α Xn−1, εn) with probability (1-p)(1-q)

where {εn, n ≥ 1} is a sequence of iid random variables, Xn−1 and εn are independent

random variables and 0 < p < 1, 0 ≤ q ≤ 1, α > 0.

In recent years, several bivariate minification processes have been defined. Al-

ice and Jose (2004) introduced bivariate minification processes with Marshall-Olkin
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bivariate semi-Pareto and Pareto distributions and discussed their properties. Bal-

akrishna and Jayakumar (1997) introduced a bivariate minification process of first

order. Ristic (2006) considered a stationary bivariate minification process. The pro-

cess is

Xn = K1min (Xn−1, Yn−1, εn)

and

Yn = K2min (Xn−1, Yn−1, ηn)

where(εn, ηn) is a sequence of iid non- negative non-degenerate random vectors with

common survival function Ḡ (x, y), random vectors and(X0, Y0)and (ε1, η1) are inde-

pendent and K1 > 1, K2 > 1.

Krishna et al. (2011) discussed several applications of Marshall Olkin Frechet

distribution and process.

1.7 Spatial Analysis

Spatial econometrics encompasses a specialized set of analytical techniques designed

to accommodate interdependencies among observations located in close geographical

areas, be they spatial points or regions. These techniques build upon the conventional

linear regression model by introducing the concept of identifying cohorts of nearest
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neighbors. Variables related to location, distance and arrangement are treated ex-

plicitly in model specification, estimation, and diagnostic checking and prediction in

Anselin (2006). This implementation of spatial methods allows for acknowledging

the interdependence that exists among these neighboring regions or observations,

as in Anselin (1988) and LeSage and Pace (2009). Thus, spatial econometrics is a

subfield of econometrics that portrays spatial interaction (spatial autocorrelation)

and spatial structure (spatial heterogeneity) in regression models for cross-sectional

and panel data, as mentioned in Paelinck and Klaassen (1979). The spatial aspects

are considered as spatial effects consisting of spatial dependence and spatial hetero-

geneity, as defined in Anselin (1988). To address the unique characteristics of spatial

dependence, particularly the inherent feedback effects, a specific set of techniques is

needed, as highlighted in Anselin (1988). Spatial heterogeneity represents a specific

instance of structural instability, a common concern in traditional econometrics. This

heterogeneity is spatially organized, meaning it pertains to different spatial locations

or regional subsets of observations. Consequently, this spatial structure guides the

formulation of heterogeneity, which encompasses spatially varying coefficients, ran-

dom coefficients, and spatial regimes, akin to spatial fixed effects, as elucidated in

Anselin (1988). Whereas early on, apart from Anselin (1980, 1988), Cliff and Ord

(1981), and later LeSage and Pace (2009), there was a relative dearth of treatments

that provided a comprehensive review of methods and models, this is no longer the

case. In recent years, several new texts were published, providing ample access to

the breadth of the field, in terms of theoretical results, new methods and a range of
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applications. Recent examples include Anselin and Rey (2014), Arbia (2014), Dub´e

and Legros (2014), Elhorst (2014a), Kelejian and Piras (2017), and Chi and Zhu

(2020). In addition, there are several extensive reviews of the state of the art, both

for a cross-sectional setting as well as for spatial panels. Examples include Anselin

and Bera (1998), Anselin (2001, 2006, 2021), Anselin et al. (2008), Lee and Yu (2010,

2011, 2015), Elhorst (2012, 2014b), and Bai et al.(2016).

In parallel to time series analysis, spatial stochastic processes are categorized as

spatial autoregressive (SAR) and spatial moving average (SMA) processes, although

there are several important differences between the crosssectional and time series

contexts. A spatial lag model, or a mixed regressive, spatial autoregressive model is

expressed as

y = ρWy +Xβ + ε (1.7.1)

y = (In − ρW )−1Xβ + In (ρW )−1 ε (1.7.2)

where ε ∼ N (0, σ2In). These patterns were often expressed as spatial autocorrela-

tion, which is the tendency for sites that are close together to have more similar values

than sites that are farther from each other, as in Sokal and Oden (1978). When spa-

tial autocorrelation exists in the data, ecologists often use spatial statistical models

because the assumption of independent errors is violated, making many conventional

statistical methods inappropriate (Cliff and Ord (1981), Legendre (1993)). Different

spatial autoregressive models are discussed in detail in chapter 5.
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In the next section a brief explanation of truncated distribution is given, as we

have used a truncated distribution for the construction of the new disribution in the

thesis.

1.8 Truncated Distributions

Truncated distributions are a class of probability distributions in which the feasible

values of a random variable are confined to a specific interval, and any values falling

outside this range are replaced with predefined boundary values.

Let X be a random variable with probability density function (pdf) or probability

mass function (pmf) f (x). The distribution of X is said to be truncated at the

point X = a if all the values of X < a are discarded. The pdf (or pmf), g(.) of the

distribution truncated at X = a are given by:

g (x) =
f (x)

P (X > a)
(1.8.1)

g (x) =


f(x)∑
x>a f(x)

if x > a (for discrete random variable.))

f(x)∫∞
a f(x)dx

if x > a (for continuous random variable.)

The rth moment about origin for the truncated distribution is given by,

µr
′ = E (Xr) =

∫ ∞

a

xrg (x) dx.
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Numerous scientific disciplines, including communication networks, hydrology,

material science, physics, and hydrology, are heavily reliant on long-tailed distribu-

tions. For instance, modern communication networks like the internet often exhibit

long-tailed distributions, as evidenced by numerous traffic measurement studies. This

implies that the way of behaving of this information essentially leaves conventional

phone traffic and its connected Markov models with short-range reliance. Specifi-

cally, the Poisson arrival process and related analysis in light of the Erlang equation

are presently not substantial. The main shortcoming of long-tailed distributions is

that they don’t have finite moments of all orders. This has restricted their applica-

tion. Saralees Nadarajah (2008), in his work, introduced truncated versions of five

heavy-tailed distributions: Student’s t distribution, F distribution, inverted beta

distribution, Frechet distribution, and Levy distribution. These truncated versions,

which possess finite moments of all orders and could therefore be better models.

1.9 Outline of the thesis

The thesis is organized in to six chapters as follows.

The first chapter is devoted to the introduction of stochastic process and time

series. A short account of linear time series models, non-linear time series models and

their properties are discussed. A brief description of spatial autoregressive models

and truncated distributions is also given.

In the second chapter, we derive a new distribution in the range [0, 1] called the
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uniform truncated Poisson distribution using three different methods. The properties

of this distribution are studied. We fit the new distribution to the real data set. For

estimating the parameter of the distribution, the methods of maximum likelihood

and moments are used.

In chapter 3, we construct the time series models in mixture form with the newly

derived distribution as the marginal. Important properties of the new process are

derived. The estimation of parameter is done using the conditional least squares

estimation and maximum likelihood estimation methods. Simulation studies and

real-world data applications are also discussed.

In the fourth chapter, we introduce uniform truncated Poisson autoregressive

conditional duration process. Important properties of this process are studied. The

estimation of parameter is done by using the method of maximum likelihood. Along

with simulation studies, real-data applications are done.

Chapter five is devoted for spatial non-linear models. We analyse the spatial

effect on mortality through spatial autocorrelations and unifies the regression and

spatial effect of GDP. The analysis summarises the results of the recent years to

compare the temporal effect. The ordinary least squares, spatial lag model, spatial

error model and spatial Durbin model are considered at different time points and

comparisons are made.

In the sixth chapter, we construct two types of autoregressive uniform truncated

Poisson minification processes. Their properties are discussed. The estimation of

parameters is done. The application is illustrated with real data.
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Finally recommendations for future work with conclusion are given in chapter 7.

Following this, we present a comprehensive bibliography containing a list of refer-

ences.



46 Chapter 1



CHAPTER 2

UNIFORM TRUNCATED POISSON

DISTRIBUTION

2.1 Introduction

1 A theoretical probability distribution provides a mathematical representation of

how different values of random variables are distributed, each with specified prob-

abilities. Recent research on probability distributions has mainly concentrated on

distributions with support either on the real line or the positive real line. Researchers

have traditionally focused more on probability distributions with support on the real

line or positive real line, leaving distributions on finite intervals relatively understud-

ied. However, it can be seen that numerous real-world data sets naturally fall within

1This chapter is based on Krishnarani and Vidya (2022)

47
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finite intervals. Research on distributions in the interval [0, 1] is an important area of

study in statistics. As the interval [0, 1] represents the set of all possible probabilities

or proportions, it is a common range for probability distribution. While it is true

that distributions on finite intervals may receive less attention compared to distri-

butions defined on the entire real line or positive real line. For instance, in biology

and experimental results in physics, chemistry, and other fields, a uniform pattern is

often observed within the interval [0, 1]. Distributions defined on the interval [0, 1]

are not as common as some other widely used distributions, and the most widely

used distributions belonging to this category are the power function distribution and

the beta distribution. While these distributions are commonly used for modelling

data on the [0, 1] interval, it is worth noting that there are other distributions defined

on this interval as well, including the logit-normal distribution, the arcsine distribu-

tion, and the Kumaraswamy distribution, among others. These distributions offer

flexibility and are useful for modelling data that is naturally constrained within the

[0, 1] interval. Some recent distributions defined on [0,1] are available in the research

papers Altawil (2019) and Hassan et al. (2020).

By suitable transformation, any random variable taking values in the real line

can be transformed into [0, 1], and we can proceed with further studies. Rescaling

data into the range [0, 1] is a valuable preprocessing step in machine learning and

image processing. Among the various techniques available, the most elegant and

commonly used method is the min-max scaling procedure. This is usually used as an

alternative method to z-score normalization. Also, in neural networks, [0, 1] data is
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essential for normalizing pixel intensities. As discussed in Weigend and Gershenfield

(1993) and Yu et al. (2006) normalization plays an inevitable role in the data man-

agement. By this transformation, all the features are kept the same, but it results in

smaller standard deviations of the observations, which minimizes the outlier effect.

The subsequent rescaled data saves the original data’s relationships of the original

data; however, all values are currently bound to the minimal and interpretable range

of [0, 1]. This transformation is especially beneficial while working with algorithms

that are sensitive to the scale of input features, as it keeps specific elements from

ruling others because of their magnitude.

So in this chapter, we made an attempt to study a distribution with support

on [0, 1] which was mentioned in Hao and Godbole (2014). More recently, Quijano

Xacur (2019) has introduced a new distribution with support on [0, 1], called the

unifed distribution, which can be used as the response distribution for a generalized

linear model. Taking the index parameter as unity, this family gives the distribution

we study in this chapter. We further investigate this distribution by presenting it

in another manner and uniting the pertinent properties and results concerning it.

For deriving this, we used the compounding method. Derivations of new discrete

and continuous distributions, compounding two distributions, have been described

by several authors, see for instance, the uniform-geometric distribution in Akdogan

et al. (2016), binomial-Poisson distribution in Hu et al. (2007), and a Weibull-

power series distribution in Morais and Barreto-Souza (2011). More distributions

can also be seen in Adamidis and Loukas (1998), Kus (2007), Thahmasbi and Rezaei
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(2008), and Chahkandi and Ganjali (2009). We have a few notable disseminations,

like beta distribution and power function distributions, with support on [0, 1]. These

distributions are found to have a wide range of applications in several real-world cir-

cumstances, including reliability, time series, etc. So we have made a comparison of

the distribution studied in this chapter with these well-known distributions. Indeed,

the application of the uniform truncated Poisson distribution in modelling time se-

ries data opens up new possibilities for advanced-level model diagnosis, specifically

in the context of non-linear and volatile time series.

This chapter is organized as follows: In Section 2.2, a uniform truncated Poisson

distribution is introduced. Its properties are studied in Section 2.3. Transforma-

tions are considered and corresponding distributions are derived in Section 2.4. The

estimation of the parameter is discussed in Section 2.5, and numerical illustrations

are given therein. The asymptotic properties of the estimators are also outlined in

the same section. A generalization of this new distribution with support on a finite

interval is done in Section 2.6. Application to real data sets is given in Section 2.7

followed by a concluding section.

2.2 Uniform truncated Poisson distribution

Probability distributions defined on the interval [0, 1] are relatively less common in

the literature, and among them, the most widely used distributions are the power
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function distribution and the beta distribution. Applications of the distributions

in the interval [0, 1] are mentioned in the introduction part. The wide applications

of such distributions in various fields like neural networks, pixel intensities, artifi-

cial intelligence, physics, engineering, time series, etc. are the motivation behind

this study. There have been limited studies conducted on regression and time series

models specifically concentrated on variables within the [0, 1] range, such as percent-

ages or fractions. Some of the notable works in this context in the literature are

Kieschnick and McCullough (2003), Jara et al. (2013), Ristic and Popovic (2000a),

Rocha and Cribari-Neto (2009), and Bayer et al. (2018). So the distribution stud-

ied in this paper may be applied in the advanced fields of these areas. We have

illustrated some of the applications in Section 2.5. We consider the distribution on

[0, 1] mentioned in Hao and Godbole (2014) and construct this distribution in three

different ways. These methods are described below.

Method:1

Let U be a random variable following truncated uniform distribution with pdf,

g (u) =
1

eθ − 1
, 0 ≤ u ≤ eθ − 1.

Consider the transformation,

X =
log (1 + U)

θ
. (2.2.1)
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Then the pdf of X is

f (x) =
1

eθ − 1
θeθx, 0 ≤ x ≤ 1, θ ̸= 0. (2.2.2)

We can see that when θ = 0 the distribution is uniform in [0,1].

Method: 2

The distribution mentioned in (2.2.2) can be written as a solution of the first-order

differential equation as given below. Radioactive decay is associated with a differ-

ential equation, and an exponential random variable is an example of it. So we are

trying to construct a distribution with an initial value at time zero as a function of

θ but the limit of the initial value function at time point zero is 1. This initial value

function θ
eθ−1

is monotone decreasing in θ.

Let

dy

dx
− θy =

θ

eθ − 1
(2.2.3)

be the first order differential equation and choose y = F (x).

That is

dF (x)

dx
− θF (x) =

θ

eθ − 1
.

Solving we get

F (x) =
eθx − 1

eθ − 1

F̄ (x) = 1− F (x) =
eθ − eθx

eθ − 1
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and hence f (x) is of the form (2.2.2). Here we can see that distribution is the

solution of the first order differential equation

dy

dx
− θy =

θ

eθ − 1
.

Method :3

It can be seen that the random minimum or maximum of N iid random variables

is studied in Louzada et al. (2011), Kus (2007), Cancho et al. (2011), and several

other papers. It may be noted that Hao and Godbole (2014) have introduced the

uniform poisson model; its derivation is given below. They have applied the method

mentioned above and explored a few properties in that paper. So using the procedure

used there, under the assumption that N is a truncated Poisson with a probability

mass function

P (N = n) =
e−θθN

N !(1− e−θ)
, N = 1, 2, ...

and X1, X2, ..., XN to be of U [0, 1] with distribution function F(.), the distribution

of X=min(Xi) is,

g (X = x) = f (x)
∞∑
n=1

n (F (x))N−1 P (N = n)

which is exactly the same as (2.2.2). Hence we call this random variable X with

pdf (2.2.2) as Uniform Truncated Poisson Distribution (θ) denoted as UTPD(θ). It

is interesting to note that UTPD(θ) is derived in three distinct ways. In the next
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section, we discuss the properties of UTPD.

2.3 Properties

1. The survival function is given by,

F̄ (x) =
eθ − eθx

eθ − 1
. (2.3.1)

2. The hazard function,

h (x) =
f (x)

F (x)

=
θeθx

eθ − eθx
=

θ

eθ(1−x) − 1

We have,

d

dx
h (x) =

θ2eθ(x+1)

(eθ − eθx)2
.

It can be seen that for all θ values, the distribution has an increasing failure

rate (IFR).

3. The characteristic function is

ϕX (t) =
θ

(eθ − 1)

1

(θ + it)

(
eθ+it − 1

)
. (2.3.2)
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4. The rth moment of UTPD is given by

E(Xr) =
eθ

eθ − 1

[
1− r

θ
+
r(r − 1)

θ2
− r(r − 1)(r − 2)

θ3

+
r(r − 1)(r − 2)(r − 3)

θ4
− ...+ (−1r)

r(r − 1)(r − 2)(r − 3)...1

θr

]
+

1

eθ − 1
(−1)r+1 r(r − 1)(r − 2)(r − 3)...1

θr
, for r=1, 2, ...

5. Mean= eθ(θ−1)+1

θ(eθ−1)
.

6. Variance= eθ

eθ−1

(
1− 2

θ
+ 2

θ2

)
− 2

θ3(eθ−1)
−
(
eθ(θ−1)+1

θ(eθ−1)

)2

For θ = 1, Mean= 1
e−1

, V ariance = e2−3e+1
(e−1)2

.

7. The pth quantile is given by xp =
1
θ
log
{
1 + p

(
eθ − 1

)}
, 0 < p < 1.

8. Entropy, a measure of the uncertainty associated with the random variable is

given by

H (X) =
−θ
θ − 1

{
ln θeθ

θ
− ln θ

(
1

θ

)
+
eθ

θ
− 1

θ2
(
eθ − 1

)
− ln

(
eθ − 1

)}
.

9. Odds ratio : Odds ratios are often used in the medical literature.

(a) The odds ratio of surviving beyond time, ϕ+ = F̄ (x)
F (x)

= eθ−eθx
eθx−1

(b) The odds ratio of failure by time, ϕ− = F (X)

F̄ (X)
= eθx−1

eθ−eθx .
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The density function, distribution function, and the hazard function for differ-

ent values of θ are plotted in Figures 2.1 to 2.3 respectively. From the density

plots, it is clear that the positive value of the parameter θ confirms the left-

skewed behavior and a negative value indicates the right skewed behavior. So

it is a distribution on [0, 1], which can be used for modelling left or right skewed

data sets. When the value of θ is positive and increases, the density function

becomes more peaked but is less left-skewed. The behavior is completely con-

trary when θ is negative. Even though from Figure 2.3 it is clear that the

distribution has IFR for different values of θ, the behavior of the hazard func-

tion doesn’t vary much. The nature of this distribution is actually very similar

to power function distribution. It means a comparison with power function

distribution will be quite interesting. For illustrating this, the density plots of

UTPD and power function distribution are drawn together in Figure 2.4.

As θ > 0 and increases UTPD, coincides with power function distribution. A

comparison with beta distribution is also interesting since beta distribution is

a flexible distribution with wide applications. But we know that the failure

rate function of the beta (p,q) distribution is increasing only if p ≥ 1, and the

comparison will be meaningful only in this particular case. So we have not

considered this part in this study.
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Figure 2.1: Density plots of UTPD for various values of θ

Figure 2.2: Distribution function of UTPD for various values of θ

10. Skewness and Kurtosis

Using the quantile function given in property 7, the first, second and third
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quantiles are x0.25, x0.50, x0.75 respectively. Bowley’s measure of skewness,

S =
x0.75 + x0.25 − 2x0.50

x0.75 − x0.25

=
log[

1
16

((3eθ+1)(eθ+3)

( 1
2
(eθ+1))2

]

log[3e
θ+1

eθ+3
]

.

The kurtosis is measured by the method proposed by Moors (1988). He derived this

measure using octiles. The octiles Ei are defined as,

P (X < Ei) ≤
i

8

and

P (X > Ei) ≤ 1− i

8
.

Using octiles, the measure of kurtosis ,

K =
(E7 − E5) + (E3 − E1)

E6 − E2

.

The skewness and kurtosis for different parameter values are given in Table 2.1 and

the observations we made from the density plots regarding skewness and kurtosis are

very well established numerically in this table. It can be seen that the distribution is

symmetric with respect to θ, but the value of kurtosis is the same for both negative

and positive values of the parameter.
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Table 2.1: Skewness and Kurtosis
Parameter:θ Skewness Kurtosis

0.5 -0.0613 1.0114
2 -0.1953 1.1385
5 -0.2579 1.2925
8 -0.2616 1.3055

-0.5 0.0613 1.0114
-2 0.1953 1.1385
-5 0.2579 1.2925
-8 0.2616 1.3055

Figure 2.3: Hazard function of UTPD for various values of θ
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Figure 2.4: Comparison of UTPD and power function distribution

Remark 2.3.1. This distribution finds extensive utility in machine learning, partic-

ularly in the context of data normalization for representation, subsequent processing,
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and enhancing accuracy. The usual transformation used for this purpose is given by

xi −min(xi)

max(xi)−min(xi)
. (2.3.3)

Later in our real data analysis part, described in the last section of this chapter,

we explain the use of this distribution in such transformations.

2.3.1 Distribution of Order Statistics

Let X1, X2, X3, ..., Xn are independent random variables following UTPD with pa-

rameter θ. The pdf of min (X1, X2, X3, ..., Xn) is given by

fX(1)
(x) =

nθeθx

(eθ − 1)n
(
eθ − eθx

)n−1

and the pdf of max (X1, X2, X3..., Xn) is given by

fX(n)
(x) =

nθeθx

(eθ − 1)n
(
eθx − 1

)n−1
.

We describe some transformed distributions in the next section, which seem very

similar to some well-known distributions but with different domains.

2.4 Transformed distributions

We consider some random variables generated through transformations of (2.2.2) and

derive their distributions.
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Result 1:

Considering the transformation

U = − logX,

where X follows UTPD with density function given in (2.2.2), the pdf of U is

g(u) =
θ

eθ − 1
e−ueθe

−u
, 0 ≤ u <∞, (2.4.1)

which is the Weibull-Poisson distribution by Morais and Barreto-Souza (2011).

Result 2:

When we take a power transformation

V = X
1
β (2.4.2)

the density function of V becomes

g(v) =
θβ

eθ − 1
vβ−1eθv

β

, 0 ≤ v ≤ 1, (2.4.3)

which is similar to the Weibull distribution, but the domain is quite different.

Result 3:
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The pdf of W = 1
X
, where X follows UTPD is

h (w) =
θ

eθ − 1
eθ/w

1

w2
, 1 ≤ w <∞. (2.4.4)

The estimation of the parameter of the UTPD is discussed in the next section.

2.5 Estimation of the parameter

Methods of maximum likelihood (ML) and method of moments (MM) are used for

the estimation, and comparisons are made with numerical illustrations.

2.5.1 Maximum likelihood estimation

Suppose a sample of size n is taken from UTPD with pdf mentioned in (2.2.2). By

taking logarithm of the likelihood function and finding the derivative with respect

to θ, we have a non-linear equation

∂ logL

∂θ
= 0 ⇒ n

θ
− neθ

eθ − 1
+

n∑
i=1

xi = 0,

which can be solved numerically to estimate the parameter.
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2.5.2 Method of moments

Another method commonly used for the estimation of parameters is the method

of moment estimation (MM). Equating the first raw moment to the corresponding

central moment, we get the equation given below. Solving the same for θ we will get

the estimate. ∑n
i=1 xi
n

=
eθ (θ − 1) + 1

θ (eθ − 1)
.

2.5.3 Large sample properties

Large sample properties give significant bits of knowledge into the way estimators

behave as the sample size increases, helping researchers understand the quality and

reliability of their statistical analysis. The asymptotic properties of the ML estima-

tors under the usual regularity conditions are provided in this section.

Property 1: The ML estimator θ̂ is asymptotically normally distributed with mean

θ and variance 1
nI(θ)

where I(θ) is the well known information matrix.

Proof. : The log likelihood function is given by

logL = n log θ − n log
(
eθ − 1

)
+ θ

n∑
i=1

xi.

Then

∂logL

∂θ
=
n

θ
− n

eθ − 1
eθ +

n∑
i=1

xi
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∂2logL

∂θ2
=

−n
θ2

+
neθ

(eθ − 1)2
.

If we denote the gradient of log L, the score statistic as S(θ), and −∂2logL
∂θ2

as K(θ),

then the above equation can be written as,

K(θ) = −S ′(θ) =
n

θ2
− neθ

(eθ − 1)2
.

Also we know that,

S(θ) = ∂logL
∂θ

=
∑n

i=1
∂logf(Xi,θ)

∂θ
and

K(θ) =
∑n

i=1K(Xi, θ).

Then, E(K(θ)) = nI(θ) where I(θ) = E[∂logf(Xi,θ)
∂θ

]2 the information matrix.

Using Taylor’s formula,

0 = S(θ̂) = S(θ)−K(θ)(θ̂ − θ) +R, where R tends to zero.

And finally after adjusting the terms,
√
n(θ̂ − θ) = S(θ)/

√
n

K(θ)/n
.

By Slutsky’s theorem θ̂ converges in distribution to N(θ, 1
nI(θ)

).

Now the consistency property of θ̂ is stated below, the proof of which readily follows

as in Kale (2007).

Property 2: The likelihood equation admits a consistent solution and the consistent

estimator is essentially unique.
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2.5.4 Numerical Examples

Simulated samples of sizes 20, 60, and 100 from the population following UTPD for

selecting the better method of estimation. For the comparison purpose of the two

methods discussed above, each sample is generated 1000 times. The estimates of

θ, standard error (SE), mean square error (MSE), 95% confidence intervals (CI) for

the parameters, and coverage probabilities (CP) are shown in Table 2.2. All the

simulation works and other computations are done using R programming. From the

table, we can see that SE and MSE are decreasing with an increase in sample size.

The coverage probabilities are increasing with increase in the sample size. But for

smaller sample sizes, the coverage probabilities of the parameters estimated using the

ML method is lesser than that generated by the method of MM. It is clear from the

table that both the ML method and MM are equally good for estimation purposes

based on the MSE and both the methods give us approximately equal values as

parameter estimates.

In the next section, we have made an attempt to generalize the UTPD into a

general finite interval (a,b).
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Table 2.2: Parameter Estimates

Sample size(n) Parameter(θ) Method Estimate (θ̂) SE MSE CI CP

20 4 MLE 4.12 1.110 1.307 (3.15,5.09) 0.627

MM 4.10 0.252 1.288 (1.88,6.37) 0.957

60 MLE 4.07 0.625 0.385 (3.12,5.02) 0.880

MM 4.03 0.080 0.394 (2.80,5.26) 0.948

100 MLE 4.01 0.482 0.234 (3.07,4.96) 0.955

MM 4.02 0.048 0.246 (3.06,4.98) 0.954

20 3 MLE 3.06 0.968 1.020 (2.21,3.91) 0.620

MM 3.09 0.233 1.098 (1.05,5.14) 0.938

60 MLE 3.06 0.553 0.303 (2.22,3.90) 0.876

MM 3.04 0.072 0.312 (1.95,4.13) 0.950

100 MLE 3.01 0.424 0.183 (2.18,3.84) 0.950

MM 3.01 0.043 0.190 (2.15,3.86) 0.947

20 1.5 MLE 1.56 0.835 0.740 (0.83,2.29) 0.622

MM 1.54 0.196 0.770 (-0.17,3.26) 0.950

60 MLE 1.50 0.475 0.231 (0.78,2.22) 0.861

MM 1.55 0.063 0.147 (0.79,2.23) 0.942

100 MLE 1.50 0.367 0.147 (0.78,2.22) 0.942

MM 1.49 0.036 0.130 (0.78,2.20) 0.947

20 0.5 MLE 0.52 0.792 0.653 (-0.16,1.22) 0.610

MM 0.51 0.180 0.653 (-1.07,2.09) 0.950

60 MLE 0.50 0.452 0.209 (-0.18,1.19) 0.868

MM 0.50 0.058 0.208 (-0.38,1.40) 0.957

100 MLE 0.49 0.349 0.125 (-0.20,1.16) 0.949

MM 0.48 0.034 0.119 (-0.18,1.16) 0.950

20 -2 MLE -2.06 0.870 0.780 (-2.83,-1.31) 0.631

MM -2.10 0.203 0.840 (-3.89,-0.31) 0.954

60 MLE -2.04 0.495 0.263 (-2.79,-1.28) 0.865

MM -2.04 0.062 0.234 (-2.98,-1.09) 0.948

100 MLE -2.01 0.382 0.148 (-2.78,-1.26) 0.941

MM -2.03 0.036 0.132 (-2.74,-1.33) 0.952
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2.6 Generalized UTPD

We have seen in the definition of UTPD that the domain is [0, 1]. Now we construct

a generalization of UTPD into a distribution defined on a finite interval (a, b). Let

X be a continuous random variable defined on (a, b). The pdf of X is given by,

f (x) =
θ

eθb − eθa
eθx, a < x < b, θ ̸= 0.

When θ = 0, it becomes the uniform distribution defined on (a,b).

Properties

1. The rth raw moment is given by,

E(Xr) = C{b
keθb − akeθa

θ
− k

θ2
(bk−1eθb − ak−1eθa) +

(k − 1)k

θ3
(bk−2eθb − ak−2eθa)

+...+
(−1)k(1.2.3...k)

θk+1
(eθb − eθa)},

where C = θ
(eθb−eθa) .

2. Mean= beθb−aeθa

(eθb−eθa)
− 1

θ
.

3. Variance= θ

(eθb−eθa)

{
b2eθb−a2eθa

θ
− 2

θ2

(
beθb − aeθa

)
+ 2

θ3

(
eθb − eθa

)}
−
(
beθb−aeθa

(eθb−eθa)
− 1

θ

)2

.

4. The hazard rate function h (x) = θeθx

eθb−eθx .

5. The Mean residual life function, (MRL) , µ (t) = 1
eθb−eθa−eθt−eθa

{
eθb (b− t− 1) + etb

}
.
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6. The quantile function is x = 1
θ
ln
[
eθa (1− u) + ueθb

]
.

More interesting features are considered for further studies.

In the following section, the application of the distribution is demonstrated by fit-

ting UTPD to four distinct datasets. A comparison between the UTPD and power

function distributions is carried out for each of these datasets, as mentioned in

Section 2.2.

2.7 Real data analysis

Dataset 1: The data set originates from the solar incentive program of the Los

Angeles Department of Water and Power (LADWP), which provides incentives to

help mitigate the expenses associated with the installation of solar rooftop systems

for residential and commercial properties in Los Angeles. This metric measures the

Net Energy Metering (NEM) installed capacity (kilowatts), which is available at

https://catalog.data.gov/dataset. The data consists of observations from the years

2016 to 2018, which depicts the application of UTPD in time series as well as physics.

The data can be transformed using (2.3.3) to transform into the range [0, 1]. Now

we have made an attempt to fit the power function and UTPD to this transformed

data. According to Table 2.3, the Kolmogorov-Smirnov (K-S) distance measure and

p-value indicate that both the UTPD and power function distributions are good fit

for this data set. The p-value being greater than 0.05 confirms that both distribu-

tions are good approximations. However, upon comparison, the UTPD is seemed to
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be a better fit as it exhibits a smaller K-S distance and a higher p-value compared

to the power function distribution.

Dataset 2: Data set 2 is the total tax and non-tax revenue of Egypt from 2002

to 2018, which is available at https://stats.oecd.org, and these are time series ob-

servations from the financial sector. Transform the data using (2.3.3) and Based on

the K-S distance and p-value provided in Table 2.3, we find that both the power

function and UTPD are appropriate fits for this data. However, considering these

two measures, it becomes evident that the UTPD is a better fit compared to the

power function distribution for this dataset.

Dataset 3: Now we consider another time series to illustrate the applications of

UTPD. This is a set of observations of the Japan consumer confidence index from

January 2014 to March 2021. (Ref: https://stats.oecd.org). Upon applying suitable

transformation, both the power function and UTPD are found to be suitable fits

for the transformed data, as indicated by the values in Table 2.3. However, due to

the higher p-value and lower K-S distance associated with the UTPD compared to

the power function, it becomes evident that the UTPD provides a good fit for the

transformed data.
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Figure 2.5: Density plots of fitted data sets

Dataset 4: The fourth data set we consider is the ball bearing data taken from

Lawless (2003) to employ it in the engineering field. The data are the number of

million revolutions before failure for each of the 23 ball bearings in the life test,

and they are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12,



72 Chapter 2

55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04,

and 173.40. The data can be transformed to the interval [0, 1] using (2.3.3). By

examining the K-S distance and p-value provided in Table 2.3, it becomes evident

that the UTPD is a more suitable fit for this transformed data compared to the

power function distribution. The densities of the original data sets together with the

fitted densities plotted in Figure 2.5 reveal that UTPD is a good fit for all the data

sets considered.

Table 2.3: Fitting of real data sets

Distribution Parameter K-S distance p-value

Dataset 1 UTPD 0.75 0.0967 0.9991

Power function 1.28 0.1290 0.9634

Dataset 2 UTPD 2.29 0.1176 0.9999

Power function 2.08 0.1764 0.7631

Dataset 3 UTPD 3.64 0.0919 0.8585

Power function 3.04 0.1149 0.6164

Dataset 4 UTPD 1.91 0.1421 0.7657

Power function 1.86 0.2173 0.6487

2.8 Conclusion

In this chapter, we have studied in detail the UTPD as the solution of a first order

differential equation and derived the same from the truncated uniform distribution.
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Comparisons with some well known distributions are done. The expressions for mo-

ments, distributions of the order statistics etc. are further derived. Some transformed

distributions are studied. Some of the estimation procedures for the parameters are

discussed. The newly constructed distribution is applied on real data.
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CHAPTER 3

AUTOREGRESSIVE UNIFORM TRUNCATED

POISSON PROCESS

3.1 Introduction

The time series data observed over time exhibit deviations from linear patterns, show-

ing various distinctive features such as cycles, asymmetries, bursts, sudden changes,

chaotic behavior, critical points, and varying levels of volatility. Conventional time

series models often fail to capture the intricate characteristics present in economic

and financial data, disregarding essential elements. In order to facilitate a more

comprehensive understanding of the changes that have taken place in the financial

and economic systems, including notable structural and behavioral changes, it is ap-

propriate to investigate the necessity of using multiple time series models to explain

75
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empirical data at different time intervals. Therefore, non-linear time series models

are employed to analyze and interpret these variations within the data. Different

types of non-linear time series models are discussed in Chapter 1.

Probability distributions defined on the interval [0, 1] are essential for many

applications in machine learning, risk management, neural networks, etc. In some

situations, certain aspects of organisms may exhibit relatively uniform patterns, such

as genetic uniformity in clonal organisms, uniformity in certain traits within species,

social insects, and ecosocial social behavior. Also, for the variables in [0, 1], like

percentages or fractions, only a few studies exist on regression or time series models.

This motivates us to examine the non-linear time series applications of UTPD that

are discussed in Chapter 2. So this chapter is intended to construct a non-linear AR

model with UTPD mentioned in (2.2.2) as the marginal distribution.

This chapter is organized as follows: In Section 3.2, the uniform truncated Poisson

autoregressive process is introduced. It’s properties are studied in Section 3.3. The

parameters involved in the proposed model is estimated using different methods, and

simulation studies are also done in Section 3.4. Section 3.5 is devoted to the real

data analysis, followed by a concluding section.
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3.2 Uniform truncated Poisson autoregressive pro-

cess of order 1

Autoregressive modelling is one of the techniques used for time-series analysis. An

autoregressive model is a time-series model that describes how a particular variable’s

past values influence its current value. Autoregressive processes are, as their name

suggests, regressions on themselves. Autoregressive models are based on the idea

that past events can help us predict future events. The study of the AR model has

a long history, and several models are available in the literature. We can see some

non-linear AR models, like the Beta-Gamma AR(1) process in Lewis et al. (1989).

As it’s generalization, a stationary Beta-Gamma AR(2) process with Gamma(k,

β) as marginal is described in Ristic (2005). A new stationary AR(1) (NUAR(1))

model with marginally continuous uniform (0,1) distribution is presented in Ristic

and Popvic (2000a). An estimation of the unknown parameters of the NUAR(1)

process was done by Ristic and Popvic (2000b). The uniform autoregressive process

of second order (UAR(2)) can be seen in Ristic and Popvic (2002). In this section,

we develop an AR(1) model with the UTPD mentioned in equation (2.2.2) as the

marginal distribution.
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The model is introduced as follows: Let {Xn} be a sequence of stationary random

variables defined as

Xn =


εn with probability e−|θ|

e−|θ|Xn−1 + εn with probability 1− e−|θ|

(3.2.1)

where {εn} is a sequence of iid random variables such that Xn−1 is independent of

εn, for n ≥ 1. We can derive the characteristic function of εn using (3.2.1). Taking

the characteristic function of Xn in (3.2.1) and solving we get,

ϕεn (t) =
ϕXn (t)(

e−|θ| + (1− e−|θ|)ϕXn−1 (e
−|θ|t)

)
In the model (3.2.1), we assume that {Xn} is a stationary sequence following the

distribution UTPD. Hence, we call this process as uniform truncated Poisson au-

toregressive process of order 1 (UTPAR(1)). Now, substituting the characteristic

function of ϕXn (t) given in (2.3.1),

ϕεn (t) =
θ
(
θ + ie−|θ|t

) (
eθ+it − 1

)
(θ + it)

[
e−|θ| (eθ − 1) (θ + ie−|θ|t) + θ (1− e−|θ|)

(
eθ+ie−|θ|t − 1

)] . (3.2.2)

Note that the complex structure of the characteristic function makes it difficult

to find the pdf of the random variable εn using the inversion formula.

We will discuss the properties of the UTPAR(1) process in the next section.
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3.3 Properties

Then using the well known result of finding the mean from the characteristic function,

the mean of the innovation random variable is E (εn) =
1
i
ϕ′
εn (0). After simplifica-

tion, it is

E (εn) =

[
eθ (θ − 1) + 1

θ (eθ − 1)

] (
e−2|θ| − e−|θ| + 1

)
. (3.3.1)

Similarly, from the characteristic function, the variance of the innovation random

variable is derived as

V ar (εn) =

[
eθ

eθ − 1

(
1− 2

θ
+

2

θ2

)
− 2

θ3 (eθ − 1)

] [
1− e−2|θ| (1− e−|θ|)]

−
(
eθ (θ − 1) + 1

θ (eθ − 1)

)2 (
1− e−|θ| + e−2|θ|) (e−|θ| − e−2|θ| + 1

)

The kth order auto correlation,

ρ (k) = Cov(Xt,Xt−k)√
V ar(Xt)V ar(Xt−k)

is obtained as

ρ (k) =

(
1− e−|θ| + e−2|θ|)µ(1 + e−|θ| (1− e−|θ|)+ ...+ e−(k−1)|θ| (1− e−|θ|)k−1

)
δ − µ

+
e−k|θ|

(
1− e−|θ|)k δ − µ

δ − µ
,



80 Chapter 3

where

µ =

[
eθ(θ−1)

θ(eθ−1)

]2
,

δ =

[
eθ

eθ−1

(
1− 2

θ
+ 2

θ2

)
− 2

θ3(eθ−1)

]
.

Now we look at the conditional properties. The conditional expectation,

E (Xn/Xn−1) = e−|θ|E (εn) +
(
1− e−|θ|) (e−|θ|x+ E (εn)

)
= E (εn) + e−|θ| (1− e−|θ|)x
=

[
eθ (θ − 1) + 1

θ (eθ − 1)

] (
e−2|θ| − e−|θ| + 1

)
+ e−|θ| (1− e−|θ|)x. (3.3.2)

which indicates a consistent pattern or behavior between Xn and Xn−1.

The conditional variance can be obtained by using

V ar (Xn/Xn−1 = x) = E
(
X2
n/Xn−1 = x

)
− (E (Xn/Xn−1 = x))2

From (3.2.1),

E
(
X2
n/Xn−1 = x

)
= δ

(
1− e−2|θ| + e−3|θ|)− µ2e−|θ| (1− e−|θ|) (1− e−|θ| + e−2|θ|)

+2e−|θ| (1− e−|θ|) (e−2|θ| − e−|θ| + 1
)(eθ (θ − 1) + 1

θ (eθ − 1)

)
x

−
(
1− e−|θ|) e−2|θ|x2



Chapter 3 81

Then,

V ar(Xn/Xn−1 = x) = µ
(
e−2|θ| − 2e−3|θ| + e−4|θ|)+ δ

(
1− e−2|θ| + e−3|θ|)

+
(
e−3|θ| − e−4|θ|)x2. (3.3.3)

In the next section, we estimate the parameter of the proposed model. A major

problem in the analysis of non-Gaussian time series is to find the distribution of

the innovation random variable εn for a specified marginal distribution of {Xn}.

Due to the structure of (3.2.2), the pdf of the {εn} is difficult to identify. It is

obvious that the likelihood function for the sequence {Xn} do not have a closed-form

expression, and hence the ML estimation method fails. We propose the conditional

least squares estimation (CLSE) method introduced by Klimko and Nelson (1978)

and the Gaussian estimation method for estimating the parameters.

3.4 Estimation and Simulation

3.4.1 Conditional least square estimation

One of the key issues in modelling non-Gaussian time series is parameter estima-

tion in the model. If the innovation random variable has a closed-form density, the

maximum likelihood technique of estimation can be utilized. The innovation random

variables typically do not have closed-form densities in non-Gaussian AR models. For

the proposed AR(1) model, we give a thorough examination of CLSE. A dependent
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observation estimation technique called CLSE is based on the idea of minimizing a

sum of squared deviations from conditional expectations. Here, we provide a quick

explanation of the conditional least squares approach created by Klimko and Nelson

(1978).

Let {Xt, t = 1, 2, ...} be a stochastic process defined on a probability space (ω,F , Pθ),

whose distribution depends on an unknown parameter vector θ = (θ1, θ2, ...θp)
′. Let

{Ft}∞t=1 denote a sequence of sub-sigma fields with Ft−1 generated by an arbitrary

subset of {X1, X2, ..., Xt−1} , t > 1. Then the CLS estimator of the parameters is

obtained by minimizing the conditional sum of squares.

Qt (θ) =
n∑
t=1

[xt − g (θ;Ft−1 )]
2 .

with respect to the parameter vector θ = (θ1, θ2, ...θp)
′; g (θ;Ft−1 ) = E (Xt/Ft−1) .

Then the estimates of the parameters are obtained by solving the least square equa-

tions given below.

∂Qt (θ)

∂θi
= 0, i = 1, 2, ...p

Under a set of regularity conditions, CLS estimators are strongly consistent and

asymptotically jointly normally distributed. The assumptions made about the ap-

plication of strong laws, central limit theorems, and iterated logarithms to sums of

dependent variables. Stout (1974), McLeish (1974), and Heyde and Scott (1973)

referred to a wide variety of conditions under which these assumptions hold. We
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employ this method to estimate the θ of our UTPD AR(1) model. Let (x1, x2, ..., xT )

be a realization from the stationary UTPAR(1) sequence. The CLS estimate of

the parameter θ is obtained by minimizing the conditional error sum of squares.

Qt (θ) =
∑T

t=1 (xt − g (θ, xt−1))
2, where g (.) is the conditional expectation. Then

using (3.3.2),

Qt(θ) =
T∑
t=2

[
xt −

[
eθ (θ − 1)

θ (eθ − 1)

] (
e−2|θ| − e−|θ| + 1

)
− e−|θ| (1− e−|θ|)x]2 . (3.4.1)

By finding the derivative of Qt(θ) with respect to θ and equating to zero, we have a

non-linear equation, that can be solved numerically to estimate the parameters.

3.4.2 Gaussian estimation method

Whittle (1962) introduced a method that employed the Gaussian likelihood function

as the baseline distribution for estimation. Subsequently, Crowder (1985) applied

this method to analyze correlated binomial data. Al-Nachawati et al (1997) and

Alwasel et al. (1998) extended this estimation procedure to the context of a first

order autoregressive process. Despite its approximate nature, this method yields

good estimations for our model. The conditional maximum likelihood function is

given by

L = f (x1)
n∏
t=2

f (xt/xt−1) . (3.4.2)
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Here f (xt/xt−1) and f (x1) are the conditional and marginal probability functions

of Xt/Xt−1 and Xt respectively. We assume Gaussian pdf for f (x1) and f (xt/xt−1)

with conditional mean and conditional variance as the parameters. Then the log-

likelihood function can be written as

log (L) = nlog
1√
2π

− 1

2

n∑
t=2

(
log
(
σxt−1

)
+

(
xt −mxt−1

)2
σ2
xt−1

)
, (3.4.3)

mxt−1 is the conditional mean and σ2
xt−1

is the conditional variance. The Gaussian

estimators are thus obtained by maximizing the above non-linear equation. But the

estimator of the parameter cannot be written in explicit form. These equations can

be solved numerically. Crowder (1985) pointed out that under the Gaussian method

of estimation of the parameter θ,
√
n
(
θ̂ − θ

)
is asymptotically normally distributed

with mean 0 and asymptotic variance [J (θ)]
−1

, where J (θ) is the conditional ex-

pectation information matrix. An approximation of the same using the observed

conditional information matrix is described in Bakouch and Popvic (2016). To check

the validity of the estimates, we conducted a simulation study, and the MSE is used

for comparison purposes.

3.4.3 Simulation

For checking the validity of the model, we simulated 1000 samples of sizes 20, 50, and

100 for different values of the parameter θ for selecting the best method of estimation.

The estimates of θ and MSE values are shown in Table 3.1. R-programming is used
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for the simulation work and related computations. It can be seen that the MSE is

decreasing when the sample size is increasing. From the table, it is clear that both

the CLS method and the Gaussian method are equally good for estimation based on

the MSE.

3.5 Real Data Analysis

In this section, we illustrate the application of the model using a real-time data set.

An important point to be noted is that our marginal distribution is UTPD, and

its range is in [0, 1]. So we convert the data sets to [0, 1] using the transformation

mentioned in (2.3.3). The model is fitted for these transformed data set.

Data set: The data set is taken from the website https://data.worldbank.org. We

considered the amount of carbon dioxide emissions in Japan per capita (metric tons)

from 1990 to 2020. The data is transformed into [0, 1], using min-max transformation.

The ACF plot in Figure 3.1 and PACF plot in Figure 3.2 reveal that the AR(1) model

is a good fit, and UTPD also fits well as a distribution with θ̂=0.8940. It is confirmed

using the K-S test with a p value of 0.2558 and a test statistic value of 0.4135. The

actual and predicted values are plotted in Figure 3.3. The p-value of the Ljung-Box

test is 0.1041, implying that the errors are independent. The histogram of errors is

plotted in Figure 3.4.
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Table 3.1: Estimates of parameter

Sample size(n) Parameterθ Method Estimate (θ̂) MSE

20 3 CLS 3.0883 0.7008

Gaussian Estimation 3.5036 0.2535

50 CLS 3.4675 0.4807

Gaussian Estimation 3.2303 0.0530

100 CLS 2.8395 0.2185

Gaussian Estimation 2.8921 0.0116

20 2 CLS 2.4689 0.3999

Gaussian Estimation 2.3553 0.4156

50 CLS 2.3859 0.1489

Gaussian Estimation 2.8259 0.0303

100 CLS 1.8695 0.0170

Gaussian Estimation 1.9468 0.0109

20 0.5 CLS 1.9730 1.2060

Gaussian Estimation 1.5295 1.0598

50 CLS 1.4392 0.8819

Gaussian Estimation 0.2505 0.0439

100 CLS 0.4431 0.2496

Gaussian Estimation 0.243 0.0321

20 -1.5 CLS -3.15 2.7500

Gaussian Estimation -2.7378 0.8600

50 CLS -2.2397 2.5059

Gaussian Estimation -2.3608 0.3890

100 CLS -1.8070 0.0492

Gaussian Estimation -1.786 0.2860
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Figure 3.1: ACF of Japan CO2 data

Figure 3.2: PACF of Japan CO2 data
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3.6 Conclusion

In this chapter, we constructed the time series models in mixture form, with UTPD

as the marginal. Distributional properties and classical procedures for the estimation

of the associated parameters of the proposed process are discussed. The simulation

studies are done. Applications of the UTPAR(1) process are illustrated with a real

data set, and forecasting is done accordingly.
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CHAPTER 4

UNIFORM TRUNCATED POISSON

AUTOREGRESSIVE CONDITIONAL DURATION

PROCESS

4.1 Introduction

Time series data collected at an extremely fine scale is referred to as high-frequency

data. High-frequency data is now widely used in financial analysis and high-frequency

trading. As a result of advances in computational power in recent decades, high-

frequency data can be collected accurately and efficiently for analysis. These data

sets were created by accumulating tick by tick market data, where every single event

is represented by a tick or one logical unit of information. High-frequency data collec-

91
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tions typically contain a large amount of data and allow for high statistical precision.

As a result, the observations are irregularly spaced in time, which is a common fea-

ture of this data. Recent models from the market microstructure literature claim

that time should be modelled because it can convey a lot of information. To analyse

the dynamic behaviour of financial duration data, Engle and Russel (1998) proposed

the ACD model as mentioned in (1.6.13). They use the exponential and Weibull dis-

tributions to model the conditional distribution of an interval given past data. Since

its inception, the ACD model and its various extensions have established themselves

as a leading tool for modelling the behaviour of irregularly spaced financial data.

Similar ACD models can be seen in Bauwens and Giot (2000), Grammig and

Maurer (2000), Bhatti and Chad (2010), Pacurar (2008), Zhang et al. (2001) etc.

In this chapter, we give the ACD model corresponding to the newly introduced dis-

tribution where the duration is lying in [0, 1] or by suitably transforming the long

duration to (0,1).

The Box and Jenkins method emphasises stationary ARMA models with Gaus-

sian innovations in time series analysis. Non-Gaussian distributions better explain

the majority of real-life situations. When dealing with this type of data, some trans-

formations are performed to ensure that the changes result in a normal distribution.

However, in several cases, the transformation method produces poor results. As a

result, many non-Gaussian models have been developed over the last four decades.

This is evident from the research of Nelson and Granger (1979), Weiss (1977), and

Yakowitz (1973). Then again, the majority of the data sets we examine fall within
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finite ranges. In the physical sciences, there are several data sets in (0, 1) that are

employed in experimental study. The literary analysis helped us identify the works

of Altawil (2019) and Hassan et al. (2020). In these sectors, the min-max scaling

approach indicated in (2.3.3) is the most often used form of rescaling.

In this chapter, we made an attempt to introduce an autoregressive conditional

duration model (ACD) with the UTPD mentioned in (2.2.2) as the marginal, where

the duration is in [0, 1]. In Section 4.2, uniform truncated autoregressive conditional

process is introduced and its properties are studied. Estimation and simulation

studies are discussed in Section 4.3, and real data applications are illustrated in

Section 4.4. Concluding remarks are given in Section 4.5.

4.2 Uniform truncated Poisson autoregressive con-

ditional duration process

Let X follow UTPD with pdf given in (2.2.2) with mean,

E (X) =
eθ (θ − 1) + 1

θ (eθ − 1)
.

Consider the transformation,

ϵ =
Xθ
(
eθ − 1

)
eθ (θ − 1) + 1

. (4.2.1)
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The first and second-order moments of the transformed random variable respectively

are,

E(ϵ) = 1 (4.2.2)

E(ϵ2) =
(eθ − 1)[eθ(θ2 − 2θ + 2)− 2)]

(eθ(θ − 1) + 1)2
, (4.2.3)

and hence it has a unit mean with pdf

fεi (ϵ) =
eθ (θ − 1) + 1

(eθ − 1)2
e
ε

[
eθ(θ−1)+1

eθ−1

]
; 0 < ϵ <

θ
(
eθ − 1

)
eθ (θ − 1) + 1

. (4.2.4)

Similar to the basic ACD model in (1.6.11) and (1.6.13), we define a conditional

autoregressive duration model as given below.

Let

Xi = ψiϵi, (4.2.5)

where

ψi = ω + αXi−1 + βψi−1, i = 1, 2, 3, ...n.

Here we assume that {ϵi} follows (4.2.4). Then the conditional pdf of Xi given ψi is

f(Xi
ψi

) (xi) = 1

ψi
fεi

(
xi
ψi

)
=
eθ (θ − 1) + 1

(eθ − 1)2
e

[
eθ(θ−1)+1

eθ−1

]
xi
ψi

1

ψi
; 0 < xi <

ψiθ
(
eθ − 1

)
eθ (θ − 1) + 1

.

(4.2.6)

We call the process defined in (4.2.5) as the uniform truncated Poisson autoregressive

conditional duration process of order (1,1) (UTPACD(1,1)). Analytical properties
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such as moments, autocorrelations will be investigated next, allowing us to gain a

thorough understanding of the model.

4.2.1 Properties

Here we discuss the properties of the UTPACD(1,1) process.

1. Conditional Mean: Assuming stationarity, the conditional mean of the

UTPACD process is given by

µx = E

(
Xi

ψi

)
=

ω

1− α− β
. (4.2.7)

2. Second order moments and variance:

For weak stationarity of {Xi}, the condition 0 ≤ α + β < 1 must be satisfied.

Second order moment,

E
(
X2
i

)
= E

[
E
(
ψ2
i ε

2
i /Fi−1

)]
. (4.2.8)

Now using weak stationarity of ψi and Xi, we have

E
(
ψ2
i

)
= E (ω + αXi−1 + βψi−1)

2

= E
(
ω2 + α2X2

i−1 + β2ψ2
i−1 + 2αωXi−1 + 2βωψi−1 + 2αβXi−1ψi−1

)
= ω2 + α2E

(
X2
i−1

)
+ β2E

(
ψ2
i−1

)
+ 2αωµx + 2ωβµx + 2αβµ2

x

=
µ2
x [1− (α2 + β2)]

1− α2E[ϵ2i ]− β2
.
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Therefore

E
(
X2
i

)
=
µ2
x [1− (α2 + β2)]

1− α2E[ϵ2i ]− β2
E[ϵ2i ], (4.2.9)

3. Variance:

Using V ar (Xi) = E (X2
i ) − (E (Xi))

2 and (4.2.9), we have the unconditional

variance,

V ar (Xi) =
µ2
x [1− (α2 + β2)]

1− α2E[ϵ2i ]− β2
E[ϵ2i ]− µ2

x

=
µ2
x(1− β)2[E(ϵ2i )− 1]

1− α2E(ϵ2i )− β2
(4.2.10)

4. Autocorrelation function:

The recurrence relation for kth order ACF is (k > 1)

ρk = (α + β) ρk−1. (4.2.11)

Proof:

The kth order autocovariance function of {Xi} is,

γk = Cov (Xi, Xi−k)

= Cov (ψi, Xi−k)

= Cov (ω + αXi−1 + βψi−1, Xi−k)

= αCov (Xi−1, Xi−k) + βCov (ψi−1, Xi−k)

= (α + β) γk−1
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Now the ACF of lag k, when k > 1 is

ρk = (α + β) ρk−1.

The first-order autocovariance function of Xi is

γ1 = Cov (Xi, Xi−1)

= Cov (ψi, Xi−1)

= Cov (ω + αXi−1 + βψi−1, Xi−1)

= αV ar (Xi) + βV ar (ψi−1)

where

V ar (ψi) = E
(
ψ2
i

)
− (E (ψi))

2

=
µ2
x [1− (α2 + β2)]

1− α2E[ϵ2i ]− β2
− µ2

x

=
α2µ2

x (E (ε2i − 1))

1− α2E (ε2i )− β2

Therefore,

ρ1 =
α(1− β2 + αβ)

[1− β2]
.

The parameter estimation of the UTPACD(1,1) process is discussed in the following

section. The simulations are also used to evaluate the precision of the estimation

methods.
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4.3 Estimation of parameters

The Gaussian method of estimation is proposed here for the estimation of the param-

eters. But, due to the complicated structure of the likelihood function, the estimation

yields some problems in the estimates of one of the parameters α and β. So we use

a heuristic procedure for evaluation of the initial values of these parameters.

Gaussian estimation

Let X1, X2, ..., Xn be a sample. The likelihood function is defined as

L (X | Θ) = f (x1 | Θ)
n∏
i=2

fxi|ψi (Xi | Fi−1; Θ) , (4.3.1)

where f (x1 | Θ) is the density function of the initial random variable. The condi-

tional log-likelihood function after eliminating the density of X1 is

logL =
n∑
i=2

log

{
eθ(θ − 1) + 1

(eθ − 1)2
e
[
eθ(θ−1)+1

eθ−1
]
xi
ψi

1

ψi

}

= nlog[eθ(θ − 1) + 1]− 2nlog(eθ − 1) + [
eθ(θ − 1) + 1

eθ − 1
]

n∑
i=2

xi
(ω + αXi−1 + βψi−1)

−
n∑
i=2

log(ω + αXi−1 + βψi−1). (4.3.2)
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The MLE of the parameters are obtained by solving the following likelihood

equations.

∂logL

∂θ
= 0 =

n

eθ (θ − 1) + 1
θeθ − 2neθ

eθ − 1
+

n∑
i=2

xi
[
e2θ − eθ(1 + θ

)
]

(ω + αXi−1 + βψi−1) (eθ − 1)2
.

(4.3.3)

∂logL

∂ω
= 0 ⇒ −[eθ (θ − 1) + 1]

eθ − 1

n∑
i=2

xi

(ω + αXi−1 + βψi−1)
2−

n∑
i=2

1

(ω + αXi−1 + βψi−1)
.

(4.3.4)

∂logL

∂α
= 0 ⇒

−
[
eθ (θ − 1) + 1

]
eθ − 1

n∑
i=2

XiXi−1

(ω + αXi−1 + βψi−1)
2−

n∑
i=2

Xi−1

ω + αXi−1 + βψi−1

.

(4.3.5)

∂logL

∂β
= 0 ⇒

−
[
eθ (θ − 1) + 1

]
eθ − 1

n∑
i=2

Xiψi−1

(ω + αXi−1 + βψi−1)
2−

n∑
i=2

ψi−1

ω + αXi−1 + βψi−1

.

(4.3.6)

By solving these five equations numerically or maximising (4.3.1) we can find the es-

timates. For this purpose, we have used the GA function and maxLik package in R.

However, we employed a heuristic least square approach using the sample values to

ensure the correctness of the estimation procedure, which is described below. Here, a

simple and direct strategy is employed. We first estimate the two model parameters

α and β by equating the first two sample moments with the corresponding popu-

lation values. These values are used only for initial value determination. Then the

estimates of θ, α and β are obtained by maximising (4.3.1). The third model param-

eter ω is obtained using (4.2.7). This method reduces the bias and imprecision in the

estimation procedure. We use GA in R for this, and dfsane and BBSolve in R for

the initial value determination. The estimation methods are validated by simulating
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samples of sizes 20, 50, and 100 and then repeating the simulation 100 times for the

parameter values. Table 4.1 shows the various values of the parameters assumed for

this purpose, as well as the corresponding estimated values. Table 4.1 also shows

the computed MSE values and it is straightforward that the MSE decreases as the

sample size increases.
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Table 4.1: Parameter Estimates

True values are θ=3, α=0.1, β= 0.1

Sample size θ̂ α̂ β̂ ω̂ MSE(θ̂) MSE(α̂ MSE(β̂)

20 2.77 0.05 0.06 0.63 0.09 0.0200 0.004

50 2.84 0.07 0.08 0.60 0.064 0.0200 0.004

100 2.76 0.06 0.06 0.62 0.063 0.0003 0.003

True values are θ=3, α=0.1, β= 0.2

20 2.91 0.06 0.06 0.63 0.063 0.0220 0.004

50 2.84 0.07 0.07 0.61 0.060 0.0210 0.004

100 2.79 0.06 0.06 0.62 0.058 0.0200 0.003

True values are θ=2, α=0.1, β= 0.3

20 1.87 0.07 0.06 0.56 0.064 0.023 0.004

50 1.79 0.06 0.06 0.56 0.063 0.021 0.003

100 1.82 0.07 0.06 0.56 0.063 0.021 0.003

True values are θ=2, α=0.2, β= 0.1

20 1.86 0.07 0.06 0.56 0.080 0.020 0.004

50 1.79 0.06 0.06 0.56 0.053 0.020 0.004

100 1.86 0.07 0.06 0.56 0.053 0.020 0.003

True values are θ=1, α=0.2, β= 0.3

20 0.86 0.07 0.06 0.50 0.044 0.021 0.004

50 0.88 0.07 0.07 0.49 0.038 0.020 0.004

100 0.86 0.07 0.07 0.49 0.035 0.019 0.003

True values are θ=1, α=0.3, β= 0.4

20 0.85 0.07 0.08 0.49 0.037 0.027 0.004

50 0.89 0.07 0.07 0.49 0.036 0.020 0.004

100 0.86 0.06 0.07 0.50 0.033 0.020 0.004
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4.4 Real data analysis

Data set 1: The earthquake data for Japan, taken from the Japan Meteorological

Agency website, is taken for analysis purposes. The data was accessed in November

2023. The data was from November 10, 2023, at 4.29 a.m. to November 17, 2023,

at 10.55 p.m. First, we converted the duration to [0, 1] scale using the min-max

transformation. The transformed duration follows UTPD, which is clear from the

p-value of 0.6882 of the K-S test. We got the parameter estimates as θ̂= -4.45, α̂=0.1

and β̂=0.56, and ω̂ = 0.02. The density of the estimated durations is superimposed

on the histogram of the original durations in Figure 4.1. The corresponding time

series plot is displayed in Figure 4.2. In Figure 4.3, errors are plotted.

Data set 2: To demonstrate the use of ACD models with UTPD, we have created

a hypothetical data set in this example. The generated data set has a size of 100

and is on (0, 1). The procedure is repeated as in the case of data set 1 with θ = 4,

α = 0.3, β = 0.4, and ω = 0.22. It is shown in Figures 4.4 and 4.5, where the

estimated values are compared with original values showing the density plot and line

plot, respectively.



Chapter 4 103

Earthquake durations

Duration

D
e
n
s
it
y

0 200 400 600 800

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4 Original values

predicted values

Figure 4.1: Fitted density plot of earthquake data
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Fitted residuals
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4.5 Conclusion

In this chapter, we constructed the autoregressive conditional duration process with

UTPD as the distribution of durations . Distributional properties and classical pro-

cedures for the estimation of the associated parameters of the process are discussed.

Simulation studies is done. Application of the UTPACD process are illustrated with

real data.
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CHAPTER 5

SPATIAL AUTOREGRESSIVE MODELS

5.1 Introduction

1

Spatial and temporal analysis have gained substantial prominence across various

real-world scenarios in contemporary times. Through spatial analysis, we can rec-

ognize event patterns in relation to geographical locations, evaluate or assess them,

construct event models, and subsequently forecast future values using these models.

The credibility of these patterns can be verified by applying statistical tools and tech-

niques skillfully. While spatial analysis and time series analysis are distinct fields,

we can integrate them in certain contexts, such as when analyzing spatio-temporal

1This chapter is based on Krishnarani, Gautham Manoharan and Vidya (2021)
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data where both spatial and temporal components are present. In such cases, the

techniques of both may be used together to obtain a deeper understanding of the

underlying patterns and relationships.

In this chapter we examine the influence of spatial factors in the healthcare sector,

focusing specifically on child mortality rates. Child mortality serves as an indicator

that mirrors the developmental metrics of a country, encompassing health, income,

literacy, and other socio-economic elements. Child mortality serves as a significant

gauge of the development of a country, particularly within the health sector. Child

mortality, or under-five mortality, is defined as the number of deaths of children

under age 5 per 1000 live births. Over time, it is evident from the records that

the under-five mortality rate has had a discernible decline, with notable disparities

evident across geographical regions. According to data from the World Health Orga-

nization (WHO), the African region struggles with the highest under-five mortality

rate, at 74 per 1000 live births. This figure is approximately 9 times greater than

that recorded in the European region, where the rate is recorded at 8 per 1000 live

births, and such comparisons with several continents can be found on the WHO’s

official website. This highlights the importance of studying the spatial impact of

child mortality rates.

Some studies on mortality with spatial impact can be seen in Li et al. (2019),

Manuel et al. (2018), Singh and Masquelier (2018), Gupta et al. (2016), Pezzulo et

al. (2016), Xiang and Song (2016), etc. Li et al. (2019) constructed a weighted logis-

tic regression model for each place and time, and the Bayesian space-time smoothing
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model is used to estimate trends for the mortality data obtained by conducting a

survey of 35 countries in Africa. Manuel et al. (2018) used the spatial autoregressive

model (SAR) and classical autoregressive error model to explore infant mortality

by taking the influencing variables as the number of women in fertile age and the

monthly income of women. This study was specifically concentrated in Alfenas City,

Minas Gerais. Using ordinary least squares and geographically weighted regression,

Singh and Masquelier (2018) studied the district-specific relationship between child

mortality and a series of determinants. Gupta et al. (2016) analyzed infant mor-

tality among several states of India using the SAR model with respect to household

amenities, mother/child, and health facility variables. Pezzulo et al. (2016) described

geospatial modelling of mortality data in sub-Saharan Africa. Xiang and Song (2016)

modeled the perinatal mortality of China province using SAR models.

Apart from the spatial impact, there are numerous additional factors that influ-

ence child mortality. Some of them are income inequality, gross domestic product

(GDP), the population of the country, and the facilities in the health sector. Low-

income countries may possess high child mortality rates. According to the Organi-

zation for Economic Co-operation and Development (OECD) (2019) report, in the

year 2018, OECD countries spent 8.8% of GDP on health, the USA 16.9%, Switzer-

land 12.2%, etc. The expenditure of each country, continent, and other clusters of

countries in the health sectors is displayed on the website of the World Bank. These

reports say Europe spent 9.85% of GDP, South Africa 8.25%, Sub-Saharan Africa

5.15%, Australia 9.28%, and East Asia and Pacific spent 6.68% of GDP on the health
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sector. This indicates the necessity of studying the influence of GDP on child mor-

tality. An analysis relating to the spatial and temporal elements of these variables

will be useful to practitioners. It is explored in this study through spatio-temporal

autoregressive models.

This chapter is organized as follows: In Section 5.2, we review the basic models

that are already available in the literature, like regression, spatial lag, spatial error,

and spatial Durbin models. Section 5.3 is devoted to the description of the data and

the methodology used for our study. The preliminary model selection procedure is

explained for the non-spatial scenario in Section 5.4, and the main theme of spatial

modelling is transacted in Section 5.5. A concluding note is provided at the end.

5.2 Basic models

For analyzing the relationship between multiple continuous cross-sectional variables,

the conventional approach involves employing regression analysis techniques to fit the

best model based on the assumptions. These assumptions include the independence

of sample observations and the independence and normality of errors. Furthermore,

in scenarios where observations exhibit spatial correlation, these assumptions are not

valid. Many datasets within geographical, health, and economic sectors show spatial

correlation. As noted in the introduction, the popularity and application of spatial

modelling have witnessed a notable increase in recent times due to its enhanced

predictive accuracy. A comprehensive illustration of fundamental SAR models can
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be found in the works of Anselin and Bera (1998), as well as Anselin (1988, 2001).

For a n × 1 vector of random variables Y observed at n spatial points, a SAR

process is defined as

Y − µ = ρW (Y − µ) + ϵ,

where ϵ is the random vector of dimension n × 1 with Nn(0, σ
2I) distribution, µ is

the mean vector of Y, and ρ is the spatial autoregressive parameter. Now the n× n

matrix W is the spatial weight matrix that measures the nearest neighbors of the

regions. Several types of weight matrices may be formed, and for details, one may

refer to Anselin and Bera (1998), Anselin (2003), Getis and Aldstadt (2004), and Lu

and Zhang (2010). Adaptive distance matrix, fixed distance matrix, matrix using

the inverse distance weights, row standardized weights, spatial variogram function,

etc. are some of the methods of formation of weight matrices seen in the literature.

In the row-standardized method, the matrix W gives a weight or a scalar measure

to the nearest regions or places. The elements of W are formed as below:

wi,j =


1 if i & j are neighbors (i ̸= j);

0 otherwise.

The assignment of the value 0 serves to avoid the selection of a location itself as its

closest neighbor. Subsequently, we perform row normalization on matrix W in such

a way that the sum of each row equals one. Similar to the concept of chronological

order in time series, here, a spatial order denoted by d implies that d places or areas
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are regarded as neighbors or neighboring clusters.

The spatial lag model (SLM), spatial error model (SEM), and spatial Durbin

model (SDM) are the extended versions of the SAR models. These three variants

have been introduced in the literature as counterparts to the classical regression

model. Within these models, the principles of regression are integrated to study the

effects of explanatory variables. The SLM model by Anselin (1988) is defined as,

Y = ρWY +Xβ + ϵ, (5.2.1)

where Y is a vector of the dependent variable with dimension n× 1, the matrix X of

order n× k contains the independent variables, β is a k × 1 vector of the regression

coefficients, ρ is a scalar spatial autoregressive coefficient, and ϵ is a vector of errors.

The n × 1 error vector ϵ follows Nn(0, σ
2I) (see Anselin 2001). In the SLM model,

the spatial autocorrelation is in the data itself.

The SEM model is of the form

Y = Xβ + η, (5.2.2)

where η is a n×1 random vector such that, η = λWη+ ϵ with λ as spatial coefficient

and ϵ follows Nn(0, σ
2I) . In this model, the error term follows the SAR model, and

the spatial effect is on the error. The third model, SDM, exhibits spatial impact
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both on the data and the covariates. SDM has the mathematical form,

Y = ρWY +Xβ +WXγ + ϵ, (5.2.3)

where the coefficient γ is the spatial effect of the independent variables and ϵ follows

Nn(0, σ
2I).

Our aim in this study is to analyze the spatial impact on the child mortality

rate. In the subsequent section, we delineate the data and variables and modify

models (5.2.1), (5.2.2), and (5.2.3) to accommodate non-linear relationship between

the response variable and the explanatory factors.

5.3 Data and Modified Models

We have taken the child mortality and GDP per capita data from the website

https://ourworldindata.org. The child mortality data is published by Gapminder,

compiled and documented mainly based on www.mortality.org, the series of books

called International Historical Statistics by Brian R Mitchell, and the GDP data by

the Maddison Project Database. The total population data is also available in the

same site published by Gapminder (v6), HYDE (v3.2), and United Nations Popula-

tion Division (2019). We accessed the data in May 2021. The variables involved are

the child mortality rate (share of newborns who die before reaching the age of 5),

GDP (measured in dollars), and the total population (in millions) of the countries
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from 2011 to 2016 worldwide. The choice of this range of dates is owing to the avail-

ability of the most recent period. The data consists of child mortality rate, GDP, and

the total population of 241 countries. The child mortality rate is considered as the

response variable and the other two variables as independent variables. If we do not

take into account the spatial interaction, the regression equations using the ordinary

least square method (OLS) is the usual method of finding the relationship between

the response variable and the explanatory variables. The model fitted using this OLS

method may be taken as an initial step in analysing the spatial effect on mortality.

The scatter plot is used for the regression model fitting to identify the relationship.

Linear or non-linear models may be fitted based on the standard procedures. We

need to modify the existing SAR models using the particular regression curve used

in the previous step.

The regression models under discussion in the next section are:

Y = β0+β1ln(X), Y = β0e
β1X , Y = β0+β1X

α, and the Makeham curve of the form

Y = β0 + β1e
αX .

Then corresponding SLM, SEM and SDM are models are constructed with a

model change in (5.2.1), (5.2.2), and (5.2.3) respectively.

In order to reduce the complexity as we moving ahead, we put Z = cX of the

Makeham curve, where c = eα and correspondingly the modified models formed are

given below.
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The SLM model under this case is ,

Y = ρWY + Zβ + ϵ, (5.3.1)

and SEM model is

Y = Zβ + η, (5.3.2)

with the error random vector η of order n × 1, η = λWη + ϵ and λ is a spatial

coefficient.

The SDM model is formed as

Y = ρWY + Zβ +WZγ + ϵ. (5.3.3)

See that here the vector of regression parameters β0 and β1 is β and the spatial

coefficient γ may be considered as the effect of Z. The parameter α in the Makeham

model is another parameter.

Hence, we have SAR models corresponding to a non-linear regression model. For

the estimation of the parameters, we use the ML method (see Lu and Zhang (2010,

2011)) under the assumption that ϵ ∼ Nn (0, σ
2I), where the observations are taken

from n spatial points.
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For the SLM, we can write the log-likelihood as

logL =
−n
2

log 2π − n

2
log σ2 + ln |I − ρW | − 1

2σ2
(y − ρWy − zβ) ′

(y − ρWy − zβ) , (5.3.4)

where |I − ρW | is the Jacobin matrix of transformation of order n × n. Here, the

parameters β, ρ and σ can be obtained by maximising (5.3.4).

For the SEM, the log-likelihood obtained is

lnL = ln |I − λW | − n

2
ln 2π − n

2
lnσ2 − 1

2σ2
(y − zβ) ′ (I − λW ) ′

(I − λW ) (y − zβ) . (5.3.5)

The estimates of the parameters β, λ, and σ are obtained by maximising (5.3.5).

Now, we estimate the parameters β, ρ, γ and σ of the SDM by maximizing the

logarithm of the likelihood function.

lnL = ln |I − ρW | − n

2
ln 2π − n

2
lnσ2 − 1

2σ2
(y − ρWy − zβ −Wzγ) ′

(y − ρWy − zβ −Wzγ) . (5.3.6)

Analysis of the data is done using the R software of the 4.0.2 version. spdep,

GA, rnaturalearth, rnaturalearthdata, sp, ggplot2, fmsb, basictrendline, spatialreg,

and sf are the packages used in this work.
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After being transformed to [0, 1], the data child mortality rate likewise follows

UTPD with parameter θ = −3.9; the K-S test’s p-value of 0.109 supports this.

However, since the purpose of this chapter is to investigate the geographical impact,

we will not be discussing it.

Now as a prelude to the main theme of the chapter we begin with the initial

regression model selection procedure in the non-spatial context.

5.4 Preliminary modelling

The data of mortality, GDP and total population are from 241 countries around the

globe. But some of the countries are having missing observations. To understand

the effect of time on the mortality rate, in addition to the spatial effect, the data

of the years from 2011 to 2016 is considered and analyzed separately. As the most

recent year is 2016, we do concentrate on this year and the analysis of the previous

years will be done in a similar manner. In the data of 2016, we could identify 8

outliers for GDP which is evident from the box plot given in Figure 5.1. So first data

cleaning has been done to eliminate the missing observations and outliers from the

data. Finally, 157 countries are filtered for the year 2016. Similar filtering has also

been done for all the other years considered in the study.
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Figure 5.1: Box plot of GDP data of 2016

The summary statistics of the cleansed data for the relevant variables are given

in Table 5.1. The number of observations after cleansing in different years is clearly

evident from this Table.

We plotted the scatter diagram of the data in 2016 which is given in Figure 5.2.

It gives an initial idea of the relationship between the variables considered. The

scatter plot reveals an exponential decay in mortality for GDP but no significant

relationship with the total population. The first hand information from the plot is

that there is no linear relationship between the variables, but an exponential type

relation exists. So we tried to fit different types of curves eliminating the total

population size. The residuals obtained for the linear model shows non-randomness,

and non-constant variance. Hence the regression models mentioned in Section 3

of this chapter have been tried including the Box-Cox transformed model, and the



Chapter 5 119

parameters are estimated using the OLS method. As a tool for determining the

best model, the selection criteria values used are adjusted R-squared and Akaikes’

information criteria (AIC). The outputs obtained are given in Table 5.2. For the

Makeham model, the adjusted R-squared values are the highest, but the AIC value

is the lowest. So the Makeham model with the constant term (see Makeham (1860)) is

found to be a suitable model for the child mortality rate with GDP as an explanatory

variable. The fitted Makeham curve for child mortality rate against GDP is plotted

in Figure 5.3. Based on the preliminary model, we shall assess the spatial impact in

the next section.

Table 5.1: Summary measures
Year No. of Mortality Mortality Mortality Mortality

observations minimum maximum mean median
2011 152 0.25 14.98 3.880 2.205
2012 153 0.24 14.18 3.706 2.110
2013 153 0.23 13.81 3.564 2.040
2014 158 0.23 13.45 3.378 1.925
2015 158 0.22 13.09 3.250 1.845
2016 157 0.21 12.73 3.158 1.790
Year GDP GDP GDP GDP

minimum maximum mean median
2011 681 48980 13988 10014
2012 710 50394 14484 10398
2013 567 50863 14580 10760
2014 561 52651 15094 11026
2015 576 54278 15294 10982
2016 589 53015 15153 11073
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5.5 Spatial modelling

We form the weight matrix to identify the impact of the mortality data. By the row-

standardized method, a weight matrix W of order 157×157 is formed with elements

0 and 1 and a spatial order or count of 5, as explained in Section 5.2. Then the

normalized weight matrix is computed such that for each neighboring country the

same value 1
no.ofneighbours

=1
2
is assigned and all other entries are zeros. We choose the

nearest neighbors by spatial distance, considering latitude and longitude. Moran’s I

statistic (see Moran (1948), Cliff and Ord (1973), and Diniz-Filho et al. (2003)) is

used for the calculation of the spatial correlation. Moran’s I statistic is given by

I =

∑
WY∑

W
∑
Y
. (5.5.1)

where Y is the child mortality rate for the year 2016. The value of this statistic is

0.72, with p value of 0. Hence, the null hypothesis of spatial independence ρ = 0 is

rejected. The map of the edges of the spatial regions is given in Figure 5.4.

Since there is spatial correlation, we go for the construction of the models SLM,

SEM, and SDM given in (5.3.1), (5.3.2) and (5.3.3). These models are constructed

using the Makeham model we already obtained. Now we fix the coefficient c at the

estimated value 0.9998 obtained by the OLS estimation method in order to keep

the linear regression effect in the model. The fixing of the parameter is done to

address the challenges in achieving convergence in the estimation process of multiple
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parameters within spatial modelling. Despite the fact that the computed value of

c closely approximates 1, it can be noted that a substantial GDP value could have

a considerable impact on the child mortality rate within the Makeham model. The

magnitude of β1, which stands at 8.58, shows the pace at which the GDP undergoes

geometric progression.

The estimation of the parameters of SLM, SEM, and SDM is obtained by max-

imizing the likelihood functions (5.3.4), (5.3.5), and (5.3.6) respectively. The best

model is selected by considering the measures of AIC and Bayesian information cri-

teria (BIC) mentioned in equations (1.4.1) and (1.4.2). The estimated values of the

parameters and selection criteria values of the models are given in Table 5.3 and the

standard errors (SE) and confidence intervals (CI) of the model parameters are given

in Table 5.4. The selection criteria values AIC and BIC are the least important for

the SLM model. Therefore, SLM is the best model for modelling the child mortal-

ity of the year 2016. The plots of predicted values of child mortality rate against

the observed child mortality rate, the observed GDP values, and the residual plots

against predicted values are given in Figures 5.5, 5.6, and 5.7 for SLM, SEM, and

SDM, respectively.
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Figure 5.2: The scatter diagram
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Figure 5.3: Fitted Makeham curve for child mortality rate

Table 5.2: Estimated parameter values and selection criteria values of the regression

models for 2016 data

Models β̂0 β̂1 α̂ λ̂ Adjusted AIC

R-squared

Y = β0 + β1ln(X) 22.53 -2.12 ... ... ... ...

Y = β0e
β1X 8.72 -0.00012 ... ... 0.609 656.42

Y = β0 + β1X
α -5.48 70.95 -0.24 ... 0.616 654.64

Y = β0 + β1e
αX 0.87 8.58 -0.0002 ... 0.626 650.70

Y λ−1
λ

= β0 + β1ln(X) 8.40 -0.85 ... 0.1 0.620 ...
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Table 5.3: Estimated parameter values and selection criteria values of spatial models

of 2016 data

Models β0 β1 c ρ λ γ σ AIC BIC

SLM 0.05 4.93 0.9998 0.53 ... ... 1.48 587.24 599.47

SEM 1.86 5.06 0.9998 ... 0.70 ... 1.53 602.18 614.41

SDM 0.61 4.95 0.9998 0.55 ... -0.16 1.48 589.23 604.52
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Table 5.4: Standard errors and confidence intervals of the model parameters of the
2016 data
Models Parameters and values SE CI

SLM β0, 0.05 0.18 (−0.30, 0.40)
β1, 4.93 0.54 (3.87, 5.98)
ρ, 0.53 0.06 (0.41, 0.64)

SEM β0, 1.86 0.42 (1.04, 2.68)
β1, 5.06 0.60 (3.88, 6.23)
λ, 0.70 0.06 (0.58, 0.81)

SDM β0, 0.61 0.19 (0.23, 0.98)
β1, 4.95 0.61 (3.75, 6.14)
ρ, 0.55 0.08 (0.39, 0.71)
γ, -0.16 1.10 (−2.31, 1.99)
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Figure 5.5: Plots of predicted values and residuals of child mortality rate of 2016

under SLM
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To model the child mortality rate of the years 2011, 2012, 2013, 2014 and 2015,

the procedure is repeated. The estimated parameter values and selection criteria

values are computed and given in Table 5.5. Choosing the models with the least

AIC and BIC values for the different years, we conclude that SLM is the best model

for all the years. The estimates of the spatial auto regressive parameter ρ over the

years in the SLM and SDM models are positive, indicating strong spatial dependence

between the nearest neighbors with respect to the child mortality rate. But the es-

timates of the spatial parameter γ corresponding to the GDP in the SDM model is

generally negative corroborating, an inverse relationship between the GDP and the

child mortality rate in the spatial framework. The positive values of the estimates of

λ designate the role of error variables affecting the child mortality rate. Hence there

is a need for further studies by examining other possible factors contributing to the

error term in the model.
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Figure 5.6: Plots of predicted values and residuals of child mortality rate of 2016

under SEM
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Figure 5.7: Plots of predicted values and residuals of child mortality rate under SDM
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Table 5.5: Estimated parameter values and model selection criteria values from 2011

to 2015

Year Moran’s I, c Models β0 β1 ρ λ γ σ AIC BIC

p-value

2011 0.75, 0 0.9997 Makeham 1.14 11.06 ... ... ... ... 685.27 694.34

SLM 0.11 6.20 0.54 ... ... 1.70 609.61 621.70

SEM 2.07 6.57 ... 0.73 ... 1.72 623.38 635.48

SDM 0.30 6.48 0.57 ... -1.20 1.71 612.03 627.15

2012 0.75, 0 0.9997 Makeham 1.10 10.48 ... ... ... ... 673.09 685.21

SLM 0.09 5.88 0.55 ... ... 1.65 604.97 617.09

SEM 2.01 6.17 ... 0.73 ... 1.67 619.05 631.17

SDM 0.13 5.95 0.57 ... -0.55 1.64 606.789 621.94

2013 0.74, 0 0.9998 Makeham 1.05 9.96 ... ... ... ... 664.08 676.21

SLM 0.08 5.54 0.55 ... ... 1.61 597.79 609.91

SEM 1.93 5.85 ... 0.72 ... 1.64 612.49 624.61

SDM 0.10 5.62 0.56 ... -0.29 1.61 599.73 614.88

2014 0.73, 0 0.9998 Makeham 0.95 9.38 ... ... ... ... 675.29 687.54

SLM 0.06 5.31 0.54 ... ... 1.57 608.80 621.05

SEM 1.79 5.65 ... 0.71 ... 1.59 622.88 635.13

SDM 0.14 5.36 0.53 ... -0.46 1.52 611.50 626.82

2015 0.72, 0 0.9998 Makeham 0.92 8.93 ... ... ... ... 666.16 678.41

SLM 0.06 5.07 0.54 ... ... 1.53 600.01 612.26

SEM 1.73 5.37 ... 0.71 ... 1.55 614.14 626.39

SDM 0.08 5.13 0.55 ... -0.24 1.52 601.95 617.27
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5.6 Conclusion

The spatial modelling of the child mortality rate is discussed with regard to the

GDP of the worldwide data. While analyzing the data we could see that the total

population size has no influence on the child mortality rate. The basic regression

model approach is used for an initial mathematical model selection. Out of the sev-

eral non-linear regression models, the best suitable one was the Makeham model.

Using this curve we have formed SLM, SEM, and SDM models. Among the three

SAR models, the most suitable one is seen to be SLM for all the years from 2011 to

2016. The study confirms the strong spatial or geographical dependence between the

nearest neighbors in the child mortality rate. The GDP has an inverse spatial rela-

tionship in the child mortality. There are some unknown or random factors affecting

the child mortality rate which has to be taken into consideration for further studies.

This model can be further extended for studying spatial variation in heteroscedastic

models.



CHAPTER 6

UNIFORM TRUNCATED POISSON

MINIFICATION PROCESSESS

6.1 Introduction

The Laplace or characteristic functions are used to investigate a number of autore-

gressive models. However, there are a number of random variables with Laplace

distribution that lack closed form, whereas survival function have. It is difficult

to determine the distribution of the innovation random variable for modelling lin-

ear models with these kinds of distribution as marginal. To address this challenge,

Tavares (1980) proposed an innovative approach involving a process of minification

mentioned in (1.6.15). In this approach conventional addition is replaced with the

operation of taking the minimum. This model have led to the development of several

131
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non-Gaussian time series models. The minification models are developed and studied

using the survival function of the underlying random variable. Tavares’ introduction

of minification models has motivated and driven the creation and advancement of

various non-Gaussian time series models. In particular, the survival function, which

characterizes the probability of a random variable exceeding a certain threshold,

serves as a pivotal tool in the formulation and analysis of these models.

The first-order autoregressive exponential process was introduced in Tavares

(1980). This process is a time-reversed version of the first-order exponential au-

toregressive (EAR(1)) process introduced by Graver and Lewis (1980). This result

was proved by Chernick et al. (1988). Various aspects of Tavares model were inves-

tigated by different researchers. Yeh et al. (1988) studied Pareto random variables,

and Pillai (1991) studied a model with a semi-Pareto marginal distribution. Arnold

(1989, 1993) and Arnold and Robertson (1989) developed minification processes with

logistic marginal distribution, and found utility in applications within biological con-

texts. One may refer to Arnold and Hallet (1989), Jayakumar and Pillai (2002),

Kuttykrishnan and Jayakumar (2008), Krishnarani and Jayakumar (2008a, 2008b,

2013), Ristic (2008), for different elaborations of minification models. Extensions of

both additive and minification models have been suggested through the substitution

of fixed coefficients with random variables, resulting in the construction of random

coefficient autoregressive models. Nicholls and Quinn(1982) introduced random coef-

ficient model. We can see such models in Graver and Lewis (1980), Dewald and Lewis

(1985), Lawrence and Lewis (1985), and Han et al. (2018). Many researchers stud-
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ied bivariate minification models which are previously discussed in section (1.6.3).

In the literature, we can see that no minification models were constructed in the

range (0,1). These models may have practical applications in various fields, includ-

ing finance, biology, and engineering, where relative proportions or ratios are more

meaningful than absolute values. Finding a minification model with a marginal dis-

tribution in the range (0, 1) can be useful for modelling non-negative data that are

bounded by 1, such as proportions, rates, or fractions. The daily rainfall rate of

a particular geographical area, the monthly occupancy rate of a hotel, the weekly

proportion of positive Covid-19 tests in a country, and the yearly fraction of renew-

able energy sources in a state’s electricity generation are some examples. Motivated

by these, we made an attempt to construct minification models with UTPD as the

marginal distribution.

This chapter is organized systematically as follows: In Section 6.2, Type I uniform

truncated Poisson minification process is introduced and it’s properties are studied.

The estimation of the parameter and the simulation study have been done in section

6.3. In Section 6.4, Type II uniform truncated Poisson autoregressive minification

process is introduced and properties are investigated. Estimation of parameters and

simulation studies are done in 6.5. Application of the process with real data is dis-

cussed in section 6.6, followed by a concluding section.
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6.2 Uniform truncated Poisson minification pro-

cesses

In this section, we construct minification models of different structures to illustrate

the applications of UTPD in the time series analysis.

6.2.1 Type I uniform truncated Poisson minification process

The first model is introduced as follows.

Xn =


εn with probability e−|θ|

min(Xn−1, εn) with probability 1− e−|θ|

(6.2.1)

where {εn, n ≥ 1} is the innovation series and εn is independent of X
′
is (i < n). Here

we assume that X0 follows UTPD with pdf mentioned in (2.2.2).

To identify the distribution of {εn, n ≥ 1}, from (6.2.1),

F̄Xn = F̄εn (x)
(
e−|θ| +

(
1− e−|θ|) F̄Xn−1 (x)

)
(6.2.2)

and after simplification, the survival function of the innovation variable is,

F̄εn(x) =
eθ − eθx

e−|θ| (eθx − 1) + eθ − eθx
. (6.2.3)
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From (6.2.3), the pdf is derived, and it is

fεn(x) =
θeθxe−|θ| (eθ − 1

)
(e−|θ| (eθx − 1) + eθ − eθx)

2 (6.2.4)

The plot of the pdf of the innovation random variable is given in Figure 6.1.

Figure 6.1: Density plot of Type I UTPM innovation random variable

The mean of the innovation variable is given by,

E (εn) =
1

e−|θ| − 1
+
e−|θ| (eθ − 1

)
(e−|θ| − 1)

(θ + |θ|)
(eθ − e−|θ|)

Now, an AR process of the form (6.2.3) with {Xn} following UTPD as marginal and

{εn} follows distribution with pdf (6.2.4), where εn is independent of Xn−1, is called

the Type I uniform truncated Poisson minification (UTPM) process. Note that if
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X0 ∼ UTPD with survival function given in (2.3.1), then the process Xn in (6.2.1)

is a strictly stationary minification process if and only if ε
′
ns are iid with survival

function in (6.2.3).

Theorem 6.2.1. Let X0 be distributed as UTPD with parameter θ. Define Xn as

in (6.2.1). Then {Xn} is a Type I UTPM process if and only if εn
′s are iid with pdf

(6.2.4).

Proof. Let X0 ∼ UTPD(θ), and εn
′s are iid following distribution with survival

function (6.2.3).

We use mathematical induction procedure to prove this theorem. Substituting

n=1 in (6.2.2), and using the survival function of UTPD,

F̄X1(x) = F̄ε1 (x)

(
e−|θ| +

(
1− e−|θ|) eθ − eθx

eθ − 1

)
=

eθ − eθx

eθ − 1

Assuming Xn−1 ∼ UTPD(θ), following the same steps as in above, we get the result

that {Xn} is stationary UTPD(θ).

Conversely we assume {Xn} is stationary and X0 ∼ UTPD(θ). From (6.2.2),

F̄X (x) = F̄εn (x)
(
e−|θ| +

(
1− e−|θ|) F̄X (x)

)
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F̄εn (x) =
F̄X (x)

e−|θ| + (1− e−|θ|) F̄X (x)

=
eθ − eθx

e−|θ| (eθx − 1) + eθ − eθx
.

which is same as (6.2.3). Hence the theorem.

Now we will look through the conditional properties.

The conditional expectation of Xn/Xn−1 = x is given by,

E (Xn/Xn−1 = x) = E (εn) e
−|θ| +

(
1− e−|θ|) x

(
eθ − eθx

)
e−|θ| (eθx − 1) + eθ − eθx

−
xe−|θ| (1− e−|θ|) (eθ − 1

)
(e−|θ| − 1) (e−|θ| (eθx − 1) + eθ − eθx)

2

+
logeθx

(
eθ − 1

) (
1− e−|θ|)

(eθ − e−|θ|) (eθx (e−|θ| − 1) + e−|θ| + eθ)

(6.2.5)

The conditional probability distribution of Xn > y/Xn−1 = x is given by

P (Xn > y/Xn−1 = x) =


e−|θ|(eθ−1)
e−|θ|−1

(
1

e−|θ|(eθy−1)+eθ−eθy
− 1

e−|θ|(eθ−1)

)
if x > y

e−2|θ|(eθ−1)
e−|θ|−1

(
1

e−|θ|(eθy−1)+eθ−eθy
− 1

e−|θ|(eθ−1)

)
if x < y

6.3 Estimation of parameters

In this section we estimate the unknown parameters of the Type I UTPM process.

LetX0, X1, ..., Xn be the realization of the Type I UTPM process. For the estimation
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of the parameter θ, we will consider the stationary process {Un} given by

Un =


1 if Xn ≥ Xn−1

0 if Xn < Xn−1

Now it can be seen that

E (Un) = P (Un = 1) =

(
eθ − 1

)
log
(
eθ − 1

)
(1− e−|θ|)

2

−
(
eθ − 1

)
(1− e−|θ|)

2

((
1− e−|θ|) log (eθ − 1

)
+
(
e−|θ| (1 + |θ|)

))

Then the estimator of θ can be obtained by solving the equation

Ūn =

(
eθ̂ − 1

)
log
(
eθ̂ − 1

)
(
1− e−|θ̂|

)2 −

(
eθ̂ − 1

)
(
1− e−|θ̂|

)2 ((1− e−|θ̂|
)
log
(
eθ̂ − 1

)

+
(
e−|θ̂|

(
1 +

∣∣∣θ̂∣∣∣)− 1
)

The value of p̂ = P (Xn > Xn−1) for different sample sizes and for different values of

θ is given in Table 6.1 . From the table, it can be seen that as the parameter value

θ increases, the value of P (Xn > Xn−1) decreases.



Chapter 6 139

Table 6.1: Probabilities for different values of θ
Sample size(n) Parameterθ (p̂)

50 -1 0.2649
1 0.2502
2 0.0974
3 0.0438

100 -1 0.2465
1 0.2438
2 0.1150
3 0.0413

200 -1 0.2502
1 0.2500
2 0.0947
3 0.0443

6.4 Type II uniform truncated Poisson minifica-

tion process

Consider a minification process defined as,

Xn =


εn with probability e−|θ|

min
(
e|θ|Xn−1, εn

)
with probability 1− e−|θ|

(6.4.1)

Here {εn, n ≥ 1} is the innovation sequence of iid random variables; and εn is in-

dependent of Xi, i= 0, 1, 2, ..., n-1. We assume that {Xn, n ≥ 1} is a stationary

Markov process with marginal distribution, UTPD. Now (6.4.1) is referred to as the

Type II uniform truncated Poisson minification (Type II UTPM) process.

The distribution of the innovation sequence can easily be derived from (6.4.1) by

using the survival function.
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The survival function of {Xn, n ≥ 1} can be written as

F̄Xn (x) = e−|θ|F̄εn (x) +
(
1− e−|θ|) F̄Xn−1

(
xe−|θ|) F̄εn (x)

= F̄εn (x)
(
e−|θ| +

(
1− e−|θ|) F̄Xn−1

(
xe−|θ|)) (6.4.2)

Under stationarity the survival function of the innovation process is given by

F̄εn (x) =
eθ − eθx

eθ − e−|θ| − eθe−|θ|x (1− e−|θ|)
(6.4.3)

The pdf of the innovation random variable is given by

f (εn) =

(
eθ − e−|θ|) θeθx − θeθe

−|θ|x
(
1− e−|θ|) (eθx (1− e−|θ|)+ eθe−|θ|)(

eθ − e−|θ| − eθe−|θ|x (1− e−|θ|)
)2 (6.4.4)

The conditional probability distribution of Xn+1 > x/Xn = y is given by

P (Xn+1 > x/Xn = y) =


P (εn+1 > x) if e|θ|y > εn

P (εn+1 > x) e−|θ| +
(
1− e−|θ|)P (e|θ|y > x

)
if e|θ|y < εn
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Figure 6.2: Density plot of Type II UTPM innovation random variable

Theorem 6.4.1. Let X0 be distributed as UTPD. Define Xn as in (6.4.1). Then

{Xn} is a Type II UTPM process if and only if εn
′s are iid with pdf (6.4.4).

Proof. Let X0 ∼ UTPD(θ) and εn
′s are iid following distribution with survival func-

tion (6.4.3). We adopt mathematical induction procedure. Substituting n=1 in

(6.4.2),

F̄X1 (x) = F̄ε1 (x)

(
e−|θ| +

(
1− e−|θ|) eθ − eθe

−|θ|x

eθ − 1

)

=
eθ − eθx

eθ − 1

Assuming Xn−1 ∼ UTPD(θ), following the same steps, we get the result that {Xn}

is stationary UTPD(θ).
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Conversely we assume {Xn} is stationary and X0 ∼ UTPD(θ). From (6.4.2),

F̄X (x) = F̄εn (x)
(
e−|θ| +

(
1− e−|θ|) F̄X (x)

)

F̄εn (x) =
F̄X (x)

e−|θ| + (1− e−|θ|) F̄X (e−|θ|x)

=
eθ − eθx

eθ − e−|θ| − eθe−|θ|x (1− e−|θ|)

which is same as (6.4.3). Hence the proof.

The parameter estimation of the Type II UTPM process discussed in the following

section. The simulations are also used to evaluate the precision of the methods of

estimation.

6.5 Estimation and Simulation

The method of maximum likelihood is proposed here for the estimation of the pa-

rameters. The likelihood function is given by

L (x) =



∏n
i=1 fεi (x) w.p e−|θ|

∏n
i=1 fεi (x) w.p 1− e−|θ|, if e|θ|Xi−1 > εi

∏n
i=1 fyi (x) w.p1− e−|θ|, if e|θ|Xi−1 < εi

(6.5.1)

where y = e|θ|Xn−1,
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The p.d.f of y is given by

f (y) =
θ

e|θ| (eθ − 1)
eθe

−|θ|y, 0 < y < e|θ| (6.5.2)

logL =


∑n

i=1 logfεi (x) if e|θ|Xi−1 > εi

e|θ|
∑n

i=1 logfεi (x) +
(
1− e−|θ|)∑n

i=1 logfy (x) if e|θ|Xi−1 < εi

(6.5.3)

The maximum likelihood estimator θ is obtained by maximising (6.5.3). Since the

parameter solution does not have an explicit expression, numerical techniques are

used to identify it. In this case, the values for the parameter are obtained by applying

the Nelder-Mead method to the R nlminb() function.

The estimation method is validated by simulating samples of sizes 20, 50, and 100.

Table 6.2 shows the various values of the parameters assumed for this purpose and

the corresponding estimated values. It is evident from the table that MSE decreases

with increasing sample size. The density plot of innovation random variable is shown

in Figure 6.2.

6.6 Real data analysis

We have considered the amount of carbon dioxide emissions per capita (metric tons)

in Bahrain from 1990 to 2020 from the website https://data.worldbank.org. Using

the min-max transformation, the observations are transformed. The ACF and PACF

plots reveal that the data is stationary AR(1). Using the estimation procedure, θ̂



144 Chapter 6

obtained is 2.9. The K-S test, with a p-value of 0.8211, confirms that the data follows

UTPD. Then the values are predicted, assuming that the data follows the Type II

UTPM process. The density and time series plots of observed and predicted values

are shown in Figure 6.3 and Figure 6.4 respectively.

Table 6.2: Parameter estimates of θ
Sample size(n) Parameterθ Estimate(θ̂) MSE(θ)

20 0.1496 0.7211
50 0.2034 0.1573
100 0.5 0.3187 0.1454

20 1.3592 0.1290
50 1.3488 0.1217
100 1 1.3487 0.1216

20 1.1164 0.7807
50 1.3487 0.4242
100 2 2.1791 0.0321

20 2.8484 0.0221
50 2.7711 0.0124
100 3 2.9230 0.0059

20 5.8266 0.6832
50 4.2001 0.6385
100 5 4.8207 0.0321
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Figure 6.3: Density plot of observed and predicted values of Bahrain

Figure 6.4: Time series plot of observed values and predicted values
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6.7 Conclusion

In this chapter, two types of minification processes are constructed with UTPD as

marginal. Analytical properties are derived. The estimation of the parameters of

the process is discussed along with the simulation studies. Real-data application of

the type II UTPM process is also done.
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RECOMMENDATIONS

Time series analysis is a pivotal statistical and data analysis method with wide-

ranging applications across various domains. Its significance arises from its capac-

ity to reveal valuable insights, facilitate predictive modelling, and guide informed

decision-making through the examination of data that evolves over time. Recent

studies on time series analysis have focused mostly on analyzing and researching the

idea that linear time series models can accurately capture the structure of the series.

However, there are situations when the subject, theory, or data indicate that linear

models are unreliable. In those situations, it is desirable to take non-linear options

into account. Most frequently, Gaussian distributions are used in linear time series

models for errors or residuals, which may not adequately represent many real-world

data sets. The ability to accommodate non-Gaussian and heavy-tailed distributions,

147
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on the other hand, is a strength of non-linear models, allowing for more accurate

modelling of extreme occurrences and outliers. Therefore, non-linear modelling us-

ing non-Gaussian distributions is necessary for the analysis of financial time series.

This thesis deals with the construction of a new distribution, UTPD and its applica-

tions in different non-linear time series modelling. The first chapter is devoted to an

introduction to time series data, linear and non-linear time series models, and their

properties.

In the second chapter, we have studied in detail the uniform truncated Poisson

distribution as the solution of a first-order differential equation and derived the same

from the truncated uniform distribution. A comparison with a well-known distribu-

tion was done. The expressions for moments, distributions of the order statistics,

etc. are further derived. Some transformed distributions were also studied. Some of

the estimation procedures for the parameters, like maximum likelihood estimation

and the method of moments, were discussed. The newly constructed distribution

was applied to four real data sets. Generalized UTPD is derived and also studied

it’s properties.

The third chapter is devoted to the time series application of UTPD. We de-

veloped a flexible autoregressive process of order 1, with UTPD as marginal. The

analytical characteristics of this process including the coditional properties have been

studied in detail. The estimation of the parameter is done by using CLSE and Gaus-

sian estimation method and its validity is established through simulation. Real-life

applications are illustrated using the amount of carbon dioxide emissions per capita
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(metric tons) in Japan.

Nowadays ACD models are used to analyze the dynamic behavior of financial

duration data. So we developed an ACD model with UTPD as the distribution of

duration in Chapter 4. Properties of the process, including mean, variance, and

autocorrelation are studied. The estimation of the associated parameters are done

by using the Gaussian estimation method. Simulation studies are carried out, and

application is discussed with the help of two real data sets.

Mortality, especially child mortality, throws light into the health conditions of a

country. The gross domestic product is an influential factor in child mortality. Spa-

tial effects on child mortality rates through spatial autocorrelations are analyzed in

chapter 5, and this study unifies the regression and spatial effects of gross domestic

product. The analysis summarizes the results of recent years to compare the tem-

poral effect. Spatial regression models are constructed and compared using several

criteria to determine the best model. The regression models, spatial lag model, spa-

tial error model, and spatial Durbin model are fitted at different time points.

Two different types of minification processes with the UTPD as stationary marginal

distributions are developed in chapter 6. The properties of the process are derived.

Estimation of the parameter and simulation studies are also done. Real data analysis

are carried out with the minification processes

The following list contains some further research topics that could be used to

expand this thesis work. We looked at a new distribution called UTPD in chapter 2.

It is possible to model both left-skewed and right-skewed data with UTPD. As a re-
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sult, it has numerous real-world applications. Many more time series models, as well

as data sets from various fields of study, could be modeled using this distribution.

Furthermore, a generalization of UTPD is presented, and its basic characteristics are

investigated. Future research will focus on additional features and uses, among other

things. It is possible to construct time series models linked to generalized UTPD.

Multivariate generalizations of the UTPD can be considered, and vector autoregres-

sive models may be investigated in the future. Some transformed distributions are

introduced in chapter 2. Exploring the properties, estimation procedures, and appli-

cations will be another area of research.

We have not discussed the volatility models in this work. So ARCH, GARCH

models, and stochastic volatility models could be addressed in the future using the

UTPD or generalized UTPD.

Our focus has primarily been on autoregressive models of the first order in this

thesis. In time series analysis, it’s not unusual to encounter non-stationarity. So,

it would be advantageous to investigate the creation of higher-order autoregres-

sive models with the probability distribution presented in this study serving as the

marginals or innovations.
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