D	327	42

(Pages : 2)

Name	• •
------	-----

Reg. No.....

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Statistics

MST1C01—ANALYTICAL TOOLS FOR STATISTICS—

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. Define continuity of a complex function.
- 2. Find the Laplace transform of sin(at).
- 3. What do you mean by a limit point in a complex plane?
- 4. What are meant by stationary points in optimization?
- 5. What is essential singularity?
- 6. State Taylor's theorem for real functions of two variables.
- 7. Examine for maxima or minima for the function $f(x, y) = x^3y^2(1 x y)$.

 $(4 \times 2 = 8)$

Part B

Answer any four questions.

Each question carries 3 weightage.

- 8. State and prove Fourier integral theorem.
- 9. Let $f(x,y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$ Check whether the mixed partial derivatives are

equal or not at the origin.

10. Explain the concept of Fourier transform.

- 11. Give convolution property. Using this property find the inverse Laplace transform of $\frac{1}{s(s^2+a^2)}.$
- 12. If xyz = abc, where a, b and c are constants, find the minimum value of bcx + cay + abz.
- 13. For the function $f(z) = (z-1)^{-2}$, show that z=1 is a pole. Also determine its kind?
- 14. Find the minimum value of $xy + \frac{1}{x} + \frac{1}{y}$.

 $(4\times3=12)$

Part C

Answer any two questions.

Each question carries 5 weightage.

- 15. Evaluate the integral $\int_{C} \cosh\left(\frac{1}{z^2}\right) dz$, where C is positively oriented unit circle |z| = 1.
- 16. Solve $y'' + 9y = \cos(2t)$ if y(0) = 1, $y(\pi/2) = -1$
- 17. State and prove a set of necessary and sufficient conditions for a complex function to be analytic.
- 18. State and prove Cauchy's residue theorem.

 $(2 \times 5 = 10)$

\mathbf{D}	327	'43
_	-	

(Pages: 2)

Name	••
------	----

Reg. No.....

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Statistics

MST 1C 02—ANALYTICAL TOOLS FOR STATISTICS—II

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. Define linear dependence and independence.
- 2. Evaluate $\begin{vmatrix} 1 & 1 & 1 \\ a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \end{vmatrix}$.
- 3. Find the rank of the matrix $A = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 4 & 6 \\ 0 & 6 & 9 \end{bmatrix}$
- 4. Show that the characteristics roots of an orthogonal matrix are ± 1.
- 5. Define geometric multiplicity.
- 6. When do you say that a square matrix is positive definite?
- 7. Define Moore-Penrose g-inverse of a matrix.

 $(4 \times 2 = 8 \text{ weightage})$

Part B.

Answer any four questions.

Each question carries 3 weightage.

- 8. Find the dimension of the vector space spanned by (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4) and (2, 6, 8, 5).
- 9. Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, x) is a linear transformation.

- 10. For any two matrices A and B with rank $\rho(.)$, show that $\rho(A+B) \le \rho(A) + \rho(B)$.
- 11. Show that the characteristic roots of an idempotent matrix are 0 or 1.
- 12. Show that the geometric multiplicity cannot exced the algebraic multiplicity.
- 13. If A⁺ is the Moore-Penrose g-inverse of a matrix A. Then show that $(A^+)^+ = A$.
- 14. Investigate the nature of the quadratic form $x^2 + 6xy y^2 2yz + z^2$,

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 5 weightage.

- 15. Show that the vectors (1, 1, 1, 1), (1, 2, 3), (1, 5, 8) span \mathbb{R}^3 .
- 16. State and prove the rank-nullity theorem.
- 17. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Also find A^{-2} .
- 18. Find the g-inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

 $(2 \times 5 = 10 \text{ weightage})$

D 32744	(Pages : 2)	Name
		Dog No

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Statistics

MST 1C 03—DISTRIBUTION THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer any **four** questions.

Each question carries 2 weightage.

- 1. Let X and Y be independent negative binomial random variables with parameters (r_1, p) and (r_2, p) respectively. Obtain the conditional distribution of $X \mid (X + Y)$.
- 2. Obtain the probability generating function of binomial distribution. Hence obtain the mean.
- 3. If X and Y be independent $N(0,\sigma^2)$ random variables, then derive the PDF of $\frac{X}{Y}$.
- 4. Let $X_1, X_2, ..., X_n$ be iid random variables having beta distribution of first kind with parameters $(\alpha, 1)$. Obtain the distribution of max $(X_1, X_2, ..., X_n)$.
- 5. Let X and Y be iid radnom variables with PMF $p(x) = \frac{1}{2}$, x = 1, 2. If Z = XY, then show that X and Z are independent.
- 6. Derive the PDF of rth order statistic of a random sample size n taken from a continuous population.
- 7. Establish the additive property of chi square random variables.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions. Each question carries 3 weightage.

- 8. Establish the recurrence relation for factorial moments of generalized power series distribution.
- 9. Let X be a non-negative integer valued random variable. Prove that X has lack of memory property if and only if it is geometric random variable.

2 D 32744

- Define Laplace distribution. Derive its moment generating function and hence find the mean and variance.
- 11. Let X and Y be iid N (0, 1) random variabels. Show that X + Y and X Y are independent.
- 12. If X and Y have the joint PDF f(x, y) = 8xy, 0 < x < y < 1 and f(x, y) = 0, otherwise. Obtain E(Y | X = x) and V(Y | X = x).
- 13. If X follows F distribution with (m, n) degrees of freedom, then show that $Y = \frac{1}{1 + \frac{m}{n}X}$ follows beta distribution of first kind with parameters $(\frac{n}{2}, \frac{m}{2})$.
- 14. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Show that the sample mean \bar{X} and the sample variance S^2 are independently distributed.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 15. If the bivariate random vector (X, Y) follows trinomial distribution with parameters (n, p_1, p_2) , then derive the MGF of (X, Y), and hence find the marginal distributions. Also show that $cov(X, Y) = -np_1p_2$.
- 16. Define Pearson system of distributions. Derive Gamma and Beta distributions as a special case of Pearson system.
- 17. Let $X_{1:n}, X_{2:n}, ... X_{n:n}$ be the order statistics of a random sample of size n taken from the PDF f(x) = 1, 0 < x < 1 and f(x) = 0, otherwise. If $Y_i = \frac{X_{i:n}}{X_{i+1:n}}$, i = 1, 2, ..., n-1, and $Y_n = X_{n:n}$, then show that Y_i 's are independent. Find the PDF of Y_i , i = 1, 2, ..., n.
- 18. Define non-central t-distribution. Derive its PDF.

 $(2 \times 5 = 10 \text{ weightage})$

\mathbf{D} 3	27	45
----------------	----	----

(Pages : 2)

Name	*********
Reg. No	

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE **EXAMINATION, NOVEMBER 2022**

Statistics

MST 1C 04—PROBABILITY THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer any four questions. Each question carries 2 weightage.

- 1. Define limit of a sequence of sets. Find the limit of a monotone increasing and monotone decreasing sequence of sets.
- 2. Explain general probability space and induced probability space.
- 3. State and prove correspondence theorem.
- 4. Define expectation of a random variable. Give an example of a random variable whose expectation doesn't exist.
- 5. State Levy continuity theorem. Give any one application of continuity theorem.
- 6. If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then show that $aX_n \xrightarrow{P} aX$ where a is a real number and P means convergence in probability.
- State Kolmogrov three series theorem.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries 3 weightage.

- 8. Define field with an example, Also show that a field is closed under finite union.
- 9. (a) Establish the properties of a distribution function.
 - (b) Show that the set of discontinuity points of a distribution function $F_X(x)$ is atmost countable.
- 10. If X and Y be two random variables defined on a probability space (Ω, A, P) , then show that $\mathbb{E}|\mathbf{XY}| \leq \mathbb{E}^{\frac{1}{r}}|\mathbf{X}|^r \mathbb{E}^{\frac{1}{s}}|\mathbf{X}|^s$, where r > 1 with $r^{-1} + s^{-1} = 1$ and $\mathbb{E}^{\frac{1}{r}}|\mathbf{X}|^r = \mathbb{E}\left\lceil \sqrt[p]{|\mathbf{X}|^r}\right\rceil$.

D 32745

- 11. State and prove Helly-Bray theorem.
- 12. Establish the inter-relations between convergence in probability and convergence in rth mean.
- 13. State and prove the weak law of large numbers in the case of independent and identically distributed random variables.
- 14. Show that Liapounov conditions of central limit theorem implies Lindberg conditions of central limit theorem.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 5 weightage.

- 15. (a) Show that a necessary and sufficient condition for a given function is measurable is that its positive and negative parts are measurable.
 - (b) Obtain the positive and negative part of the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = ax^2 + bx + c$.
- 16. State and prove Kolmogorov zero one law.
- 17. (a) Define convergence in distribution and almost sure convergence of a sequence of random variables.
 - (b) Prove or disprove convergence in distribution implies convergence in probability.
- 18. State and prove classical central limit theorem. Also specify any two applications of central limit theorem.

 $(2 \times 5 = 10 \text{ weightage})$