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Preface

In nature we can see a large variety of helical and helicoidal precipi-

tation patterns. A few are double helices in DNA, tendrils in plants, ZnO

nanohelices, fiber geometry of heart walls, inorganic crystals with helical

structure etc. We are interested in studying the dynamics of such patterns

since it leads us to know how these patterns are evolving and what is the

mechanism behind it. So we tried to find out a simple system where we

can easily reproduce the helical patterns with high probability. Our inves-

tigation recently find that Liesegang system are most suitable for that and

we had done our studies on helical patterns in this system. Present work

is about the study of Liesegang patterns, especially helical and helicoidal

precipitation patterns.

Chapter 1 begins with a brief introduction about pattern formation and

various patterns in physical, chemical, biological and geological systems. It

describes the basic concepts like reaction-diffusion, nucleation, phase sep-

aration etc. The reaction-diffusion system exhibit different behaviour like

excitable medium, bistable medium, chemical oscillation, Turing patterns

and Liesegang patterns. In this review, the history of periodic precipita-

ii
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tion gives a brief introduction about Liesegang phenomena and its empirical

relations. Many of the proposed theoretical models for the Liesegang phe-

nomena are briefly explained. Lastly the chapter also outlines the exotic

patterns in precipitation system and also the effect of external field, gel,

gravity etc on the precipitation patterns.

Chapter 2 deals with the study of pattern formation in reaction diffu-

sion system using moving boundary model. The moving boundary model

and its assumptions are briefly explained. This model considers that the

phase separation mechanism is responsible for separating the colloidal haze

of precipitants into band and non-band regions. With the theoretical model

so developed, the moving boundary model can easily reproduce the scal-

ing law, time law and the width law without many assumptions. Thus

the moving boundary model provides a reasonable conclusion on the spatial

positioning of the periodic band structure observed in reaction diffusion sys-

tems. A remarkable feature of this model is that the asymptotic condition

for the band formation can be determined. Also, this model can be used to

calculate the width of the bands using a minimum of approximation, which

many others were trying to find. The theoretical calculation based on the

model suggests that the width of the precipitation bands depends exclusively

on the concentration of the intermediate colloidal particles. Hence a better

understanding of the basic facts of pattern forming process is made possi-

ble with the theoretical investigations and is also verified using computer

simulations and the simulated patterns bear a characteristic nature of the

experimentally observed Liesegang patterns.

Chapter 3 includes the description of experiments and analysis of pat-

terns. A few well-known Liesegang systems are also given. Liesegang and

helical patterns are observed in silica and agarose gel; the experimental sys-
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tem which were used in the study. These patterns are easily reproducible

also. An observed feature of the experiments is that the local pitch of the

helices is always slightly larger than the local band spacing of the Liesegang

patterns obtained with the same setup. In the experiments, conducted with

different test tube radii, it is found that no helicoids are formed below a

critical radius and at larger radii, there is more space for the evolution of

more complex structures (double or triple helicoids, disordered patterns).

Similar experiments in silica and agarose gel were also carried out in a quasi

two dimensional geometry by placing the gel in-between two test tubes of

slightly different radii, thereby creating a cylindrical gel column. This setup

is called the tube-in-tube experiment and rather easier for the theoretical

investigation than the single tube experiments, since they are 2D and can be

transformed to tilted Liesegang bands. In mixed silica-agarose gel also we

obtained both Liesegang and helical patterns but its found that the proba-

bility of getting helices are more in equal amounts of both gel.

The fourth chapter mainly deals with the helicoidal precipitation pat-

terns. The helical precipitation patterns emerging in the wake of reaction

diffusion front are studied. It is found that the formation of helical and

helicoidal patterns are reproducible but had a probabilistic aspect. For a

given set of experimental parameters, there is a well defined probability for

helical pattern to emerge. The helices emerged from a complex interplay

among the unstable precipitation modes, the motion of the reaction front,

and the noise in the system. Unfortunately, the noise is not easily accessible

in experiments although the probability depends sensitively on it. Many

attempts are done to overcome this problem and implement controlled noise

by changing the properties of the gel. The internal surface area is roughly

proportional to a noise-amplitude: the larger it is the larger is the probabil-
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ity of a nucleation event. In order to see the effects resulting from internal

surface area changes, the helicoidal patterns in agarose and silica gels are

examined and varied the internal surface area by changing the gel concen-

tration in agarose gel and by varying the pH in the silica gel. The trends

in the probability of the emergence of helices are measured and found that

they are in agreement with the interpretation that the internal surface acts

as an effective noise inducing nucleation. Maximizing the yield of helices

can ensure by mixing equal amount of agarose and silica gels.

The final chapter contains the conclusion and the future perspectives

of the present work.



Chapter 1

Dynamics of Pattern

Formation

1.1 Introduction

Nature has a huge storage of miraculous patterns in both living and non-

living systems. These kind of patterns ranging from simple to complex

types in our surroundings. The pattern formation can arise in a variety of

extended systems, like chemically reacting systems, crystallisation of solids,

hydrodynamic fluids, living cells, bacterial colonies, non-linear systems etc.

They are all different structures on a space time scale and may arise due

to a collective and co-operative mechanism in the underlying dynamics of

large number of constituent subsystems [1, 2]. These subsystems include

aggregation of atoms, molecules, small particles, circuits, cells, defects and

dislocations. This aggregation can interact or move in space, giving rise

to various patterns. This dynamic patterns tell many stories about the

macroscopic as well as mesoscopic behaviour of the underlying systems. One

1
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might expect novel and unexpected patterns, when the interaction among

the constituent subsystem is non linear.

Patterns are found in everyday life which include spreading coffee stains

on a napkin to the patterns on animal coats and the spiral arms of galaxies.

Patterns can be simple as well as complex type. Some of them are periodic,

regular and stationary, linear where as some others are non-periodic, irreg-

ular, dynamic and non-linear which are originated mostly due to the self-

organised process with the intervention of external templates. Dissipative

systems have travelling wave patterns and different soliton waves give rise

to novel type of spatio-temporal patterns. Perturbation of such system can

also give rise to further interesting patterns. But more complex structures

which can produce naturally occurring patterns arise in non-linear diffusion

(especially in reaction-diffusion system) and dissipative systems and their

analysis is more complicate and difficult.

Systems that shows pattern formation are very common in nature

and these patterns often emerge in the wake of a moving reaction front.

This moving reaction front [3, 4] play an important role in large variety of

physical, biological, chemical and geological process. Front propagation has

gained considerable research attention during the past years. A large num-

ber of phenomena in various fields (eg. chemical pattern formation, crystal

growth, biological inversion problems) are determined by the peculiarities of

various kinds of moving fronts. An important system of problems is related

to the case of front propagation into unstable states [5]. Interest in these

type of reaction fronts has increased recently since it has been realised that

pattern formation in the wake of a moving front is a quite general phenom-

ena. The initial stage of understanding pattern formation phenomena is the

description and calculation of the specific properties of the reaction zone,
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i.e., answering the question regarding where and at what rate the reaction

product appears and so on [6].

A wide class of patterns include the characteristic spots and stripes on

animal coats- especially in zebra, fish, tiger, mosaic on butterfly wings, annu-

lar rings in woods, hexagonal form of honey comb, rings in bacterial colonies,

whorls on finger tips, mineral strata in certain rocks, branching patterns in

plants and rivers etc (Figure 1.1). Many kind of patterns are also seen in

wildly different natural contexts like rotating spirals appearing in a dish of

reacting chemicals, soap foams, ripples in sandy deserts, in an arrhythmic

human heart, regular hexagonal patterns developed on the surface of a warm

pan of tomato soup (convection patterns), vegetation patterns and so on.

Patterns in peacock feathers are example of one of the most exotic patterns

in the biological world. Another class of patterns include- intricate, lacy

ice crystals form from swirling mists, turbulence patterns in river, clouds

take on regular periodic patterns that stretch for hundreds of kilometres,

stock-market average and DLA( Diffusion limited aggregation) patterns are

few examples of chaotic patterns. Patterns having fractal dimensions are

also much interesting.

Patterns are universal and nature generate patterns when even we least

expect to find them. By knowing the symmetries and their surroundings of

patterns we can find out nearly everything about them [7]. These patterns

tells about the emerging dynamics at the macroscopic as well as the mi-

croscopic levels of the underlying system. The miraculous patterns delight

both our imagination and understanding. How does nature generate these

patterns? Is there a simple mechanism or universal phenomena behind these

pattern forming mechanism? What happens when we pour a thin layer of

oil in a frying pan, add pepper in to it and heat it evenly it will form hexag-
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Figure 1.1: Different types of patterns found in nature: Zebra (photograph by
Andre Karwath aka Aka,licensed under the creative commons attribution-share

alike 2.5 Generic license), Nautilus shell (wikipedia commons image from the user
Chris 73 and is freely available at http://commons.wikimedia.org/ wiki/

File:NautilusCutawayLogarithmicSpiral.jpg under the cc-by-sa 3.0 license), Star
fish(photograph by Paul Shaffner, licensed under the creative commons

attribution 2.0 generic license), Human finger pattern, Peacock
pattern(photograph by Satdeep gill, licensed under the creative commons

attribution-share alike 3.0 unported license), Spiral Aloe(photograph by just
chaos, licensed under the creative commons attribution 2.0 generic license),
Sunflower(photograph by L. Shyamal, licensed under the creative commons

attribution-share alike 2.5 generic license)

onal shapes. These are a few questions which arise curiosity in lay people

and expert alike [8]. Tremendous progress has been made in the last few

years and several mathematical and computational techniques are used for

analysing different types of patterns, both in small and in spatially extended

domains in order to find answers to all these questions.

1.2 Basic concepts

1.2.1 Diffusion and reaction

Diffusion is the mechanism of transportation of particles in a fluid from an

area of higher concentration to an area of lower concentration through the
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pushing and bumping of the liquid or gas molecules around them, each of

which is in constant random thermal motion. Diffusion can occur in either

still or moving fluids [7]. Diffusion is defined as the mass flow process by

which atoms or molecules change their positions relative to their neighbours

within a phase under the influence of thermal energy and a gradient. This

gradient may be of chemical potential resulting from a concentration gradi-

ent, or a gradient due to temperature, stress, electric field or gravitational

field.

1.2.2 Ficks laws of diffusion

The concentration gradients are first proposed by Adolf Fick in 1855 [9]. For

ideal solutions these gradients are directly related to the chemical potential

gradient. Fick’s first law states that,

dm

dt
= −DAdn

dx
(1.1)

where dm
dt is the number of moles of the diffusion particles passing through

a cross sectional area A perpendicular to the diffusion direction x per unit

time, n is the concentration of the specie and D is the diffusion coefficient.

The negative sign shows that the mass flow is down the concentration gra-

dient. The first law can also be written in terms of flux J as,

J = − 1

A

dm

dt
= −Ddn

dx
(1.2)

Fick’s second law corresponds to non-steady state flow. Consider an

elemental volume of length ∆x along the diffusion distance x and of unit

cross-sectional area. Let the volume of such an element is ∆x. The rate of
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accumulation of the diffusing species within this elemental volume is ∂n
∂t ∆x

and can be expressed in terms of fluxes into and out of the volume,

∂n

∂t
∆x = Jx − Jx+∆x (1.3)

Substituting Jx+∆x = Jx + ∂J
∂x∆x into equation 1.3, we get

∂n

∂t
= −∂J

∂x
(1.4)

Again substituting equation 1.2 in equation 1.4

∂n

∂t
= − ∂

∂x
(
−D∂n
∂x

) (1.5)

∂n

∂t
=

∂

∂x
(
D∂n

∂x
) (1.6)

If D is independent of concentration, equation 1.6 simplifies to

∂n

∂t
= D

∂2n

∂x2
(1.7)

This is linear diffusion equation.

For a reaction consisting of two chemical species, the reaction term

include the product of concentration of the two chemical species and hence

the reaction-diffusion equation becomes

∂n

∂t
= D

∂2n

∂x2
+ E(n) (1.8)

where E can be a linear or non-linear function of concentration of the chem-

ical species.
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1.2.3 Nucleation- homogeneous and heterogeneous

Nucleation is defined as the atomic process by which atoms of a reactant

rearrange their positions to form a cluster of a product phase. For thermody-

namically stable state, the cluster has to be large. During nucleation process

the atomic fluctuations occurring are very small, typically on the scale of

10-1000 atoms. Nucleation is the formation of a distinct thermodynamic

phase and can occur in gas, liquid and solid phase.

Nucleation process are physical rather than chemical and nucleation

normally occurs at nucleation sites on surfaces contacting the liquid or

vapour. When the nucleation sites are provided by the suspended parti-

cles or minute bubbles, then it is known as heterogeneous nucleation. Het-

erogeneous nucleation occurs at preferential sites such as phase boundaries,

surfaces (of container, bottles, etc.) or impurities like dust. Homogenous

nucleation occurs without preferential nucleation sites and it arises sponta-

neously and randomly, but it requires superheating or supercooling of the

medium. As compared to the heterogeneous nucleation, homogeneous nucle-

ation occurs with much more difficulty in the interior of a uniform substance.

Heterogeneous nucleation occurs much more often than homogeneous nucle-

ation [10].

Now consider the rate of nucleation, R, of a critical clusters. The rate

of nucleation increases when the concentration of molecule(n) increases, but

very slowly at first and here is the heterogeneous nucleation (nucleation ini-

tiated by things such as dust particles and walls) occurs. Once the molecule

concentration has increased just enough to reach the point, Scrit, a sharp,

almost instantaneous, increase in the nucleation rate occurs and here the ho-

mogeneous nucleation takes place (Figure 1.2), where the molecule nucleates
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Figure 1.2: Rate of nucleation, R versus Supersaturation S [11]

with other molecules or on previously formed solid particles [11].

1.2.4 Phase separation

Phase separation is the conversion of a single-phase system into a multiphase-

system; especially the separation of a solution into two immiscible liquids.

There are two types of phase transition:(i) changes of concentration that

are initially small but extend over a wide spatial range and (ii) changes of

concentration that are initially large but affect only a narrow spatial range.

The first one is termed as spinodal decomposition and the other is nucle-

ation and growth [12]. The theory of spinodal decomposition starts with

the Gibbs free energy function, ∆G. Gibbs showed that when the second

derivative of the free energy of mixing is positive, then the condition for

stability or metastability arises. The system is unstable when it becomes

negative and if zero, the spinodal is defined.
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Spinodal structures are narrow, homogenous two-phase mixtures aris-

ing from phase separation that take place under certain conditions of tem-

perature and composition. The spinodal reaction is a spontaneous unmix-

ing or diffusional clustering distinct from classical nucleation and growth in

metastable solutions. Spinodal decomposition or continuous phase separa-

tion compose the selective amplification of long wavelength concentration

waves within the supersaturated state resulting from random fluctuations.

The fingerprint mechanism of spinodal decomposition is uphill diffusion and

that of nucleation and growth is downhill diffusion [13].

1.2.5 Spinodal decomposition

The spinodal decomposition was introduced in 1999 by Antal, Droz, Magnin

and Racz [14]. It is a powerful postnucleation mean-field model to describe

the formation of precipitation patterns, that accounts for all the empirical

laws. The counterpart of this mean-field model is the feature of fluctuations

which are known to give rise to several interesting phenomena, like formation

of bifurcations and helical structures (will discuss in chapter 4) [15, 16]. Here

we will consider the basic aspects of spinodal decomposition mechanism.

According to the spinodal decomposition mechanism the two elec-

trolytes, A and B, react to produce a metastable state C. Thus the reaction

front leaves behind a constant concentration of C particles, that can move

diffusively in the gel. As a result of an attractive interaction the particles

can aggregate when the temperature is low enough and the density is high.

On a mesoscopic level this mechanism is described by the phase separation

model for the concentration of the C particles, namely by the Model B of

critical dynamics [17]. The system is treated as one-dimensional, due to
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Figure 1.3: Free energy as a function of the rescaled density of the reaction
product for the spinodal decomposition, the two minima account for the high and

the low density phase and c0 is the spinodal, figure taken from [14] and
reproduced with permission

the uniaxial symmetry of the problem and all the relevant quantities are

assumed to depend on a single space coordinate x. The dynamics is de-

scribed by a Cahn-Hilliard equation [18, 19] with a source term S(x, t), that

accounts for the production of C:

∂c

∂t
= −λ∆

∂F

∂c
+ S(x, t) (1.9)

where λ denotes a kinetic coefficient characterizing the dynamics of the C

particles. F is the free energy functional, that introduces the phase separa-

tion dynamics in the system and ∆ is the Laplacian operator.

We shall assume the simplest analytical form of free energy, F , since

experimentally it is not possible to measure the free energy of this system,.

The free energy should describe the phase separation process and contain a

minimal number of parameters. Now let us assume the following Ginzburg-
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Landau form of the free energy [14, 20]:

F [m] = −1

2
εm2 +

1

4
γm4 +

1

2
σ(∇m)2 (1.10)

m being the shifted and rescaled concentration m = (2c−ch−cl)/(ch−

cl) (Figure 1.3). The parameters of the model, namely ε, γ and σ have their

own physical meaning and can be fitted by comparing with experiments.

The parameter ε should be bigger than zero to insure that the system is

in a critical regime where phase separation takes place. This parameter

can be considered to describe the deviation from the critical temperature

of the system. The parameters σ is a measure of the surface tension of the

bands and σ > 0 ensures the stability against short wavelength fluctuations.

To obtain an overall stability of the system the parameter γ has also to

be positive and the ratio γ/ε is related to the minima of the free energy,

mh =
√
γ/ε and the spinodal values ms = ±

√
γ/3ε.

Figure 1.4 gives a general idea of pattern formation. The last band

act as a sink for the neighbouring particles above cl density. Thus the

C ′s produced in the front end increases the width of the last band. This

continuous untill the front moves far enough so that density in it reaches

the spinodal value. Then the spinodal instability sets in and a new band

appears.
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Figure 1.4: Liesegang pattern formation in spinodal decomposition, figure taken
from [20] and reproduced with permission

The formation of the bands is described in a deterministic way and

no fluctuation are taken into account in the spinodal decomposition model.

Without any noise terms the formation of the bands is based on the spinodal

decomposition, that takes place in the unstable regime. There are situations

where the patterns are spontaneously formed without any concentration gra-

dients present in the system and can be described in a nucleation and growth

scenario where the patterns are created by a ripening process, starting from

a homogeneous system [16].

1.2.6 Periodic precipitation

The periodic precipitation (PP) is a generic term for material deposition

process which occur intermittently in terms of time or space or (generally)

both [21]. This type of process represents a typical oscillatory reactions, with

practical implications in crystal growth and material preparation. Periodic

precipitation is a beautiful, intriguing and dynamically rich phenomenon

and can be used for potential application in material science [22], if effective

techniques to control and design these patterns can be found.
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1.2.7 Linear stability analysis

Linear stability analysis of a uniform state was first carried out in 1952 by

Alan Turing [23]. He suggested the radical and highly stimulating idea that

reaction and diffusion of chemicals in an initially uniform state could explain

morphogenesis, how biological pattern arise during growth. Linear stability

analysis is a useful step toward understanding how the properties of a non-

equilibrium system depend on various parameters [24]. This analysis also

suggest a way to classify non-equilibrium systems in regard to their pattern

forming tendencies. The key steps in linear stability analysis are:

1. Obtain the evolution equation of the system

2. Rewrite the evolution equations in dimensionless form to reduce the

number of parameters and to obtain the parameters in dimensionless

form.

3. For a given system, find explicitly at least one time independent state,

u0.

4. Linearise the evolution equations about the uniform base state u0 to

obtain the linear evolution equations for an infinitesimal perturbation.

5. Solve the linearised equations and obtain the wave vector dependence

of growth rate.

6. Analyse the solution by studying the real and imaginary part of growth

rate.

Using this analysis we can able to predict when will a spatially uniform

time-independent state becomes unstable to tiny perturbations and also get
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the details of the growing spatial structures such as its characteristic length

and time scales.

1.2.8 Symmetry breaking phenomena

Breaking of the spatial symmetry of a medium was first predicted by Alan

M. Turing [23], mainly due to diffusive aspects. When soluble reactants

such as inorganic ions and cations react, symmetric patterns can arise in

simple chemical precipitation systems when the particles move only by dif-

fusion. The helix formation is caused by the breaking of symmetry due to

initial conditions [25]. Microscopic fluctuations are often relevant at macro-

scopic level of observation because they make symmetry breaking possible

and are responsible for triggering complex patterns. Noise and fluctuations

play a key role in symmetry breaking. One of the main characteristic of

the reaction-diffusion systems is that, they exhibit spontaneous symmetry

breaking and self-sustained patterns are formed under some circumstances

[26]. Chirality is also encountered in a host of every day examples where

asymmetry occurs.

1.3 Self-organisation and pattern formation

Self-organisation and spontaneous pattern formation has a great and highly

increasing relevance in the natural and life science. Over the past decades,

various self-organisation phenomena have been reported: precipitation pat-

terns, self-oscillating systems,travelling waves and Turing patterns. A va-

riety of self-organization structures are wide spread in nature. In various

biological systems patterns are manifested in the lamellar rings in bones,

the pigmentation of the iris, the coloured shapes on butterflies wings, spiral
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waves in cardiac fibers, the stripes in zebreas and tigers. Geological patterns

found in a wide variety of sedimentary rocks and stratifications in the agate

structure are a few examples. The phenomenon of periodic precipitation is

one of the most interesting manifestations of self-organization is the periodic

precipitation which is generated by a moving reaction-diffusion precipitation

front [27].

The mechanism of biological self-organisation occurring from an ini-

tially homogeneous solution are not so clear. Two possible theoretical ap-

proach might account for biological self-organisation [28]. First one is based

on static interactions and statical physics between entities that are not in-

volved in chemical or biochemical reactions and the second one is based

upon non-linear chemical dynamics and cooperative phenomena involving

reacting species. Usually, a solution of reacting chemicals or biochemicals

does not self-organise and theoreticians have predicted that the non-linear

properties such as self-organisation may arise due to some particular types

of chemical or biochemical reactions that are far from equilibrium.

In 1952 Turing published an article predicting that in some reaction, a

stationary chemical pattern could spontaneously arise from an initially ho-

mogeneous solution. This pattern arises from a combination of reaction and

diffusion and the patterns that form are made up of the periodic variations

in the concentration of some reactants. Structures of this type are called

reaction-diffusion or Turing structures. Turing structure is recognised as the

significant model for explaining pattern dynamics on animals skin. Turing

also reported that if the diffusion coefficients of species are not same, then

homogeneous state of chemical species may lose its stability [23]. Classi-

cal Turing patterns emerge as a result of this, which consist of stationary

equidistant spots and stripes, such structures are supposed to appear in
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various biological systems. Lagzi et al., proposed a new mechanism based

on the coupling of a simple auto-catalytic front with precipitation process

producing Turing Patterns [29].

1.4 Reaction diffusion system

Living organisms and natural systems respond to external changes in an un-

predictable way. Since it involves an infinitude of variables, which are com-

monly hidden and thus interaction between the medium and the environment

is extremely complicated. In chemical reactions different substances react

and produce new substances and in ecological problems, different species

interact with each other. The robustness of this natural phenomena is in

contradiction with the difficulty of their understanding and knowledge, if

one uses the classical tools of mathematics, physics and chemistry to model

these events.

The problem changes drastically when the non-linear interactions are

taken into account. This process reveals new complicated behaviours, and

leads to a better agreement between modelling equations and real systems

[26]. A couple of successful attempts are done to translate the biological

world in terms of non-linear equations and the reaction-diffusion systems

played here a key role.

Reaction-diffusion systems have been shown to exhibit a lot of different

behaviours which are summarised in the following way:

1. Excitable medium- A medium becomes excitable [30] when a pertur-

bation larger than given threshold applied to a system, then it grows

and makes a large and non-trivial excursion in the space of variables.
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This process constitute a “state of excitation”, where the system re-

mains for a while and this state is able to perturb its neighbouring

due to diffusive process, leaving the steady state and making the same

cycle, but with a delay in time. Thus a wave of excitation travels

trough the medium. Most common examples of excitable systems are

neurons and cardiac tissue, due to the important role of waves plays

in the fibrillation mechanism.

2. Bistable system- A bistable system is endowed with more than one

steady state (typically two stable steady states and one unstable) [31].

Mainly due to their capacity for storage of information, the importance

of these kind of systems is huge. A large amount of systems exhibit two

steady states in the biological world. For instance, bistable behaviour

of inhibitory neurons play a crucial role in controlling impulse traffic

through the amygdala.

3. Chemical oscillations- The chemical waves and oscillations was pub-

lished in 1991 by Anatol M. Zhabotinsky [32]. The first discovery of

oscillations in a homogeneous chemical reaction was obtained acciden-

tally by W. C. Bray at the University of California at Berkeley in 1921.

He observed periodic changes in the color in the production of oxygen

bubbles. Hundreds of chemical oscillating reactions of different types

such as Ph Oscillators, Calcium Oscillators, etc are found in now a

days.

4. Turing patterns- Alan M. Turing [23] proposed the theory of mor-

phogenesis which made a lot of impact on theoretical developments

in pattern formation and reaction-diffusion systems. Turing showed

that, for an open system containing two reacting substances, provided
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one of them diffuses much faster than the other, then stationary con-

centration patterns may spontaneously develop. Turing mechanism is

still treated as a prototype for the formation of coherent patterns in

non equilibrium systems [33].

5. Liesegang patterns- Liesegang patterns are quasi-periodic precipitation

patterns arise in the wake of a moving reaction front. Although they

appear only in particular physiochemical conditions, such structures

are widespread in nature and found in systems ranging from biological

(population of bacteria) to geological structures (structures in agate

rocks). Liesegang bands additionally require a fast precipitation and

growth process.

The diffusion time and reaction time are two fundamental time scales

characterizing the diffusion-reaction systems. The process is said to be diffu-

sion limited if the reaction time is much shorter than the diffusion time. The

whole process often results in pattern formation in such cases. One of the

best example for such a diffusion-limited reaction is the so-called Liesegang

phenomenon [34].

1.5 History of Periodic precipitation

The periodic precipitation process known as ‘Liesegang phenomenon’has

now been investigated for more than 100 years. Although during the 20th

century the phenomenon caught the attention of many scientists from differ-

ent fields and hundreds of papers have been published, still it lacks comple-

tion. Liesegang patterning is a special type of chemical pattern formation

in which the spatial order is formed by the density fluctuation of a weakly
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Figure 1.5: R. E. Liesegang (Wikipedia Commons image, freely available at
https:// en.wikipedia.org/wiki/File:Liesegang.png and the image is in the public

domain)

soluble salt. A best example for this kind of system is the reaction of silver

nitrate (AgNO3) and potassium dichromate (K2Cr2O7) [35].

The chemical patterning was first discovered in 1855 by Frederic Fer-

dinard Runge. As a reaction mechanism he has used simple filter paper wet

by an electrolyte solution. He published a whole book about his patterns

‘self painting pictures’. But Runge’s discovery was unfortunately too early

and nobody paid attention to his work and hence precipitate patterns have

fallen into oblivion until 1896 [35]. In that year Raphel Eduard Liesegang,

a German photographer and Chemist, was doing a lot of experiments and

accidently he covered a glass plate with a layer of gelatin impregnated with

potassium dichromate [36]. Then he pour a small drop of silver nitrate in

the center. As a result of diffusion, silver dichromate was precipitated in

the form of a serious of concentric rings with varying spacings. Liesegang’s

observations were published in 1896 in the Naturwissenschaftliche Wochen-

zeitschrift with the title ‘Ueber einige Eigenschaften von Gallerten’[36].
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Figure 1.6: Silver dichromate patterns, figure taken from www.insilco.hu and
reproduced with permission

1.6 Simple Liesegang experiment

Depending on the geometry of the system used, Liesegang precipitation

patterns can be bands (in an uniaxially-symmetric configuration) or rings

(in a circular configuration). In a typical experiment, two reactants are

initially separated in space, with the inner electrolyte B homogeneously

dissolved in a gel column while the outer electrolyte A is kept in an aqueous

solution.

At time t = 0, the outer electrolyte is brought into contact with the

end of the gel column and since the initial concentration a0, of A is chosen

to be much higher than that of B (typically a0/b0 ≈ 100), A invades the gel

and a reaction front emerges which advances along the column. The motion

of this moving front and the amount of product C left behind the front are

the important factors since they determine the input for the precipitation

processes. The reaction product C may be the product of further intermedi-

ate reactions (e.g. A+B → C ′ → ...→ C), As a result of phase separation
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Figure 1.7: Schematic representation of formation of bands

mechanism insoluble precipitate are formed when the local concentration is

above some threshold value.

Soon after Liesegang’s experimental observations Wilhem Ostwald pro-

posed a theoretical explanation for the emergence of the rings [37], which

is still the basis of most of the modern theories. The bands appear only at

some particular positions xn at certain time tn, which obey simple generic

rules. In 1903, Morse and Pierce [38], calculated the formation time of the

bands, and according to them the position of the band and its time of for-

mation are related by a simple equation, often called time law. This was

given by,

x2
n ∝ tn (1.11)

where xn is the distance of the nth precipitation band from the gel-solution

interface. This relation is similar to the well known Einstein-Smoluchowski

relation for Brownian motion interpreted in terms of random walk in a

homogeneous space. The time law reflects the diffusive behaviour of the

outer electrolyte into the gel matrix. The next law is, due to Jabalczynski

[39], called the spacing law which reflects another important property of

the bands. According to this law, the spatially ordered patterns obeys a
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geometric series.

xn+1 = Γxn (1.12)

where Γ becomes a constant when the number of the bands are large. The

spacing between the bands usually increases as n increases. The constant

referred to as the spacing coefficient is normally greater than unity and

is generally expressed as (1 + p) where p lies between 0 and 0.5, which

are in good accordance with experimental results. Matalon and Packter

[40] proposed a detailed understanding of the spacing law. They collected

various experimental results for p and found a functional dependence on the

concentration of both reactants, a0 and b0 . This relation is known as the

Matalon-Packter law and it has the form,

p = R(b0) + S(b0)
b0
a0

(1.13)

where R and S are dimensionless decreasing functions of b0 and is obtained

mathematically also. It is also observed that the width of the bands increase

with n and obey the width law,

w ∼ xαn (1.14)

where the exponent α is close to 1. Many values for α have been published,

it is difficult to calculate the value of alpha, since number of bands is limited

and width wn of the bands are small compared to their positions xn.

Until now, more attention has been paid to the spacing law since its

coefficients are directly derivable from the concentration profiles of reacting

species. On the other hand the width law has largely been ignored for many

reasons. Without having resources to sophisticated digitizing methods, it
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is very difficult to make precise measurements of the width of bands. The

time law is a simple consequence of a diffusion process. All these empirical

laws cannot be explained so easily and a few theoretical models are proposed

based on diffusion and reaction dynamics to explain the pattern formation.

However none of them explain all the distinguishable features of bands.

1.7 On the threshold of theories

Several competing theories have been proposed for describing the mechanism

of Liesegang phenomena. The dependence of the concentration of inner and

outer electrolytes arises as a major problem. All the theories of Liesegang

pattern formation follow how the diffusive reagents A and B turn into final

immobile precipitate D,

A+B −→ ...C... −→ D (1.15)

where ...C... accounts for the various intermediate stages due to the forma-

tion of D [40]. Reaction-diffusion models with thresholds are the earliest

models describing Liesegang pattern formation. Ostwald [37] explain the

pattern formation on the basis of super saturating liquids. He proposed that

the precipitation is not a result of a complete reaction but it arise sponta-

neously when the concentration product P of the reactive species reaches a

critical concentration Pcrit. Most of the theoretical models are based on an

analytical study or numerical solution of differential equations.
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1.7.1 Ion product saturation model

In this model, the precipitation takes place without any intermediate stage,

i.e., there is no C stage and hence this is the first and easiest quantitative

model for Liesegang pattern formation. As in Ostwald model, nucleation

A+ B → D occurs when the local concentration of the product P = ab (it

is the concentration of D, which is the product concentration) reaches the

threshold Pcrit. The precipitate D will grow and deplete their surrounding

of A and B. As the reaction front moves further, the product concentra-

tion around the immobile precipitate decays until band formation becomes

impossible. Wagner [41] and Prager [42] had shown that these ingredients

yield patterns which obey the time law and spacing law.

1.7.2 Nucleation and growth model

This model introduce an intermediate state C to the reaction-diffusion pro-

cess A + B → C from the nucleation and growth process C → D. This

model is called nucleation and growth model because the formation of D

depends on the nucleation and accumulation of C rather than on the prod-

uct concentration of A and B. This model was first proposed by Keller

et al., [43] by studying reaction-diffusion equations and confirmed the time

law and spacing law. They calculate the positions xn of the bands without

apriori assuming band formation and stopping of the band growth. The

first numerical solutions for nucleation and growth model were presented by

Dee [44]. He used a similar technique as Ross et al., [45] and calculated

the nucleation and growth criterion by classical nucleation theory. Using

this model, Dee confirmed the spacing law and the width law and due to

lack of computational techniques this model has no information about the
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Matalon-Packter law.

1.7.3 Induced sol coagulation model

Induced sol coagulation model is a variant of single intermediate compound

theory and the compound C is assumed to be the sol and this sol coagulates

if the following two conditions are satisfied: (i) concentration of C exceeds

a supersaturation threshold C > Pcrit and (ii) the local concentration of

the outer electrolyte (a) is above a critical coagulation concentration (p),

a > p. The bands are formed as a result of the nucleation and growth of the

precipitate combined with the motion of the front where a = p [46].

Models of Liesegang band formation envisage an important role for sol

flocculation in certain cases. They are evidently complex, involving reagent

diffusion, sol formation, sol particle diffusion and adsorption as well as elec-

trostatic space charges. A comprehensive analysis of the interplay between

these components has not yet been attempted. Separate parts of the process

have been extensively studied on a qualitative basis, mostly in the context

of colloid and flocculation research.

1.7.4 Competitive growth model

In competitive growth model, the precipitates D can dissolve with a proba-

bility decreasing with increasing size of the precipitates [47]. According to

the competitive particle growth theory, this is due to a thermodynamical

instability caused by the non-homogeneous size distribution of sol particles.

Flicker and Ross (1974) pointed out that, due to the surface tension large

crystallites are less soluble than small ones and will therefore grow at the

expense of the latter [48]. This happens for crystallites and any colloidal
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particles that might exist before crystallites as such are formed. The descrip-

tive equations have to be solved numerically and some assumptions had to

be made to establish the ‘symmetry breaking’conditions which brought pe-

riodic solutions. A more detailed analysis has been given by Lovett et al.,

[47] who obtained explicit solution on the basis of their own pattern of as-

sumptions. The diffusion controlled growth rate of a spherical particle of

radius R, is given by,

dr

dt
=

DCµ

ρr
[
χ− 1− 2ξ

ρrkt

] (1.16)

where D is diffusion constant, ρ is density of precipitated particle, t is

time, χ is supersaturation and ξ the surface energy of crystallite. Cµ is the

true equilibrium concentration of the reaction product. It is seen that dr
dt is

positive only when R > Rcrit such that,

Rcrit =
2ξ

ρχkt
(1.17)

only then can particle grow, otherwise they dissolve. The competitive par-

ticle growth can seen in crystal system on a macroscopic scale and the fact

that the crystals in each layer are more or less of the same size is in harmony

with the model.

Comparing all four supersaturation models, the nucleation and growth

model is considered as a reference model since it is the model which briefly

explains the Matalon-packter law in the simplest way. Although it needs

an intermediate state C, the model is basically suitable for analytical and

numerical studies. The sol coagulation model and the competitive growth

model, could explain some more details but they are not sufficient to explain

all the empirical laws. Thus many more general information are missing in
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the theories and final theory is yet to evolve. Attempts are however made by

researchers to formulate the theories of patterning based on phase separation

mechanisms and a few of them are briefly described below.

1.7.5 The spinodal decomposition model with Cahn-Hillard

dynamics

When the Liesegang patterns are formed once, they become frozen forever,

i.e., they do not evolve any more on any reasonable time scale. All the

above described models have some conceptual problems due to the thresh-

old parameters controlling the growth of the bands which are difficult to

grasp theoretically and not easy to control experimentally. Also the de-

scription of how the band formation could be manipulated in a desired way

is bit difficult. Furthermore the specific models might seem insufficiently

universal. To overcome all these problems a new model free of thresholds

and reaction-diffusion equation was suggested by Antal et al., [14] which is

mainly based on a phase separation mechanism that takes place in the for-

mation of bands. No coarsening of the band is experimentally observed, this

process should takes place at very low temperature. The phase separation

dynamics is a well understood problem [49]. When one quenches a system

having a phase transition below the coexistence curve, the system separates

into two phases and if it takes place near the coexistence curve, the sys-

tem will be in a metastable state. Small droplets of the minority phase are

formed and grow with time and is a slow process due to the presence of an

activation energy and this is called homogeneous nucleation. On the other

hand when one quenches the system far from the coexistence curve, the

system will be in an unstable state and no activation energy involved and

the phase separation starts immediately and this process is called spinodal
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decomposition and the spinodal line separates the two regimes (nucleation

and spinodal decomposition).

The mechanism of phase separation can be described as, consider the

A + B → C reaction-diffusion process having a moving reaction- diffusion

front and the front put down locally some C particles. Once deposited, C

particles diffuse and small cluster of particles nucleate and aggregate behind

the front. The nucleation is an activated process and its characteristic time

scale τnucl is large at low temperature. If τnucl is much larger than the time

τfront needed by the front to put out the local concentration c0 then the

system reaches the unstable state, ie, crosses the spinodal line. Once the

spinodal line is crossed, the phase separation takes place on a short time

scale and a domain formed by C particles is rapidly formed at or behind the

front, hence the formation of a Liesegang band. The spinodal decomposition

model can start with the C particles. Their dynamics are described by a

simple phase separating equation taking particle conservation into account.

The specific dynamics were introduced by Cahn and Hillard [18]. In Cahn-

Hillard equation the concentration of C particles is represented by c and the

so called ‘magnetization’m is defined as

m = c− (cl + ch)

2
(1.18)

the Cahn-Hillard equation is,

∂m

∂t
= −λ∆[εm− Γm3 + σ∆m] +R(x, t) (1.19)

here R(x, t) is the source term introducing new C particles into the system

via the A + B → C reaction and ∆ is the Laplacian operator. Using this

model it is possible to produce Liesegang patterns satisfying the spacing law
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in agreement with the Matalon-packter law. The spinodal decomposition

model can also be implemented for sophisticated condition such as the effect

of an additional electric field also.

1.7.6 The Kinetic Ising model with Glauber and Kawasaki

dynamics

A different approach to model the phase separating dynamics was recently

proposed by Magnin et al., [50] along the lines of the kinetic Ising model

for ferromagnet’s. Empty and occupied lattice sites are denoted with down

and up spins. The initial state is empty and the moving reaction front flips

the down spins at a given rate. This process can be described by Glauber

dynamics [51] while the diffusion is described by a spin exchange process or

Kawasaki dynamics [52]. The rate of exchanges entering into Glauber and

Kawasaki dynamics are governed by a heat bath at temperature T . The

local magnetization m and particle density n are related by m = 2n− 1.

To explain model qualitatively, suppose that the spins are down, as

the reaction front leaves behind a constant density n0 of C particles, the

spin flipping front produces a local magnetization m0 = 2n0 − 1. As time

evolves the local state moves from su (spin up) towards sd (spin down).

The system crosses successively the coexistence line and spinodal line and

ends up into the unstable states domain where phase separation takes place.

Thus a spin up domain is rapidly formed at or behind the front. The time

scale for nucleation is much larger than the time needed by the front to put

the system in the unstable state domain and the the mechanism is possible

because of low temperature. The new band acts as a sink for the up-spins in

its vicinity. Thus the local magnification decreases and the front is no longer
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in the unstable domain. However, when the front has moved far enough,

the depleting effect of the band disappears. The front can bring again the

system into the unstable domain and a new band is formed the formation of

the precipitates is modelled by a combination of spin-flip and spin-exchange

dynamics. The Hamiltonian with ferromagnetic coupling l > 0 between the

spins σr at site r, modelling the attraction of the C particles.

H = −lΣr,r′σrσ
′
r (1.20)

Glauber dynamics are used to add the C particles in an initial state in which

all spins are down. The spins flip rate wr at site r is given by

wr = R(r, t)
(1− σr)

2
(1.21)

where R is the source term. 2D and 3D simulations have been reported for

this model [50] but are not yet good as the experimentally obtained ones due

to fluctuations and this indicates that the model needs further investigation.

1.7.7 Lattice gas simulations

Lattice gas simulations can serve as a computational experiment to check

how the mean-field solutions can be applied to experimental data and more-

over how fluctuations might cause deviations from these solutions. As in

the case of separation of the two processes in the nucleation and growth

model, the lattice- gas simulation consist of two stages. In the first stage

the C particles are generated and the second stage simulates the precipita-

tion of C particles by rules comparable with cellular automata. All empirical

laws describing Liesegang pattern formation, i.e., the time law, the spacing



On the threshold of theories 31

law, the Matalon-Packter law and the width law can be well understood

on the basis of the nucleation and growth model. A good correlation be-

tween experimental observations, simulation results and mean-field models

can be obtained only if a constant offset κ between measured and theoret-

ically assumed band positions is taken into account. Due to the effects of

fluctuations on Liesegang pattern formation, an additional modification of

the Matalon-Packter law are necessary especially in small-scale systems.

A new scenario for the formation of Liesegang patterns is proposed by

J. George et al., [3, 4] and they interpreted the periodic pattern formation in

a gel column as a moving boundary problem. They reformulated the empiri-

cal laws on the basis of moving boundary assumptions and more meaningful

explanations are given. Their equations are found to be in good agreement

with experimental observations.

Another phenomenological description of periodic precipitation on the

basis of chaos theory is due to the “butterfly effect”[53]. A butterfly flutter-

ing its wings in Beijing can cause a hurricane on the other side of the world.

Using this concept in our Liesegang system, it indicated that minor changes

in chemical composition(concentration, ion species, gel media) or the micro

environment(temperature, pressure, pH) may lead to a very different kind

of patterns with a variety of shape, colour, appearance and structure. These

results may give new insights into different forms of precipitation in gallstone

[53].

1.8 Exotic patterns in precipitation systems

More complex structural features have been noted during the study of

Liesegang systems: these include secondary structures (the separation of one
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band into several closely adjacent thinner bands), segmentation of concentric

rings into radially aligned convex sections [54], spirals instead of concentric

rings [55] and helicoidal precipitation bands instead of set of parallel bands

[54]. The helicoidal precipitation phenomena is often rare, because for oc-

currence of symmetry breaking due to initial condition of a rather spherical

shape, so that at least a part of one curl of the helix can initially appear in

the test tube. Continuous helical pattern were observed experimentally in

test tubes with relatively large radius [56]. T. Karm et al., [57] reported the

mechanism of revert spacing in Pb(NO3)2/K2CrO4 system and this occurs

mainly due to adsorption mechanism and more over the spacing laws are all

reversed compared to the normal banding. In NaOH/CuCl2 system [58] a

wide variety of spatial patterns are formed by varying the concentration of

outer and inner electrolyte and different patterns like Liesegang patterns,

multi-armed spirals, cardioid like patterns, irregular “cabbage-like”patterns

etc are formed. Also it is found that, in strong base like NaOH very dense

bands are formed where as weak base like (NH4OH) produces a rather

loose pattern and the spacing coefficient is large compared to the other [59].

Complex motion of precipitation front are also described by Lagzi et al.,

[60].

Periodic precipitation in a gaseous reaction-diffusion system occurs in

NH3/HCl [61] system. The gaseousHCl andNH3 diffuse from the opposite

sides of a test tube and react in silica aerogel rods, a porous matrix. The

reaction further leads to solid NH4Cl precipitates in the form of sheet-

like structures which are very thin, densely spaced and parallel to each

other. Recently the formation of bilaterally symmetric ‘face-like’deposits

are also obtained due to the reactions mechanism by the properties and

concentrations of soluble reactants placed symmetrically relative to a mid
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line and due to the temporal and spatial distributions arising from the initial

times and positions of reactant [62].

1.8.1 Propagating patterns

Liesegang patterns remained stationary and locked in their respective po-

sitions once they are formed. But in some systems they appear as dy-

namic due to the reason that the precipitate can redissolve in excess dif-

fusing electrolyte due to complex formation. As a result the whole pattern

propagates through system during the band formation process due to pre-

cipitation and band disappearance due to re-dissolution drive by complex

formation. Several experimental studies on such periodic precipitation pat-

terns with redissolution exist in the literature include the Co(OH)2/NH3

[63], Cr(OH)3/Cr(OH)4 [64], Al(OH)3/Al(OH)4 [65], CoCl2/NH4OH [66]

etc. Further experimental studies were performed on these systems based

on observations, macroscopic measurements of spacing laws and various mi-

croscopic techniques to study the dynamic behaviour of this propagation

phenomena. In the Co(OH)2 propagation, it is noted that the number of

bands exhibits chaotic oscillation with time. The variation of the velocity

of propagation of patterns are studied and found that at higher concentra-

tion of the outer electrolyte like (NH4OH), the pattern propagates faster

and slower at higher concentration of the inner electrolyte like, (CoCl2).

Also the propagation velocity of the front increases when an electric field is

applied in the same direction of the propagation of the front [67].
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1.8.2 Precipitate patterning involving two salts

In addition to the single banded precipitate system deals upto here there are

double banded systems too. It is found that different system have different

patterning trends and arises due to the potential patterning properties of

chemical reaction schemes involving two precipitates. The experiments on

two-precipitate pattern formation gives ideas behind the possible reaction

schemes actually involved in precipitation process and also suggests inter-

esting experiments for eventual conclusions. Experimental results shows

that there are systems showing “correlated”patterns (with bands overlap)

or “anti-correlated”(with band alternation) patterns. In the few systems

studied, Co(OH)2/Mg(OH)2, MnS/CuS etc yields alternation of bands of

two salts and PbI2/PbF2 yields a dominant overlap between the bands [66].

The mixing of precipitation kinetics to diffusion mechanism in gel me-

dia reveals new perspectives of rich and complex dynamics of pattern for-

mation phenomena. The obtained precipitate patterns continue to exhibit

fascinating features with novelty and originality. A greater variety is antic-

ipated when the experiments are extended to systems involving more than

two precipitates. Periodic precipitation experiments find most feasible and

interesting application in ‘Geochemical Self-Organisation’due to the similar-

ities they found in the banding structure seen in several rocks (zebra-like

and other patterns). A nice example is the alternation of dark dolomite

CaMg(CO3)2 with pure CaCO3(white) in Zebra spa rock [68]. Surprisingly

enough in addition to the doublets in Liesegang pattern formation, J. George

et al., [69] reported the emergence of triples also. They studied the precip-

itation mechanism of multiple phases of calcium phosphate simultaneously

into Liesegang bands in silica gel. They found dynamic triplet precipitate
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patterns inside the gel column at pH below 6.86 and it is also found that all

bands in the triplet were in precise geometric series and satisfies the spacing

law. Moreover the triplet itself behaves as a system obeying the geometric

law.

1.8.3 Effect of electric field

The effect of electric field on evolution of Liesegang patterns have been

studied by many researchers with several electrolyte systems in different

gels. The study of Sultan and Halabieh [70] found that the effect of varying

field strength on front propagation in the NH4OH/CoCl2 system in gelatine

gel studied the dependence of band position on the formation time by,

xn = f1(E)t1/2 + f2(E)t+ f3(E) (1.22)

where f1, f2 and f3 are the parameters depending on the electric field

strength, E. Lagzi and Izsak [71] found that as the strength of electric field

increases, then the spacing coefficient and the thickness of the precipitation

bands decrease. This observation is just opposite to that observed by Sul-

tan and Halabieh [70] and this difference is due to the dependence of inner

electrolyte. Another result of their experiment suggest that the width law

also holds in electric field with little approximations. Lagzi also observed

that the total number of bands increases to a maximum value and then de-

creases as electric field strength increases. As electric field strength is varies,

a cross over from moving bands to precipitation wave is also noted . Also

the spacing coefficient, that describes the overall structure of a Liesegang

bands decreases with increasing field strength are also verified using both

simulation and real experiments.
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In Mg(OH)2 system also studies were carried out in the absence and

presence (in positive and negative) of electric field [72]. It is found that un-

der the effect of positive field a wide span of patterns occurs compared to the

field free case and in the negative field a successions of rings of unpredictably

variable thickness and unusual time sequence are observed. Recently the ef-

fect of alternating electric field in Co(OH)2 were studied and noted that

band spacing increases with spacing number, but reaches a plateau at large

spacing numbers. Also at low applied voltage the band spacing increases

with increase in frequency and at higher voltage band spacing become inde-

pendent of field frequency. The effect of concentration of inner electrolyte

(Co2+) exactly opposes that found under DC electric field, ie., the band

spacing decreases with increasing concentration.

Flexible control of precipitation patterns is proposed by I.Bena et

al.,[73] and showed that patterns resulting from reactions among charged

agents can be controlled by a time dependent electric current. Experi-

mentally they demonstrated the pattern control using AgNO3/K2Cr2O7

in gelatin gel.

1.8.4 Effect of gel

Gel has an important role in study of pattern formation. Gel is treated

as a solution in the thermodynamical point of view, but for its mechanical

character it is regarded as a solid. Due to this dual nature gel exhibits many

feature which are absent neither in solid nor in liquid. Gels are prepared

from both organic and inorganic materials and are hence made of cross linked

homopolymers and exhibits very large volume change either by absorbing

or by ejecting solvents depending on external conditions. This change in



On the threshold of theories 37

volume has been treated as a discontinuous volume phase transition which

arises mainly due to an imbalance in hydrophilic and hydrophobic interac-

tions [74]. For the hydro gel, the liquid part of gel is water. The various

kinds of gels which are used in many physico-chemical applications include

agar-agar gel, gelatine gel, clay etc. The physical properties of gel depend

on several factors like polymer concentration, free energy change per solvent

molecule, osmotic pressure and temperature. The swelling character of the

gel is determined by the osmotic pressure. The importance of gel matrix in

Liesegang experiment is to prevent convection of sols and sedimentation of

the precipitate [75].

Same chemical reaction can result in different precipitate due to dif-

ference in composition and structure of different gel and also due to unde-

sirable impurities. A typical example is the precipitation of silver chromate

in agarose gel or silica gel typically produces small, randomly distributed

crystals, and in gelatin produces periodic bands [76]. In few systems, crys-

tals or bands can be produced in same type of gel, and the morphological

transition between randomly spaced crystals and bands is due to relative

rates of heterogeneous and surface nucleation [77]. The formation of bands

was strongly inhibited by the presence of a small amount of fatty acids. The

number of bands usually decreases in the presence of amino acids where as

increases in the presence of alcohol. The solubility of the salt increases by

the hydrogen ion concentration of the solution increases. Thus Liesegang

phenomena have striking affect due to the hydrogen ion concentration of the

gel. The concentration of the gel has a remarkable influence on precipita-

tion system. Thus gel acts as the medium of diffusion and hence therefore

enables precipitants to agglomerate into patterns.
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1.8.5 Effect of gravity

The effect of gravity on pattern formation was investigated by V. Holba et

al., [78] in gelatin and agar gel. Spacing coefficient of Liesegnag bands was

measured in the parallel and anti-parallel orientation to the gravitational

field in one species with all other parameters fixed. The mean values of

spacing coefficient indicate the effect of gravity and it is found that there is

only a little difference between the spacing values in parallel and anti-parallel

direction.

The Liesegang patterns arises from a spatially continuous regimes of

colloid in a long time after nucleation has occurred and the mass of such

aggregate is very small to be influenced by the gravitational field to a mea-

surable extent. Gravity has its influence only when the crystal mass is large

enough to overcome elasticity modulus of the gel matrix.

1.8.6 Effect of fluctuation

L. Jahnke et al., [79] studied the effect of fluctuation on Liesegang patterns

and results shown that irrespective of the origin of noise in either thermal

motion of particles or in impurities, stabilize the formation of patterns. Con-

trary to the intuition the precipitation structures are not disturbed by the

fluctuations, but the regime of stable pattern formation is rather expanded.

The empirical laws of pattern formation are also verified in large fluctuation

system. The attractive application of the effect of fluctuation is to control

the pattern formation without affecting the the reaction-diffusion process.

In general, fluctuations induced by heterogeneous nucleation decreases

the spacing-law coefficient p and increase the number of Liesegang bands.

Hence it is possible to change the number or spacing of bands without chang-
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ing the properties or concentrations of the reactants involved in the pattern

formation process, one only need to change the level of impurities or de-

fects in a sample. In contrast to thermal fluctuations, such changes can be

realized with spatial variations. Hence it may be possible to obtain equidis-

tant band formation without interfering with the chemical reactions. Such

designed Liesegang pattern formation can be used, for example, in optics,

where the spacing and the widths of the bands directly affect absorption

and scattering of light.

1.9 Conclusion

The study of emergence of spatial patterns are vast, complex and is far from

complete. Thus the mechanism of spatio-temporal pattern formation in

natural and in laboratory systems are interesting subjects for study. Both

physicists and chemists have speculated on the kinetics and dynamics of

the systems and developed few interesting models. The patterns, which

are formed in laboratory systems, called Liesegang patterns, attracted our

interest and the study of these patterns will help us to reveal the mystery

of many natural phenomena.

Even though a lot of theoretical and experimental studies have been

made to understand the Liesegang phenomena, all of them have their own

defects and none of them can explain all the experimental observation and

conditions related to the formation of patterns. The mechanism underlying

this pattern formation phenomena is still ambiguous and hence attracted

many scientists and young researchers. Several challenging problems still

remain open in this fascinating field of pattern formation in non-equilibrium

systems. The rest of the chapters include our recent works in the field of
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pattern formation.



Chapter 2

A study of Liesegang bands

using moving boundary

model

2.1 Introduction

The pattern formation in reaction diffusion systems was studied in a an-

other way by assuming a concept different from the moving reaction front

mechanism. As the reaction front advances in to the zone progressively, a

virtual migration of the two phases that contain reactants A and B takes

place. Here the moving boundary model consider that the phase separation

mechanism is responsible for distributing the colloidal precipitant particles

into band and non-band regions. In this model the band separation and

its width are related to concentration of the reacting components and it

also provides a critical condition for formation of bands in reaction diffusion

systems.

41
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2.2 Moving boundary model

All the theories discussed in chapter 1 on Liesegang phenomena share some

common features to show how the diffusive reagents A and B turn into a

final immobile precipitate D in a diffusion stream.

A+B → D (2.1)

Some theorists suggests an intermediate compound (C ′) formation from the

reagents, before the end product is formed [37].

A+B → C ′ → D (2.2)

There are two main categories of proposed models: pre-nucleation

model is based on Lifshitz-Sloyzov instability mechanism. The model ex-

plains the band formation on the support of a feedback process between the

nucleation and diffusion transport [37, 41, 42]. When the product of the

reagent ion concentrations attains a saturation threshold value, the nucle-

ation of the precipitated particles occurs. This is a non-equilibrium process

and result in the lowering of the supersaturation level. When the concentra-

tion product is less than the threshold limit, further nucleation is impossible

[80]. This product attains the threshold value again when the front proceeds

more into the medium and the nucleation of the precipitate take place. Se-

quential repetition of this process results periodic pattern formation in the

system. Based on this model, Wagner and Prager predicts sharp periodic

band formations.

The second model is based on a post-nucleation droplet coarsening pro-

cesses [47, 81, 82]. The moving nucleation front produces an intermediate
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compound; a homogeneous haze of colloids, with the rate proportional to

the reactants local concentration product [80] . A first order type phase sep-

aration mechanism that takes place inside the colloid separates them into

regions of different matter densities. In the later stages of phase separation,

several stochastic fluctuations results in the growth of crystals and gener-

ates a bunch of bands in the system. The precipitation bands appears by

the agglomeration of the intermediate colloidal particles if the electrolyte

concentration exceeds certain critical value [80],[46]. The colloidal particles

are not stable against disturbances in the medium [83]. Venzl concludes the

Liesegang band formation process through three characteristic steps: at first

a continuous homogeneous colloid is formed, then the coarsening takes place

and finally the dynamics of colloidal haze leads to formation of bands [84].

The moving boundary model, proposed by J.George and G.Varghese

tackle the problem slightly differently. Though it supports the intermedi-

ate colloidal particle formation, it describes the pattern formation process

as a result of virtual movement of the boundary of both inner and outer

electrolytes [3]. This model also propose a phase separation mechanism

for the band formation. The formation of intermediate colloidal particles

prior to band formation with the moving boundary model, easily predicts

the dependence of the width of the Liesegang patterns on concentration of

electrolyte. One of the remarkable features of this model is that it upholds

all the existing laws once the boundary migration concept is introduced.

Thus a better and easy understanding of the basic concepts of precipitation

patterns is possible with this model. The main approximations used in the

moving boundary model [3],

1. The initial concentration of the outer electrolyte CA0 should be higher
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than the initial concentration CB0 of the inner electrolyte and also the

value of CA(x = 0, t) is fixed at the boundary of two electrolytes. In

experiments, 0.005 ≤ CB0/CA0 ≤ 0.1.

2. The gel-solution interface, which is the boundary between the two

electrolytes is located at the x = 0, in the y − z plane. The B type

ions are considered to be uniformly distributed in the gel column and

its initial concentration values are:

CA = CA0, CB = 0;x < 0, t = 0 (2.3)

and

CA = 0, CB = CB0;x > 0, t = 0 (2.4)

3. When the reaction front moves in to the gel column, the concentration

of A type ions changes and at the band position

CA = CA0; 0 < x ≤ xn, t ∼ tn (2.5)

This is valid only when the reservoir concentration CA0 of A type ions

is much higher compared to the initial concentration value CB0 of B

type ions.

4. The boundary layer shifts from one band to the other with a uniform

speed since the movement of the particles from one band to the other

is almost uniform.

In the gel medium, the concentration profile of A type ions is repre-

sented by [3],
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CA(x, t) = CA0e
−γ(x−xn(t))/ξn+1 , xn ≤ x ≤ xn+1 (2.6)

here γ > 0, is a constant and ξn+1 is the separation distance between two

consecutive bands.

The concentration profile of B type ions inside the gel medium is dis-

turbed by the reaction-diffusion process, and can be represented by

CB(x, t) = νCB0e
−σ(xn(t)−x)/ξn + CB0(1− ν ′e−σ(x−xn(t))/ξn+1) (2.7)

where ν is a constant for a given system. The first part of the RHS of the

equation (2.7) gives the idea of amount of B type ions which have penetrated

the band in the negative x−direction. The parameter ν will be very small,

since the fraction of penetrated components in this direction are very less.

And also the parameter ν ′ in the second term represents the factor of CB0

which is dropped from its initial level during the precipitation of the reaction

product C∗. Using the criteria for band formation in the ion product theory

[3],

CA(x, t)CB(x, t) |xn,tn= C∗ (2.8)

and

∂

∂x
CA(x, t)CB(x, t) |xn,tn= 0 (2.9)

Putting the values of CA(x, t) and CB(x, t) from equations (2.6) and (2.7)

in equations (2.8) and (2.9), we will get [3],

(ν − ν ′ + 1)CA0CB0 = C∗ (2.10)
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and

ν ′
(γ
σ

+ 1
)

=
γ

ν
+ ν

(
γ

σ
− ξn+1

ξn

)
(2.11)

Substituting ξn+1

ξn
= 1 + p and γ

σ = α, we get,

ν(α− (1 + p)) + α = ν ′(α+ 1) (2.12)

Eliminating ν ′ from equation (2.10) and by substituting in equation (2.12)

p =
KC∗

νC2
B0

+
KαC∗ − (1 + 2ν)C2

B0

CA0(KνCB0)
, (2.13)

which is the Matalon-Packater law and here K = CA0
CB0

. It is now possible to

estimate the values of the positive constants ν and ν ′ . Assume that the two

concentration profile indices are same and put the value of C∗ in equation

(2.10), we get

p = C2
B0α(ν − ν ′ + 1)− (1 + 2ν)

νC2
B0

(2.14)

and hence

p =
(1− 2ν ′)

ν
(2.15)

If we take the upper limit for p = 0.5, the value of ν and ν ′ will become

respectively 0.05 and 0.493 [80]. Also if p takes the lowest limiting value i.e.,

p ∼ 0 similar to equidistant band system, one of the constants attains 1
2(ν)

and the other constant turns out ambiguous. Thus the limiting values of the

constants can be fixed and it help us to understand the reaction dynamics.

As ν ′ becomes 0.493, it implies that due to the formation of the reaction

product (C∗), 49.3% of CB0 had been eliminated from its initial concentra-

tion level . Even though this a large value, the thick bands formed near the

gel-solution interface, still validates this approximation. The constant ν,
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which is a very small, represents the quantity of penetration of B type ions

in to the negative direction. Here ν ∼ 0.05 describes a very low penetration

of the B type ions in the backward (−x) direction [80].

2.3 Determination of width of bands

The determination of the width law is possible using the moving boundary

concept. One of the important observed features of the intermediate species

theory is that the particles to be precipitated in the band is originated

as a system of continuous homogeneous colloidal particles [46],[85], [86].

A phase separation mechanism that taking place in the medium separates

the colloidal precipitant particles into band and non-band regions. Various

methods were proposed to explain the phase separation phenomena. Droz et

al., studied the phase separation phenomenon using spinodal decomposition

mechanism [49],[14] and also by the behaviour of a moving reaction front

[80]. The moving reaction front creates the colloidal particle and small bunch

of particle nucleate and segregate behind the reaction front. When the outer

electrolyte A reacts with the inner electrolyte B, an intermediate compound

C of constant concentration c0 is formed and all the colloidal particles appear

on and near the band, then the concentration of intermediate particles falls

of rapidly. The phase separation phenomena separates the homogeneous

colloidal precipitant particles of uniform initial concentration c0 into a band

and a gap having concentration, cba and cga respectively[80]. Using the rules

of conservation of matter,

wncba + (ξn − wn)cga = ξnc0 (2.16)
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here wn is the nth band width. The width of the nth band in terms of

concentration becomes

wn =
(c0 − cga)
(cba − cga)

ξn (2.17)

or

wn = fcξn (2.18)

where

fc =
(c0 − cga)
(cba − cga)

(2.19)

is the width coefficient. Thus according to the above equation the width

of precipitation bands strongly depends on intermediate colloidal particle

concentration.

For the calculation of the value of fc, simple approximations used are

[80].

1. The A type particles will move towards the positive x-direction dur-

ing the diffusion process and a small fraction of type B particles will

move towards the negative x-direction. The remaining B type parti-

cles having concentration, (1− ν)CB0 , found in the diffusion zone are

participating in the reactions.

2. The amount of colloidal precipitants produced will be a another frac-

tion of the remaining electrolytes. Thus we assume that µ(1− ν)CB0

as the amount of the colloidal precipitants formed.
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Figure 2.1: Relation of half separation distance on the width of the band for few
bands in silver dichromate system. The outer (silver nitrate) and inner (potassium

dichromate) electrolyte concentrations are 0.25 M and 0.0036 M, respectively.

3. The colloidal precipitants aggregate on the band is a further fraction

of the total colloidal precipitants formed; λ(1− ν)CB0.

4. The gap contains all the remaining particles.

Equating the total concentration of colloidal particles generated c0, and the

concentration of the precipitant particles on the band cba [80], we obtain

c0 = µ(1− ν)CB0 (2.20)

cba = λ(1− ν)CB0 (2.21)

Substituting these in equation (2.18), the width coefficient becomes

fc = λ/(2λ− µ) (2.22)

Most of the colloidal particles seems to segregate on the bands and

the gap contains a very few colloidal particles [80]. The width coefficient
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fc becomes zero, when λ = 0, which is the no band condition. The width

coefficient fc becomes negative, when λ takes the values between 0 ≤ λ ≤ 0.5

and the band formation is forbidden. When λ = 0.5, fc behaves anomalously

and it holds the value 0.5 asymptotically. Thus we conclude that λ ≥ 0.5 is

a critical condition [80] for sustained band formation. Based on these, the

width coefficient can be approximated as,

fc ≈
1

2
(2.23)

when µ � λ and λ = 1 as special case and patterns are simulated for this

condition. Thus we can conclude that,

wn =
ξn
2

(2.24)

Hence width of the bands are almost equal to the half separation distance

and is true only for small values of n [80]. As n increases the contribution

of µ in equation (2.22) becomes prominent and the band width becomes

smaller than this value.

2.4 Analysis of patterns

The experimental data by Lagzi et al., is taken for our analysis with per-

mission and its details according to the authors were:

• Diffusion medium: gelatin gel

• Outer electrolyte (silver nitrate) concentration:0.25M

• Inner electrolyte (potassium dichromate) concentration: 0.0036M
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Figure 2.2: Simulated pattern for spacing coefficient p = 0.5. The Y -axis
represents the concentration in milli moles per litre and the distance is taken

along the x- axis in cm.

In the experiment, well defined Liesegang bands, obeying the geometric

sequence, were seen at regular intervals in the gel medium. It is also noted

that the width of the bands were approximately equal to the half separation

distance (Figure 2.1), and it supports the theoretical predictions using the

moving boundary model.

2.5 Simulation of the patterns

Usually in the computer simulation of Liesegang patterns the major task

is to solve a set of coupled reaction-diffusion equation. The Fick’s law was

solved numerically in most of the simulation studies and the concentration

profiles were plotted. We propose a different method here since the moving

boundary model gives a new solution for the spacing coefficient. Here we are

interested only in the structure of patterns, mainly in the spacing and width
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of the bands [80]. The band position can be calculated using the formula,

xn = x0(1 + p)n (2.25)

where n is the number of bands. As discussed earlier, p can have a multiple

of values depending on the concentration of the electrolytes [80]. We have

chosen two values for p in our simulation, one is the upper limit and the other

value obtained experimentally. The position of the bands can be calculated

using the above equation but it doesnt contain any idea on the width of

bands. The theoretical approximations using moving boundary model give

some idea on the width of the bands.

The simulation algorithm have the following steps [80]:

1. Choose the value of p, then calculate the constants ν and ν ′.

2. Calculate the position of the the band using spacing law, by assuming

x0 = 1.

3. By assuming the concentration CA0 is fixed, the above process contin-

ues for successive ten steps.

4. Calculate the separation distance for each band and then compute the

width of the bands using equation (2.25) and (2.24).

5. Then the bands are plotted using above steps.

Using the above algorithm two dimensional(2D) band structures were

plotted by a Matlab programme. Simulated patterns resembles the Liesegang

type patterns . The obtained pattern obeys all empirical laws of the experi-

mentally observed patterns. In the simulation 2D patterns were obtained for
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Figure 2.3: Simulated pattern for spacing coefficient p = 0.077. Y -axis
represent the concentration in milli moles per litre and the distance is taken on x-

axis is in cm.

p values 0.077 and 0.5, respectively (Figure 2.2 and Figure 2.3). The max-

imum value in the Y-axis correspond to the initial concentration of outer

electrolyte (CA0). This concentration does not vary between xn to xn +wn,

as stated in the moving boundary model and the concentration of A type

ions falls of to zero beyond this point. This process repeats periodically

in space and hence the patterns are formed. The separation distance and

the width of the bands increases, as p increases. Hence different electrolyte

concentration yield different precipitation patterns. A similar approach is

possible for λ ranging from 0.5 to 1 [80].

2.6 Conclusion

The pattern formation mechanism in reaction diffusion system was inves-

tigated theoretically by introducing a new concept of boundary migration.

The moving boundary model reproduced the scaling law, time law and the

width law without making much assumption. It also gave a satisfactory
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explanation on the spatial positioning of the periodic band structure seen

in reaction diffusion systems. The dependence of the width of the precipita-

tion bands on the concentration of the intermediate colloidal particles were

theoretically calculated using this model. Hence a better understanding of

the basic facts of pattern formation process was made possible with the

theoretical investigations and was also verified using computer simulations.

Simulated patterns bear the characteristic nature of the experimentally ob-

served Liesegang patterns. Another remarkable feature of this model is that

the asymptotic condition for the band formation can be determined. Also

this model calculate the width of the bands with little approximations, which

many others were trying to find. The concentration dependence of the width

of the bands for different spacing coefficients were plotted. The intermedi-

ate colloid formation process was once more confirmed in the model and it

was found to be useful in discussing many other phenomena, especially the

self-sustained patterns.



Chapter 3

Experiments

3.1 Introduction

Liesegang experiments are simple and cheap to perform and this chap-

ter gives a brief introduction about Liesegangs experiment and list a few

Liesegang systems too. We performed the experiments in silica and agarose

gel and in both cases we obtained both liesegang and helical patterns. The

experimental setup and methods in silica, agarose, mixed(silica-agarose) gel

and the tube-in-tube experiments are briefly explained. Comparison of the

probability of helicoids in both gel are also studied.

The physical and chemical properties of the diffusion medium effects

the pattern formation. The main function of a gel is to maintain a diffu-

sion controlled system by eliminating convection and to hold precipitates in

place and preserve the pattern that forms. Precipitation of silver chromate

in agarose gel or silica gel typically produces small, randomly distributed

crystals, and in gelatin produces periodic bands [87] which is probably a

result of the differing chemical compositions of these gels. In some systems,

55
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crystals or bands can be produced in the same type of gel, and morpholog-

ical transition between crystals and banding is related to relative rates of

heterogeneous and surface nucleation [88], which also depend on the chem-

ical properties of the medium or the presence of chemical species that do

not take part in reactions. Gradients of factors such as temperature or pH

that affect precipitation can give rise to revert or equidistant spacing of

precipitates [89].

During the precipitation in gel system, various types of structures are

formed. The precipitation pattern formation in lead iodide, Toramaru et

al.,[90] describe the transition of periodic patterns to tree like structures.

At higher gel concentration ordinary Liesegang bands are formed whereas

at lower gel concentration tree like crystal aggregates are formed. The two

major difference they found is that in the number density and surface nucle-

ation. The precipitation band have number density 103 times higher than

tree-like crystal structure and surface nucleation is absent in periodic pre-

cipitation. At higher nucleation rate in higher gel concentration, individual

crystal growth is relatively suppressed and as a result Liesegang bands con-

sisting of higher number density of tiny crystals is developed. On the other

hand at lower gel concentration, due to lower number density nucleation is

suppressed there by allowing each nucleated crystal to large crystals.

3.2 Gels

Gels are commonly used in periodic precipitation experiments due to their

small pore size prevents bulk movements of fluid while allowing diffusion of

small molecules and ions, and prevents precipitates greater than a certain

size from moving from their sites of formation. Silica gel is the most geo-



Liesegang systems 57

chemically plausible gelatinous material. Silica hydro-gel is formed by the

reaction between sodium silicate solution and an acid [87]. The gel is there-

fore an inorganic matrix of polymerized acidified silicate that contains some

leftover silicate ions in solution and also anions of the acid used to create

the gel. Agar is a complex polysaccharide matrix extracted from algae [91].

Agarose consisting mainly of methylated cellulose, is purified from agar to

have a very low ionic content and therefore lower conductivity suitable for

use in gel electrophoresis, therefore creating a charge-neutral diffusion con-

trolled environment. Various gels differ in the method of preparation and

the gel point also varies for different gels. We are using silica and agarose

gel in our experiments. Thus depending on the method of preparation gels

are classified into two:

1. Chemical gel: Gel formed by chemical reaction such as hydrolysis or

polymerisation. Eg: Silica, polyacrylamide etc.

2. Physical gel: Gel which is obtained by physical process such as cooling.

Eg: gelatin, agarose, clay etc.

3.3 Liesegang systems

There are a bunch of systems which exhibit Liesegang patterns. Same chem-

ical system in different gels shows different patterns due to the physical and

chemical properties of the gel. A few Liesegang systems, revert spacing

system, doublets and triplet system and gaseous diffusion system are given

below.

• AgNO3/K2Cr2O7 in gelatin gel [36]

• MgCl2/NH4OH in PVA gel [34]
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• Pb(NO3)2/KI in agar-agar gel [92]

• MgSO4/NH4OH in gelatin [72]

• CoCl2/NH4OH in gelatin [67]

• Pb(NO3)2/K2CrO4 in agar [57] [revert spacing]

• NaOH/CuCl2 in PVA gel [58]

• CuSO4/Na2CrO4 in silica gel [93]

• NaOH/Cu(NO3)2, NaOH/AgNO3 in PVA or agar gel [94]

• Ba(NO3)2/(NH4)2MoO4 in silica gel [95]

• CaCl2/H3PO4 (triplets), Pb(NO3)2/KF in silica gel [4]

• MgCl2/NaOH in PVA gel

• K2CrO4/CuCl2 in agarose [96]

• AlCl3/NaOH in agarose [97]

• K2CrO7/AgNO3 in gelatine [98]

• KI/PbNO3 in agarose [99]

• HCl/NH3 in silica aerogel(gaseous diffusion)[61]

3.4 Precipitation patterns in silica gel

The structure and properties of silica gel has been studied very deeply [100,

101]. When sodium meta silicate dissolves in water, monosilicic acid is

produced in accordance with the chemical reaction shown below. This is

a reversible process and the by-product is the strong alkali NaOH remains
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in the solution. This is the reason for the alkaline habit of the solution.

The mono-silicic acid liberates the hydroxyl ions and polymerises as shown

below: This happens again and again until a three dimensional network of

Si - O links is established and the silicon oxygen linkage is extremely strong

and which is irreversible. A section of the cross-linked polymer is shown

below

3.4.1 Preparation of silica gel

A gel of desired density was prepared using sodium meta silicate solution

(Stock solution). Stock solution was prepared by mixing, few grams of

sodium meta silicate(Loba) in doubly distilled water. Relative density of

the Stock solution measured by specific gravity bottle method was 1.08.

Now, to prepare Stock solution of given relative density (say 1.03), we

have to mix proper volume of initially prepared Stock solution with distilled

water. To know the required volume of water to be added, plot a graph

between relative density and volume of distilled water to be added. Since

density and volume has linear dependence, simple interpolation technique
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Figure 3.1: Relative density versus volume of water

allow us to calculate the required volume of water for any relative density

between 1 and 1.08 as shown in Figure 3.1. From the graph it is clear that

volume of water required to make gel of relative density 1.03 from initial

Stock solution of relative density 1.08 (measured value) is 63 ml. That is,

63 ml of water is to be added to 37 ml of initial Stock solution to prepare

a gel of relative density 1.03.

Silica gel is prepared by combining two solutions: (i) an acid solution

(dilute HCl) + potassium chromate solution and (ii) sodium silicate solution

prepared by diluting silica powder (Loba) to doubly distilled water. Drop by

drop of (ii) is added to (i) slowly by continuous stirring and set the solution

for desired pH and poured into test tubes. The tubes were then sealed

and kept undisturbed for 24h. Polymerisation begin immediately as soon

as silicic acid is formed. The gelling process itself takes an amount of time,

which can vary from hours to days, depending on the nature of material and

its temperature.
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Figure 3.2: Liesegang patterns in silica gel having different pH value; 7, 8, 9, 10
respectively

3.4.2 Liesegang and helical patterns in silica gel

Stock’s solution of desired relative density (1.03) was prepared in doubly

distilled water. 0.01M solution of K2CrO4( Merk) was taken in a beaker and

add drop by drop of Stock’s solution to it by continuous stirring. Gelation

was induced by decreasing the pH of the system by adding HCl [102] .

Pour this solution in to different test tube radii and kept them undisturbed

for 24 hrs till the gelation was complete. After complete gelation pour the

solution of CuCl2(Merk, 0.5M) gently on the top of the gel. After some

time a light green precipitate is formed and the test tubes were closed and

kept undisturbed for the reaction to take place.

The experiments were done out at room temperature and at pH 7.

Experimental results shows that both normal Liesegang (Figure 3.2) and

helicoidal (Figure 3.3) patterns are obtained. The experiments were done

in ten different test tubes to calculate the probability and also at different

pH values 8, 9, 10. It is found that as the pH increases the initial plug also
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Figure 3.3: Helical patterns in silica having diameters 8mm and 12mm

increases and the spacing coefficient decreases[102]. That is the patterns

become more closely spaced as the pH increases (Figure 3.2) since the pH

affects the pore size and the internal surface area of the gel. When the

same set of experiments were carried out in a thermostatic temperature

bath at 350C, more probability of obtaining helicoidal precipitation patterns

are found. So here the thermal noise promotes the formation of helicoidal

precipitation patterns [102].

3.5 Precipitation patterns in agarose gel

Agarose is a polysaccharide extracted from seaweed. It is typically used at

concentrations of 0.5 to 2 percent. Its structure is shown in Figure 3.4. The

higher the agarose concentration the “stiffer”the gel. Agarose is available as

a white powder which dissolves in near-boiling water, and forms a gel when it

cools [103]. Agarose gels and melts at different temperature, and the gelling

and melting temperature varies depending on the type of agarose. Usually
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Figure 3.4: Structure of agarose

Figure 3.5: Liesegang patterns in agarose gel having test tube diameters 8mm,
12mm, 18mm

agaroses has a gelling temperature of 35− 450C and a melting temperature

of 85−950C. The melting and gelling temperature may be dependent on the

concentration of the gel. The gelling portion of agar-agar has a double helical

structure. Double helices aggregate to form a three-dimensional structure

framework which holds the water molecules within the interstices of the

framework [103].
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3.5.1 Liesegang and helical patterns in agarose gel

Agarose (Type I, Sigma Aldrich) is a fine white powder and its 1 % concen-

tration with potassium chromate (K2CrO4, Sigma Aldrich) as inner elec-

trolyte is prepared by dissolving them in doubly distilled water . The re-

sulting solution was heated to 900 C while constantly stirring it until a

homogeneous solution was obtained. The precipitation reaction includes

the mechanism

Cu2+(aq) + CrO2−
4 (aq)→ CuCrO4(s) (3.1)

in 1 % agarose gel. Pour the solution into test tubes and after complete

gellation, on top of this gel CuCl2 ( which serves as outer electrolyte) is

gently poured. Since the outer electrolyte concentration is larger than that

of the inner electrolyte, the reaction front diffuses into the gel medium,

and a regular Liesegang pattern of precipitation bands (Figure 3.5) forms

in the wake of the front. Frequently, helicoids (Figure 3.6) evolve from

the same macroscopic experimental conditions. To study this intriguing

phenomenon and to quantify its stochastic mechanism, the concentration

of the outer electrolyte (a0) and inner electrolyte (b0), the temperature (T )

of the system and the radius of the test tube (R) are changed and hence

determined the probability of the emergence of single helicoids using 10

independent experiments for each set of parameters.

3.5.2 Spacing coefficent

To generalize the concept of spacing coefficients for helices, it is required to

study the Matalon-Packer law for the helicoidal patterns. By defining xn as
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Figure 3.6: Helical patterns in agarose gel having test tube diameters 8mm,
12mm, 18mm

the position of the nth crossing of the helix at a given point (Figure 3.7),

for large n xn+1/xn−1 = pn should converge to the spacing coefficient p.

The helices are often characterized by their pitch and it is very clear from

experiments (Figure 3.7) that as the distance from the initial junction of

the electrolytes increases, the pitch of the helices also increases. The local

pitch qn = xn+1 − xn can be determined and can be expressed through the

spacing coefficient as qn = xn+1 − xn = pxn.

Figure 3.8 depicts the connection of the spacing coefficient as a function

of a0 for both bands and helices in experiments. The experimental data for

bands and helices are close to each other and the helices having a bit larger

spacing coefficients. Also the experimental data for both the Liesegang

bands and helicoidal patterns have same type of curves and can be fitted to

the Matalon-Packter law (refer equation 1.13 in chapter 1). Not only the
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Figure 3.7: Variation of spacing coefficient for hellicoids and Liesegang patterns
in experiments

band spacing of the patterns but the local pitch of the helices follows the

Matalon-Packter law.

From the experiments, it is observed that the local pitch of the helices

is little larger than the local band spacing of the Liesegang bands found

in the same experimental setup. This slight variation can be explained by

assuming that the bands and the helices have the same local precipitate

concentrations and widths. It is noted that the amount of precipitate found

in a band is always less than that in the corresponding part of the helix,

since the moving reaction front leaves behind a constant concentration of

Cs which are further collected into a band or a tilted band (helix). Hence

it can be elucidated that the pitch of the helix should be larger than the

spacing of bands to collect the same amount of C particles.

3.5.3 Effect of radius of tube

We performed experiments by varying the radius of the test tube(Figure 3.9).

Surprisingly it is noted that no helicoids are formed below a critical radius
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Figure 3.8: Dependence of spacing coefficient on a0. Matalon-Packter law is
equally valid for Liesegnag bands and helices

(Rcrit = 1.5 mm), Figure 3.11. Also there is a maximum probability of

getting helicoids at R = 8mm. As the radius of the test tube increases, there

is much probability for the evolution of more complex structures (double

helices (Figure 3.10), triple helicoids, disordered patterns). From the graph

also its very clear that there are no helicoids below R = 1.5 mm and the

maximum probability of helices are at R = 8 mm.

Figure 3.9: Effect of radius of tube on precipitation patterns for R = 1.5, 2, 8
mm respectively
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Figure 3.10: Double helical patterns for R = 10 mm in agarose gel

Figure 3.11: Graphical representation of effect of radius of tube on precipitation
patterns

The experimental values for different test tube radii and their proba-

bilities are tabulated in Table 3.1 .

Table 3.1: Probability of the emergence of helical pattern PH in experiments
where the test tube radius R was the only parameter varied

R(mm) 1.5 2 3 4 5 6 7 8 9 10 12.5

pH 0 0.1 0.1 0.2 0.1 0.2 0.3 0.7 0.2 0.2 0.1
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3.5.4 Effect of temperature

We performed experiments by varying the temperature of the system and

keeping all other parameters constant. The experimental values are tabu-

lated in Table 3.2. While investigating further about helices, its noted that a

fast front(eg., by selecting large a0) can create an unstable state in the wake

of the reaction front by placing the system deep in the misibility gap(eg., by

an appropriate choice of b0). Choosing the right temperature is very difficult

which itself requires further extensive studies.

In the experiments, Liesegang and helicoidal precipitation patterns

emerged in gel medium in the test tubes. Here the planar diffusion front of

the outer electrolyte diffuses into the gel medium produces a series of pre-

cipitation bands called the regular Liesegang pattern. The helicoidal precip-

itation pattern emerge in the same experimental set up shows the stochastic

behaviour of this phenomenon. To study the various properties of Liesegang

and helicoidal precipitation patterns, we performed ten independent set of

experiments with same condition.

3.6 Tube-in-tube experiment

The experiments which were described earlier in silica and agarose gel were

also carried out in a quasi two-dimensional geometry by placing the gel in-

between two test tubes of slightly different radii, thereby creating a narrow

cylindrical gel column Figure 3.12. This setup is called the tube-in-tube

experiment and its procedure is briefly explained below. The tube-in-tube

experiments are rather easier for the theoretical investigation than the single

tube experiments, since they are 2D patterns and can be easily transformed
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Table 3.2: Probability of the emergence of helical pattern PH in experiments
where the temperature T is the only parameter varied

T(0 C) 8.5 24 60

pH 0.2 0.7 0.3

Figure 3.12: Tube-in tube helical patterns of silica and agarose gel

to tilted Liesegang bands.

In the case of agarose gel, first the given amount of agarose(Type-1,

Sigma Aldrich) is dissolved with the potassium chromate(Sigma Aldrich) in

double distilled water. The mixture was heated to 900 C under constant

stirring until a homogeneous solution was obtained and pour this solution

in to test tubes. After a few minutes insert a test tube having smaller

radius into the bigger test tube, where we poured the homogeneous solution.

Keep the inner test tube exactly middle of the bigger test tube by slight

adjustments so that the cylindrical gel column is formed between the two

test tubes. After few hours the outer electrolyte is poured in between two

tubes, and one can observe the formation of regular Liesegang bands, single

helices, as well as double helices. Triple helices and more complex patterns

also emerge for large enough tube radius. Similar experiment were done for

silica gel also.
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3.7 Comparison of helical precipitation patterns

The helicoidal patterns are formed in both agarose and silica gel. The he-

licoidal patterns in silica evolve more rapidly than in agarose gel. In silica

gel as the pH increases, the spacing coefficient decreases and the band-

width increases but it happens vice versa in agarose gel. In silica gel as

the pH decreases the probability of getting helicoids increases [102]. In

agarose medium by increasing the gel concentration, the probability of he-

licoidal patterns increases, simultaneously the probability of Liesegang and

distorted helicoids decreases, and further increase in agarose concentration

leads to decrease in the probability of helicoidal patterns . This behaviour

of patterns can be qualitatively explained by considering that the gel can

introduce randomness into the system. The concentration of the gel can

be treated as a factor that is proportional to the noise. At low noise (at

low agarose concentration), the Liesegang pattern dominates and the prob-

ability of helicoids go to zero. At large noise, the system becomes chaotic,

the probability of Liesegang goes to zero, and distorted helicoids start to

dominate [102].

3.8 Patterns in mixed silica-agarose gel

In this experimental set up 1% agarose powder(Type1, Sigma Aldrich) was

added to 0.01M solution of potassium chromate (K2CrO4, Merk). The

resulting solution was heated to 900C while continuously stirring until a

homogeneous solution was formed [102]. Take some amount (10 ml) of

above prepared solution in a beaker and add 90 ml of SMS to it and mix

well. The resulting solution was poured into test tubes for 3 hours for
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Figure 3.13: Effect of impurity on patterns- 10 ml agarose, 50 ml agarose, 80 ml
agarose in silica are shown

complete gelation. The solution of CuCl2(Merk, 0.5 M) was then poured

gently over the top of gel after the polymerisation. The test tubes were then

closed and kept undisturbed for the reaction to take place. Repeat the same

procedure for different volume of silica gel, say 50 ml and 20 ml in to 50 ml

and 80 ml of agarose gel. Experiments shows that different type of patterns

were formed in different volume of silica gel, which differ in spacing and

bandwidth (Figure 3.13). Another interesting result is that the probability

of helices are large in equal amounts of both gel, i.e., at 50 ml of silica and

agrose gel [102].

3.9 Conclusion

The Liesegang and helical precipitation patterns were obtained at specific

conditions and patterns were easily reproducible too. Our experiments

showed that self organised precipitates could be produced in porous me-

dia under a variety of conditions. Although the chemical conditions in our

experiments were different from what would be excepted in natural situa-

tions, this experimental work showed how physical and chemical properties
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of a porous or permeable medium could affect the morphology of precipitates

produced.



Chapter 4

Helical precipitation patterns

4.1 Introduction

Helices and helicoids are present from nano- to macroscale and a few ex-

amples includes nanohelices in ZnO [104], helical structures of inorganic

crystals and macromolecules [105, 106], precipitation helicoidal patterns

[15, 107, 108] and fibre geometry of heart walls [109]. Chiral patterns have

been the central topic of a large number of studies in natural sciences, en-

gineering as well as in the artistic domain. The emergence of chirality at

meso- and macro-scale is a complex process which may proceed principally

in distinct routes. Firstly, the chirality is present in the microscopic build-

ing blocks and the symmetry is just transcribed to a higher level of spatial

organization [110]. Secondly due to the presence of chiral media, achiral

microscopic units may assemble into chiral objects [111]. Finally, achiral

microscopic units may self-organize into a chiral structures through symme-

try breaking process [107].

To understand more about the origin of helicoidal patterns, further
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studies were made in the formation of precipitation patterns in the wake of

reaction-diffusion fronts [87, 112]. The motivation behind this investigation

stems from the simple correlations of helicoidal precipitation patterns in

the plane perpendicular to the axis. Since the Liesegang phenomena in

gel systems are well studied [87, 112], this knowledge helps to know more

about the emergence of helicoidal patterns in precipitation systems. Hence

using well defined experimental and theoretical approaches makes it easier

to develop the dynamics behind the formation of helical structures.

4.2 Theory

Most of the theories about the Liesegang pattern combine the properties of

reaction front and the mechanism of precipitation i.e. in which way the re-

action product, C, becomes the precipitate. The peculiarities of the moving

reaction front have been studied both theoretically [6, 113] and experimen-

tally [114, 115],but the mechanism behind the precipitation is more debated.

Several methods have been proposed based on the pre- and post-nucleation

mechanisms, and their merits and demerits are subjects of discussion even

today. Theories which incorporate both dynamics also exist[116, 117], the

simplest one [14] is based on the Cahn-Hilliard equation [18, 19] and on its

generalization with conserved noise added [118]. The Cahn-Hilliard equa-

tion features both the fast spinodal-decomposition and slower nucleation-

and-growth processes. When the phase separation dynamics is linked with

the diffusing (decelerating) reaction zone, which provides a slowly increasing

time scale, this model allows regimes where the pre- or the post-nucleation

dynamics dominates the pattern formation.

In the Liesegang experiment, a reaction front arises due to the inhomo-
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geneous distribution of the electrolytes A and B. The reaction mechanism

proceeds into the gel medium where the inner electrolyte (B) is homoge-

neously distributed. After complete gelation the outer electrolyte (A) having

much higher concentration is gently poured on the top of the gel. Assume a

second-order irreversible reaction A+B → C, the moving front proceeding

in to the gel medium can be represented by the set of equations

∂a

∂t
= DA∆a− kab (4.1)

∂b

∂t
= DB∆b− kab (4.2)

where the diffusion coefficients (DA, DB) and the reaction rate k have been

taken as 1 by an suitable choice of the length and time scales (see Appendix

1). The moving reaction front, described in terms of the spatio-temporal

properties of the formation rate of C ′s(ab), is narrow and it moves into the

gel diffusively. The phase separation mechanism takes place since the moving

reaction front back out a constant concentration of C ′s(c0), where c0 is a

function of D and b0/a0. Assuming that the system having concentration c0

is unstable, the phase separation process distributes C ′s into regions having

high- (ch) and low-concentrations (cl) and can be represented using the

Cahn-Hilliard equation:

∂c

∂t
= −λ0∆

[
δf

δc

]
+ kab+ ηc0 (4.3)

Here λ0 is a kinetic coefficient, f is the free energy driving the phase sep-

aration, kab is the source term specifying the creation of C particles by

the front, and ηc0 represents thermal noise effects which conserve the total

number of C particles.
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Figure 4.1: Landau Guinzburg free energy

In order to have phase separation, the free energy f(c) should have two

minima corresponding to the low (cl) and high (ch) concentrations of C ′s in

homogeneous equilibrium states (Figure 4.1). It should also have a surface

tension term preventing the formation of singularities at interfaces. As a

convenient form with minimal number of parameters, one can take f as a

Landau-Ginzburg free energy which is symmetric about ĉ = (ch + cl)/2

f(c) = − ε
2

(c− ĉ)2 +
γ

4
(c− ĉ)4 +

σ0

2
(∇c)2 (4.4)

where ε, γ and σ0 are phenomenological parameters, and the minima of f(c)

are fixed at ch and cl by setting
√
ε/γ = (ch − cl)/2 ≈ ch/2 , assuming that

ch > cl i.e. the gaps between the bands have very low steady-state concen-

tration of C ′s (in usual Liesegang experiments). Measuring concentration,

time, and length in units of

c̄ =
ch − cl

2
, τ =

1

kc̄
, l =

√
D

kc̄
(4.5)
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and, furthermore, making a shift in the concentration of C ′s

m =
c− (ch + cl)/2

(ch − cl)/2
≈ c

c̄
− 1 (4.6)

and one obtains the equation

∂m

∂t
= −λ∆[m−m3 + σ∆m] + ab+ ηc (4.7)

where λ = λ0ε/D, ηc = ηc0/kc̄
2, σ = σ0kc̄/D, are respectively the

modified kinetic coefficient, conserved noise and surface tension.

where m is concentration of C ′s modified by (ch + cl)/2 and rescaled

by c̄ = (ch− cl)/2 . Thus the concentration m = (2c− ch− cl)/(ch− cl) = 1,

for c = ch and m = −1 for c = cl. The parameter τu ≈ σ/λ explains the

characteristic time scale of the formation of unstable modes in the Cahn-

Hilliard equation. Relative comparison of τu with the time the reaction

front traverses through a region determines whether the nucleation-and-

growth process or spinodal decomposition process dominates the formation

of patterns.

Note that adding the noise component ηc is important since the heli-

cal pattern formation is a symmetry-breaking phenomena which does not

happen without the presence of noise. Noise widens the available regions of

the meta- and unstable states, and makes useful the earlier morphological

phase diagrams of Liesegang patterns. Note that patterns resulting from

noiseless Cahn-Hilliard dynamics in the wake of a front moving with fixed

velocity have been much studied [119, 120]. Complex morphologies, have

been obtained only from various initial conditions or from dynamical move-

ment of the reaction front. The model having no noise contribution shown
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Figure 4.2: Transformation of the three dimensional “tube-in-tube”experimental
set up into a two dimensional domain.

to reproduce the properties of the regular Liesegang patterns [14, 20].

From theoretical point of view, the tube-in-tube experiments are the

easy to describe. When the test tube radii are very similar, it can be cut

vertically and open as shown in Figure 4.2, and assume the thin layer of the

gel as an effectively two-dimensional rectangular strip of width Ly = 2πR,

and length equal to the tube length Lx. The equations 4.1,4.2 and 4.7

were studied in rectangle of size LxLy with the reaction front moving in the

direction of x-axes and were solved by applying the method of lines. This

involves spatial discretization on a rectangular grid and the integration of

the subsequent ordinary differential equations by the forward Euler method.

The conserved noise ηc was included by changing Cs to neighbouring sites

at a rate ηc = r
√
c, here r is a random number uniformly distributed in

an interval [−η, η]. Band periodicity enabled us to use periodic boundary

conditions in the y direction (Figure 4.2). At the lower edge (x = Lx, y) of

the test tube we used no-flux boundary conditions. Since the concentration
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of the outer electrolyte(A) is kept at a constant value a(x = 0, y, t), we used

Dirichlet boundary condition at the upper edge (x = 0, y) of the test tube,

where as Neumann (no-flux) boundary conditions are used for B and C.

The simulation patterns indicate that both helices and Liesegang emerge in

a wide range of parameters and the patterns are in good accordance with

the experimental patterns, Figure 4.3.

Figure 4.3: Simulated and experimental helical and Liesegang patterns

4.3 Probability of emergence of helices

From experimental and simulation results it is clear that a fast motion of the

front, large diameter of the tube, and a sufficient amount noise promotes the

formation of helices. A physical picture is obtained by measuring the proba-

bilities of helix/helicoid formation in Liesegang experiments, by varying the

experimental parameters such as the initial concentration of outer electrolyte

or inner electrolytes, the radius of the test tube, and the temperature of the

system. The experimental setup and the initial conditions do not break chi-

rality at the macroscopic level and the helices/helicoids emerge with large

probabilities (greater than 50% for some parameter range). Also it is find
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that the probabilities are well defined and are reproducible for a given set of

parameters. These studies suggest that the origin of helicoidal patterns is

due to an intrinsic property of the dynamics of the system and not related

to the noise fluctuations and asymmetry of the initial conditions. It is also

clear that the formation of unstable modes, the reaction front dynamics,

and noise fluctuations together leads to helical precipitation patterns.

4.4 Results and Discussion

Several experimental and theoretical studies have been reported by various

groups to clarify the emergence of helices in Liesegang-type setups [87, 121].

From our experiments it is clear that the formation of helical and helicoidal

patterns was reproducible but had a probabilistic aspect [102]. There is a

well-defined probability for the helical pattern to emerge, for a given set of

experimental parameters. The probability of helical patterns based on the

initial concentration of the inner and outer electrolytes and on the size of

the system was measured. The helical patterns were obtained from a com-

plex interplay of the unstable precipitation modes, the reaction front motion

and the noise fluctuation in the system. Although the probability depends

sensitively on the noise in the system, it is not easily accessible in experi-

ments. While changing temperature, the noise amplitude also changes but

it depends on a number of other important parameters like reaction rates,

diffusion constants, precipitation thresholds etc and hence it is practically

impossible. Various attempts were proposed to overcome this problem and

our present work implement control of noise amplitude by changing the

properties of the gel [102].

In usual way the gel is treated as an inert medium in the theoretical
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study of Liesegang-type experiments [20, 25, 44, 45, 117]. It is also noted

that changing the concentration of the gel medium leads to precipitation

patterns with distinct spacing and width laws and leads to different kind

of precipitation patterns [77, 90, 96, 102]. A simple explanation for these

effects is that the gel serves as a network of quenched impurities behaving

as nucleation centers [122]. The density of nucleation centres are charac-

terized by the internal surface of the gel(larger surface area implies larger

nucleation density) which defines the rate of nucleation in the system [102].

This implies that the internal surface area is proportional to the amplitude

of noise. When the internal surface area is large, the probability of a nucle-

ation event is also large. To study the effects resulting from internal surface

area changes, the helicoidal patterns in agarose and silica gels are examined

by changing the internal surface area by varying the concentration of agarose

gel and pH in the silica gel [123–125]. The experimental trends in the prob-

ability of helices formation are noted and found in terms with the argument

that the internal surface serves as an a noise inducing nucleation center. The

yield of helices can be increased by mixing both silica and agarose gels and

the highest value of 90% yield was obtained at 0.5% agarose concentration

[102].

Figure 4.4 shows that helicoidal precipitation patterns are formed in

both agarose and silica gel. To investigate the cause of the internal surface

area, the gel concentration in agarose and pH of silica gel are varied. In

agarose gel, the internal surface is found to be proportional to the concen-

tration of gel [123, 124]. For silica gel, the acidity (pH) influence the pore

size and the internal surface area which is proportional to 1/pH [125, 126].

Varying these two parameters gives a controllable way to ‘fine-tune’the prop-

erty of gels in these two different gel column [102]. It is noted that in agarose
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Figure 4.4: Various precipitation patterns in agarose, silica and mixed gels. (a)
Helicoidal patterns in 1% agarose gel (left) and in silica gel having pH = 7(right).
(b) Precipitation patterns in mixed gels haing pH = 7, numbers below each test

tubes gives the amount of agarose in silica gels.

gel the maximum probability (PH = 0.6) of the emergence of single helicoids

occurs at 0.75% of gel concentration. Also parallel with this the probabil-

ity of Liesegang patterns decreases with increasing concentration of gel and

the probability of distorted helicoids also decreases (Figure 4.5a). For silica

gel, it is found that maximum probability (PH = 0.5) of helicoidal patterns

occurs at pH 7 and at lower and higher pH values the probability of helices

decreases (Figure 4.5b).

The theory behind formation of helix in the wake of a moving reaction

front combines the properties of reaction front together with the dynamics

of the pattern formation through pre- and post nucleation phenomena [102].

The phase separation mechanism is described by the noise added Cahn-

Hilliard equation where its source is obtained from the reaction diffusion

equations [14, 18, 20, 118]. This phase separation theory has been success-

ful in formulating the established regularities of Liesegang patterns, and it
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Figure 4.5: Variation of the probability of precipitation patterns obtained from
ten experiments for each set of parameters for Liesegang patterns , single helicoids

and distorted helicoids (a)in agarose gel where the concentration was
changed,(b)in silica gel where the pH was varied, (c)in mixed gel where the

concentration of agarose was changed
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Figure 4.6: Probability of helices as a function of noise

also support the methods for controlling the growth of patterns by varying

external fields and boundary conditions [20, 89, 127]. In precipitation sys-

tems, gel restricts the convection of solutions as well as the sedimentation

of precipitate [102]. Few recent studies [77, 90, 96] have shown the strong

influence of gel in pattern formation system which is in agreement with our

experimental results.

In theoretical studies, the effect of gels in pattern formation becomes

highly nontrivial and only a few reports in this direction [89, 96] are known.

Gel helps to lower the nucleation threshold and thus provides the internal

surfaces for nucleation [122]. These internal interfaces promotes nucleation

in the same way as increasing noise helps achieving thresholds in the nucle-

ation processes [102]. Since parallels may be drawn between the effects of

internal interfaces and noise, the theoretical difficulties associated with gels
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can be overcome by interpreting the experimental results in terms of the

probability of helical pattern formation, PH , to the amplitude of the noise η

(Figure 4.6). The probability of helices, PH is negligible in the η −→ 0 limit,

and it increases with η to a point that PH > PL (probability of Liesegang

patterns), and then PH decreases due to more complicated (distorted chi-

ral and random) structures. It is clear from Figure 4.5, the same kind of

changes in PH occurs if the noise is replaced by internal surface areas [102].

These arguments are phenomenological and their validity could be tested

only by a more precise theory.

The variation of the purity of the supporting medium is found to

strongly influence the control and engineering of precipitation patterns.

Only a few experimental papers have been reported so far where the ef-

fect of the gel composition on the morphology of precipitation patterns was

investigated [77, 90, 96]. In the present study, experiments were carried out

in a mixed silica-agarose gel media(discussed in section 3.8) with different

amounts of agarose in order to maximize the probability of helicoidal pat-

tern formation [102]. Experimental result shows that presence of another

gel can strongly influence the helicoidal pattern formation (Figure 4.4b and

Figure 4.5c). As the amount of agarose increases, the probability of the

emergence of helicoids increases up to 0.9 and hence the helicoids formed

with certainty. Further increase in the amount of agarose leads to decrease

of PH , and it is still high (0.5). More explanation of this result based on

experimental and theoretical assumptions is bit problematic and is due to

lack of the idea on physical and chemical properties of hybrid and mixed

gels [102].

Additionally, this experiment also gives an idea about the origin of

helicoidal structure formation in gel system. The precipitation pattern for-
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mation process can proceed in two ways [102]. First route involves the

template transformation of a micro- or mesoscopic helical structure (e.g., or-

agogel fibers) onto a new higher level structure(e.g., inorganic crystal) [111].

Second route involves the symmetry breaking where building blocks having

no chiral structures self-organize into highly ordered helical/helicoidal struc-

tures [105, 128]. The general perception for emergence of chiral morphology

in crystals at micrometer scale is a twisted assembly of achiral building

blocks directed by mass transport. In these type of structures the diameter

of the helices is almost equivalent to the size of the achiral blocks [105, 128].

The microstructure(building blocks) of helicoidal patterns in agarose are de-

termined using SEM and observed that the precipitation helicoidal patterns

contains ∼ 1µm size mono-disperse spherulite-like particles (Figure 4.7).

These structures appear to be achiral and hence it can be concluded that

the macroscopic helicoidal structures, which has four orders of larger size,

emerged as a result of symmetry breaking [102].

To study the building blocks of the precipitate patterns in silica gel,

dried solids from the helicoidal band regions were collected and powder XRD

measurements are used to determine the particle size [102]. The powdered

sample was kept in the sample holder and the XRD values were measured

in a 2 θ range from 100 to 800 in steps of 0.10. It is observed that crystals

containing copper were present from the positions and intensities of the

diffraction peaks (Figure 4.8). The average size of the crystallite (d) can be

calculated from the line broadening using the Scherrer equation, d = 0.9λ
βcosθ ,

where λ is the waelength of X-ray (1.5406A0)and β is the line broadening

at half the maximum intensity (at 0.290 and 0.420 for the first and second

peak, Figure 4.8). It is found that the average particle size is of the order

of few nanometers (∼ 25 nm). This result is completely different from the
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Figure 4.7: (a) SEM micrograph of CuCrO4 helicoidal precipitations patterns in
agarose gel (b) EDS spectrum of precipitation helicoid in 1% agarose gel
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Figure 4.8: Powder XRD pattern of precipitation bands in silica gel. The line
broadening at half the maximum intensity (which were 0.290 and 0.420) for the

first (2θ = 16.230) and second (2θ = 32.390) peak, respectively

spherulites (∼ 1µ m) observed in agarose gel [102]. Thus the scale obtained

in case of silica gel sets only a lower limit for the emergence of chirality.

4.5 Conclusion

The formation of helicoidal patterns in agarose and silica gel were studied

by varying the internal surface area of the gel through its concentration

and pH. The probability of the formation of helices in silica and agarose gel

were found to have same trends with the maximum probability happening

at intermediate internal surface areas. It is noted that the probability can

be increased by mixing silica and agarose gel in a particular ratio. These

results implies that the properties of the gel media on pattern formation are

very relevant in understanding the process.



Chapter 5

Conclusion

5.1 Conclusion

Self-organization and pattern formation in reaction-diffusion system have

significant relevance in natural and life science. Recently the interest has

been increasing in both experimental and theoretical study of various types

of chemically generated patterns. The important reason is that they are

expected to provide new bottom-up, self-assembling technologies for engi-

neering bulk patterns in microscopic and mescoscopic scales. A detailed

study of the mechanism responsible for pattern formation is a key element

in developing technological application and it helps in constructing the suit-

able tools for the control of the characteristics of the emerging patterns.

Controlling and designing new chemical structures are one of the most

important scientific challenges in material science. Precipitation structures

arise from ion or nano-particles are the main promising candidates for de-

signing bulk structures for catalysis, energy production and electronics. The

control of precipitation patterns by applying electric field opens a wide range

90
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of new possibilities of reaction front and in designing new patterns.

Liesegang patterns are interesting research topic since simple patterns

arise out of complicated reaction diffusion mechanism. Many kinds of pre-

cipitation patterns ranging from large crystals to periodic bands of similar

crystalline particles to continuous colloidal precipitates have been found in

gel diffusing experiments, whereas periodic banding only occurred in a nar-

row concentration range. Among these precipitation patterns, we explored

the parameter space of the helical/helicoidal patterns. We also found that

the origin of helicoidal patterns is not due to the noise and asymmetry of

the initial condition but the production of unstable modes, the reaction

front dynamics and the noise together leads to the formation of helicoidal

precipitation patterns.

In moving boundary model of Liesegang patterns, band formation is a

consequence of the phase separation phenomena taking place in the colloidal

particles. It was found that the equation connecting the band width and

spacing of bands strongly depends on the concentration of the reacting par-

ticles. The moving boundary theory also suggest a condition for formation

of bands in reaction diffusion systems.

Liesegang and helicoidal patterns evolve from the same macroscopic

conditions in both silica and agarose gel. We studied the behaviour of this

process by changing the inner and outer electrolyte concentration, the tem-

perature of the system and the test tube radius. We studied the effect of

these parameters by measuring the probability of helices using ten indepen-

dent experiments. We further examined the micro structure of helicoids to

ascertain that the origin of macroscopic helices is in symmetry breaking and

not due to the chirality of the microscopic building blocks (spherulite par-
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ticles having micron size). Also it is found that the pitch of the helices are

always larger than that of the bands. In mixed-gel also we observed high

probability of obtaining helicoids.

We studied the helicoidal precipitation pattern formation by chang-

ing the internal interface of agarose and silica gel. Internal surface area is

changed by varying by the gel concentration in agarose and pH in silica.

The helices formation probability in both gel media showed same trends

with the maximum probability at intermediate internal surface areas. Our

results indicate that the pattern formation process strongly depends the pe-

culiarity of the gel media. Our experiments also shows that self organized

precipitation patterns can be produced in porous media under a variety of

physical and chemical conditions. Even though chemical conditions in our

experiments were different from what would be excepted in natural situa-

tions, our experiments showed how physical and chemical properties of a

porous or permeable medium could affect the morphology of precipitates

produced.

Our findings revealed that the emergence of helical and helicoidal pat-

terns were reproducible with a finite, well-defined probability depending on

the parameters of the system. The understanding of helical and helicoidal

patterns in reaction diffusion systems is important since it help in design-

ing and engineering similar helical and helicoidal and helical structures in

other chemical and physical systems which could have unique physical and

chemical properties.
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5.2 Future aspects

Finding the right temperature for the emergence of helicoids is an important

problem, since noise plays a major role in the emergence of helices. Also to

find whether any other chemical system can reproduce the helices with high

probability and hence to study the dynamics.

There is ample space for future works in this area; such as, to develop

the theory of helices using the ’pulled-front’ formalism and the analytical

calculations of helical structure, to study the dynamics of the helicoids under

the influence of external filed. If we control the emerging patterns in an

external filed, we can easily engineer them under the influence of such fields.

Also to check whether the helicity changes when we reverse the applied

field. We know that a charged particle when placed in a crossed electric and

magnetic field will follow a helical path. So here it is much interesting to

check what happens when a reaction-diffusion system is placed in such fields

and also to study the probability of helices/helicoids in a crossed electric and

magnetic field.
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Appendix A

Appendix I

A.1 Derivation of ∂a
∂t

For the reaction A+B −→ C, the reaction diffusion equation has the form

∂a

∂t
= DA∆a− kab (A.1)

∂b

∂t
= DB∆b− kab (A.2)

For C assuming phase separation mechanism, we get

∂c

∂t
= −λ∆[εc− γc3 + σ∆c] + kab (A.3)

Using the method of rescaling we can normalise one or more parameters

in an equation equal to particular value such as 0 or 1. These change of

variables can create additional factors which are mere constants. Thus the

new parameters in above euations are t → t′τ, x → lx′, a → b0a
′, c → b0c

′,

where τ andb0 are constants and hence the equations A.1 and A.2 becomes,
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∂a′

∂t′
=
DAτ

l2
∆′a′ − b0τka′b′ (A.4)

∂b′

∂t′
=
DBτ

l2
∆′b′ − b0τka′b′ (A.5)

Taking DBτ
l2

= 1 and b0τk = 1 Then above equations become,

∂a′

∂t′
=
DA

DB
∆′a′ − a′b′ (A.6)

∂b′

∂t′
= ∆′b′ − a′b′ (A.7)

Assuming DA = DB = 1 and dropping all the prime sign, we get

equation

∂a

∂t
= ∆a− ab (A.8)

∂b

∂t
= ∆b− ab (A.9)

Similarly we can do for C particles also.
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Helicoidal patterns grown in agarose and silica gels were studied using reaction–diffusion–precipitation
processes with components CuCl2/K2CrO4. We measured the probability PH of the emergence of helicoids
as the internal surface area of the gels was varied by changing the concentration for agarose and by mod-
ifying pH for silica. In addition, the effects of mixing the two gels were also investigated. Our main result
is that the surface area effects parallel the effects of noise, namely increasing the surface area initially
enhances the formation of helicoids but further increase leads to downturn in PH due to proliferation
of random patterns.
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1. Introduction

Helical structures can be observed in a wide variety of natural
and man-made systems [1–9]. Their emergence from a homoge-
neous background is a basic and rather complex problem due to
the symmetry breaking that takes place at the initial stages of their
evolution. Interest in chiral morphology, however, comes also from
engineering applications since chirality is known to affect the
physical properties of materials [10]. In particular, understanding
and controlling helical structures are expected to be relevant in
developing bottom-up fabrication techniques using nonlinear
chemical kinetics [11,12].

Recently, we carried out a series of experimental and theoretical
studies [9,13,14] in order to clarify how helices were formed in
Liesegang-type setups where pattern emerged in the wake of a
reaction–diffusion front [15,16]. We found that the formation of
helical and helicoidal patterns was reproducible but had a probabi-
listic aspect. Namely, for a given set of experimental parameters,
there was a well-defined probability for the helical pattern to
emerge. The dependence of the probability on the initial concen-
tration of the inner- and outer electrolytes, and on the size of the
system was measured and compared successfully with a theory
[9]. The theory suggested that the helices emerged from a complex
interplay among the unstable precipitation modes, the motion of
the reaction front, and the noise in the system. Unfortunately,
the noise is not easily accessible in experiments although the
probability depends sensitively on it. For example, changing
temperature is not a practical way of changing the noise amplitude
since it simultaneously changes a number of important parameters
(diffusion constants, reaction rates, precipitation thresholds, etc.)
and the delineation of the various effects is practically impossible.
The present work grew out of our attempts to overcome this prob-
lem and implement controlled noise by changing the properties of
the gel.

In general, the gel is considered as an inert background in the
theoretical treatments of Liesegang-type experiments [17–21]. At
the same time, it is known that changing the concentration or
the chemical composition of the gel leads to patterns with distinct
spacing- and width laws and, frequently, to qualitatively different
precipitation phenomena [22–24]. The simplest rationalization of
these effects is that the gel provides a network of quenched impu-
rities acting as nucleation centers [25]. Then the internal surface of
the gel defines the density of nucleation centers (larger surface
area corresponding to larger density of nucleation centers) which
governs the general nucleation rate in the system. This view sug-
gests that the internal surface area is roughly proportional to a
noise-amplitude: the larger it is the larger is the probability of a
nucleation event.

In order to see the effects resulting from internal surface area
changes, we examined helicoidal patterns in agarose and silica gels
and varied the internal surface area by changing the gel concentra-
tion in agarose gel and by varying the pH in the silica gel [26–28].
We measured the trends in the probability of the emergence of
helices and found that they were in agreement with the interpre-
tation that the internal surface acts as an effective noise inducing
nucleation. We also searched for ways of maximizing the yield of
helices by mixing agarose and silica gels, and the maximum value

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cplett.2014.03.041&domain=pdf
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of 90% yield was obtained at 0.5% agarose concentration. The mix-
ing results, however, do not readily submit to a simple interpreta-
tion in terms of an effective noise.

2. Experimental

Agarose gel was prepared by addition of a prescribed amount of
agarose powder (Type1, Sigma Aldrich) to a 0.01 M solution of
K2CrO4 (Merck). The mixture was heated to 90 �C under continuous
stirring until a homogenous solution was obtained. The resulting
solution was then poured into test tubes for 3 h.

We prepared silica gel by the following method. A solution was
prepared from sodium metasilicate (Merck) and potassium chro-
mate (Merck) in such way that the obtained solution had relative
density of 1.03 and the concentration of potassium chromate was
0.01 M. Gelation was induced by decreasing the pH of the solution
by adding HCl drop by drop. We also prepared mixed silica–aga-
rose gel with various amounts of agarose by adding hot agarose
gel solution to the silica gel prior the polymerization. We poured
these solutions in test tubes and kept them undisturbed for 24 h
till the gelation process was completed.

After gelation process we gently poured the solution of copper
(II) chloride (Merck, 0.5 M) on the top of the gel. The test tubes
were closed and kept undisturbed apart from visually observing
the appearance of the precipitation pattern. The experiments were
carried out at room temperature (27 ± 0.3 �C).

3. Results and discussion

3.1. Comparison of helicoidal patterns in agrose and silica gel

Experimental results displayed in Figure 1a indicate that heli-
coidal patterns are formed not only in agarose as shown previously
[9] but also in silica gel. In order to investigate the effect of the
internal surface area, we changed the gel concentration in agarose
gel and the pH of the silica gel. In agarose, the internal surface of
the gel can be considered to be proportional to the gel
Figure 1. Precipitation patterns in agarose, silica and mixed silica–agarose gels. (a)
Helicoids in agarose gel (1%; left) and in silica gel (pH = 7; right). (b) Patterns in
mixed silica–agarose gels (pH = 7), numbers below the test tubes indicate the
amount of agarose in silica gels. The concentration of the outer (CuCl2) and inner
(K2CrO4) electrolytes were 0.5 M and 0.01 M, respectively.
concentration [26,27]. On the other hand, in silica gel, acidity
(pH) affects the pore size and the internal surface area, and the
internal surface area is proportional to 1/pH [28,29]. Changing
these two parameters gives a simple and experimentally controlla-
ble way to ‘fine-tune’ the gel property in these two chemically dif-
ferent gels. In agarose gel we found that the probability (PH) of the
emergence of single helicoids has a maximum (PH = 0.6) at gel con-
centration of 0.75%, meanwhile the probability of Liesegang pat-
terns decreases, parallel with this, the probability of distorted
helicoids decreases, with increasing gel concentration (Figure 2a).
In case of silica gel we have also maximum probability of getting
helices (PH = 0.5) at pH 7. This probability decreases rapidly at low-
er and higher pH (Figure 2b).

We can now discuss how to fit our experimental findings into a
theoretical framework. The theory of helix formation in the wake
of a front combines the properties of moving reaction front with
the dynamics of the generation of precipitation pattern through
pre- and post nucleation processes [9,14]. Technically, reaction–
diffusion equations provide the source for the phase separation de-
scribed by the Cahn–Hilliard equation with noise added [9,21,30–
32]. This theory has been successful in reproducing the established
regularities of Liesegang patters, and it also provided guidance in
developing methods of controlling patterns by external fields and
boundary conditions [21,33,34]. As far as the gel is concerned in
precipitation systems, the usual argument is that the gel just pre-
vents the convection of solutions and the sedimentation of precip-
itate. However, recent works [22–24] have shown transparently
that the gel has a strong influence on pattern formation in agree-
ment with the present experiments.

Introducing gels in the theories is highly nontrivial and we
know only a few attempts in this direction [24,35]. Basically, the
gel provides internal interfaces where the nucleation threshold is
lowered [25]. Thus internal surfaces facilitate nucleation in the
same way as increasing noise helps crossing thresholds in the
nucleation processes. Assuming that parallels may be drawn be-
tween the effects of internal surfaces and noise, we can shortcut
the theoretical difficulties, and interpret our experiments in terms
of earlier results relating the probability of the emergence of the
helices, PH, to the amplitude of the noise g [9]. As can be seen in
Figure 3b of [9], PH is negligible in the g ? 0 limit (Liesegang bands
dominate; PL � 1), it increases with g to a point that PH > PL, and
then PH declines because more complicated (distorted chiral and
random) structures take over. As we can see in Figure 2, the same
sequence of changes in PH occurs in the present experiments if only
the noise is replaced by internal surface areas (appropriately inter-
preted through concentration of the agarose or 1/pH in case of sil-
ica). The above arguments are of course phenomenological and
their validity could be judged only by developing of a more precise
theoretical approach.

3.2. Effect of ‘chemical impurity’ in a mixed gel medium

One of the interesting aspect of the control and engineering of
precipitation patterns is the variation of the purity (chemical com-
position) of the supporting medium. To our knowledge, there are
only a few experimental papers where the effect of the gel compo-
sition/impurity on the morphology of patterns was investigated
[22–24]. We carried out experiments in a mixed silica–agarose
gel media containing various amounts of agarose in order to max-
imize the probability of the emergence of helicoids. Our experi-
ments show that introducing the other gel can dramatically
affect the formation of helicoids (Figures 1b and 2c). Increasing
amount of agarose increases the probability of the emergence of
helicoids up to 0.9, which means that helicoids practically appear
with certainty. Further increase of the amount of agarose results
in a decrease of PH, however, it is still a high value (0.5).



Figure 2. Dependence of the probability of the emergence of Liesegang patterns
(obtained from 10 experiments for each set of parameters), single helicoids and
distorted helicoids in agarose gel where the agarose concentration was varied (a), in
silica gel with the pH changed (b) and in mixed silica–agarose gel, where the
agarose concentration was varied (c).

Figure 3. Powder XRD spectrum of precipitate particles collected from precipita-
tion bands in silica gel. The wavelength of the X-ray was 1.5406 Å and the line
broadening at half the maximum intensity was 0.29� and 0.42� for the first
(2H = 16.23�) and second (2H = 32.39�) peak, respectively.
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Explanation of this finding based on experimental and theoretical
assumptions is problematic due to lack of the knowledge on phys-
ical and chemical properties of hybrid and mixed gels.

3.3. Scale of the building blocks

An interesting question related to helix formation is at what
scale the symmetry breaking occurs. A lower limit of this scale is
the size of the particles in the precipitate. In a previous study
[13], we showed that, in agarose gel, the bulk precipitate of copper
dichromate consists of �1 lm particles (spherulites). Here we
wanted to gather information on building blocks of the precipitate
in silica gel. Therefore, we collected and dried solids from the heli-
coidal band regions and used powder XRD measurements to deter-
mine the particle size. The powdered sample was mounted on the
sample holder and the XRD data were measured in a 2H range
from 10� to 80� in steps of 0.1�. We found the presence of crystals
containing copper from the positions and intensities of the diffrac-
tion peaks (Figure 3). We estimated the average size of the crystal-
lite (d) from the line broadening using the Scherrer equation,
d ¼ 0:9k

b cos H, where k is the X-ray wavelength (which was 1.5406 Å)
and b is the line broadening at half the maximum intensity (which
were 0.29� and 0.42� for the first and second peak, respectively).
We obtained the order of few tens of nanometers (�25 nm) for
the average particle size. This is markedly different from the scale
of the spherulites (�1 lm) observed in agarose gel [13]. We should
emphasize, however, that the scale found above sets only a lower
limit for the scale of the emergence of chirality.

4. Conclusion

We investigated the formation of helicoidal precipitation pat-
terns in silica and agarose gel by varying the internal surface area
of the gel through its concentration and pH. The probability of the
emergence of helices in agarose and silica gel were found to follow
similar trends with the maximum probability occurring at inter-
mediate internal surface areas. We also found that the probability
may be significantly increased (PH = 0.9) by mixing silica and aga-
rose in an appropriate ratio. These results strongly suggest that the
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properties of the gel media on pattern formation are highly rele-
vant in understanding the process.

Our XRD experiments revealed the presence of particles of the
size of �20–30 nm in the precipitation bands of the silica gel. This
finding suggests that the supporting media may have a more pro-
nounced effect on particle size than it has been believed, and nano-
particles with various sizes can be produced in this novel way
using reaction–diffusion processes.
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Abstract. The pattern formation in reaction–diffusion systems was studied by invoking the pro-
visions contained in the moving boundary model. The model claims that the phase separation
mechanism is responsible for separating the colloidal phase of precipitants into band and non-band
regions. The relation between the band separation and its width are invariably related to the con-
centration of the reacting components. It was observed that this model provides critical condition
for the band formation in semi-idealized diffusion systems. An algorithm for generating the band
structure was designed, and the simulated pattern shows a close resemblance with the experimentally
observed ones.

Keywords. Reaction–diffusion systems; Liesegang bands; pattern formation; moving boundary;
simulation.

PACS Nos 64.75.Xc; 64.75.Yz

1. Introduction

Nature has a wide storage of colourful patterns which are originated mostly by self-
organized processes without the intervention of external templates [1]. The patterns tell
us much about the dynamics, both at the macroscopic as well as at the microscopic lev-
els of the underlying system. Because of its importance, pattern formation has received
wide attention from people working in different areas of biology, chemistry, physics and
geology. The spatio-temporal patterns observed in many reaction–diffusion systems pro-
vide an excellent area to study these phenomena, and the advanced computer techniques
give scope for simulating the structures based on theoretical models. The quasiperiodic
structure, reported first by Liesegang in 1896, is regaining its importance due to its applica-
bility in engineering mesoscopic and microscopic structures [2]. These studies are opening
up new possibilities in the control and design of structures by reversing the processing
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order from the bottom-up approach to top-down methods in microelectronic device fabri-
cations [3]. In recent years the interest in self-organized structures is growing, triggered by
the idea of cheap and fast production of nanoscaled devices. One of the promising effects
for obtaining such devices in Liesegang pattern formation is based on reaction and diffusion
processes. In addition, the Liesegang phenomenon is an interesting research topic on its
own due to the simple patterns arising out of complicated reaction and diffusion processes.
A scientific understanding of pattern formation seems to be one of the most exciting aspects
of non-linear dynamics.

The diffusion of a chemical reagent into a medium, most generally a gel medium, and the
subsequent precipitation with another component that the gel medium contains, will gener-
ate periodic patterns under favourable conditions. Pattern formation in a reaction–diffusion
system is considered as a self-organization phenomenon and the patterns are stationary in
the sense that the bands are ‘locked’ in the position once they are formed. In this context,
some researchers have considered the Liesegang structures as Turing-type patterns [4–10].
Since the 1952 theoretical work of Alan Turing, it is known that self-activated reactions
with long-range inhibition process can spontaneously lead to the formation of stationary
symmetry breaking patterns [11]. Under appropriate conditions, a spatially homogeneous
state can be stable in the absence of diffusion and unstable in the presence of diffusion. An
appropriate reaction network is capable of exhibiting spatially inhomogeneous state, i.e.
pattern. The phenomenon in which diffusion destabilizes a spatially homogeneous steady
state is termed as diffusion-driven or Turing instability. But many experimental observa-
tions support the argument that the initial form of the precipitants appears as colloids and its
coagulation plays a vital role during the early stages of Liesegang ring formation [12,13].
Flicker and Ross [14] describe the mechanism of chemical instability as a reason for the
periodic pattern formation. In mean-field theories, reaction–diffusion (partial differential)
equations can describe the dynamics of the system taking into account diffusion of elec-
trolytes and nucleation and aggregation of the precipitant species. Randomizing impacts
like thermal fluctuation, presence of impurities, etc., are usually ignored in these models.
Altogether, it is evident that quite diverse mechanisms can be at the helm of affairs of chem-
ically generated patterns. They may also include even more physical aspects like buoyancy
instabilities, surface tension, non-linear colloidal dynamics, etc., as the list of attributes.

The patterns usually consist of a set of clearly separated zones of colloidal precipitants,
the shape of which depends on the geometry of the system. In typical systems that pro-
duce Liesegang patterns, the reacting components diffuse from outside to the gel medium
impregnated homogeneously with the oppositely charged electrolyte species. The sparingly
soluble precipitate of the chemical reaction coagulates at specific locations resulting in a
sequence of precipitate bands. Precipitate moves diffusively into the zone and the dynamics
can be described by a set of equations. Earlier investigators have framed four quantitative
relations characterizing the pattern structure.

The first one relates the position of the ring (xn) and its formation time (tn) by a relation
often called time law [15,16].

xn = αt1/2
n + β, (1)

where α and β are the constants. This relation is analogous to Einstein–Smoluchowski rela-
tion for Brownian motion, interpreted in terms of random walk in homogeneous space [17].
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The time law reflects the diffusive behaviour of the electrolyte into the gel matrix. The sec-
ond one called the spacing law, is due to Jablczynski [18], which relates another important
property of the bands

xn+1

xn
= (1 + p), (2)

where (1 + p) is the spacing coefficient and the factor p depends on the initial concentration
of the reacting components. It has been observed in many experimental cases that p varies
from 0 to 0.5 [19]. A detailed study of the dependence of p on concentration was made by
Matalon and Packter [20,21].

According to them,

p = �(b0) + a−1
0 �(b0), (3)

where �(b0) and �(b0) are two decreasing functions of their argument. Also the width or
thickness (wn) of the bands has some functional regularity [22]:

wn = εxn, (4)

where ε is a constant.
Many models, that provide theoretical prediction on the band formation was failed to

provide conclusive suggestions on the domain size of the coagulated precipitants. Using
cellular automata simulations, Chopard et al [23] have proposed

wn = εxφ
n , (5)

where the width exponent φ depends on two constants a0 and b0. They have obtained
theoretically the band structure for φ varying between 0.49 and 0.61. Later, Droz et al [24],
combining the scaling properties of the density of precipitates in the bands, found that φ

ranges from 0.90 to 0.99, which almost coincides with the linear dependence as suggested
by eq. (4). Our goal here is to present an algorithm on pattern formation and predict the
structure quantitatively with reasonably minimum inputs.

2. Theoretical methods

Several competing theories have been developed for describing the mechanism of
Liesegang phenomena. All the theories share some common features to show how the
diffusive reagents A and B turn into a final immobile precipitate D.

A + B → D. (6)

Some theorists strongly prefer to place an intermediate compound (C′) as an inevitable
component formed before the end product is reached [25].

A + B → C′ → D. (7)

Theoretical models can be grouped into two main categories. The first termed the pre-
nucleation model, suggest that band formation can be treated on the basis of a feedback
mechanism between the nucleation and diffusion transport [26–28]. Nucleation is a non-
equilibrium process, and it occurs when the local product of the ion concentrations of
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the reacting species reaches a saturation threshold value. The precipitation results in the
reduction of the level of the supersaturation and no further nucleation is possible when the
concentration product is less than the threshold limit. While the front proceeds further into
the medium, the concentration product reaches the threshold level again and the nucleation
of the precipitate is continuous. Repetition of this sequence results in periodic patterns.
Theoretical predictions based on this model were made earlier by Wagner and Prager, and
they assumed the existence of sharp periodic bands.

The second category, using Lifshitz–Sloyzov instability mechanism [29–31], suggests a
post-nucleation droplet coarsening processes. The continuously advancing nucleation front
produces an intermediate compound, which may be a homogeneous haze of colloids. The
rate of production of colloid species is supposed to be proportional to the product of the
local concentration of reactants. A first-order phase separation mechanism is assumed to
take place inside the colloid-filled domain, separating them into regions of different mat-
ter densities. Such a process has the potential to generate a bunch of bands in a system
when continuous domains of identical systems are perturbed. The precipitation bands arise
by coagulation of the intermediate colloidal haze if certain critical electrolyte concentra-
tions are exceeded [32]. The spatially distributed colloidal particles are unstable against
perturbations [33]. Venzl [34] summarizes the process of Liesegang banding by three char-
acteristic stages: the production of a continuous homogeneous colloid, the coarsening of
the colloid and the dynamics of colloid particles resulting in pattern formation.

The moving boundary model [35] was suggested to deal with the problem slightly dif-
ferently. Though it supports the formation of intermediate colloidal particles, it describes
effectively the patterning process by considering a virtual migration of the boundary of the
outer and the inner electrolytes. It also envisages a phase separation mechanism for the for-
mation of the bands in the medium. The idea of formation of intermediate colloidal haze
prior to patterning along with moving boundary model proved to be efficient in predict-
ing the concentration dependence of the width of the spatio-temporal patterns. When the
Liesegang patterns were studied by computer simulation, the usual method is to solve a set
of coupled reaction–diffusion equations. We approach the task differentially by employing
the results obtained directly from the moving boundary model. Once the boundary migra-
tion concept was introduced, the theory straight away upheld all the existing laws. Thus
the moving boundary model is safer and simpler in many respects. It delineates scenery
with distinctive assumptions and boundary conditions. Thus a better understanding of the
basic facts of pattern formation and geometrical positioning of the bands is made pos-
sible with this model. The following are the basic approximations used in the moving
boundary model.

(1) The initial concentration of the outer electrolyte CA0 is assumed to be much larger
than the initial concentration CB0 of the inner electrolyte and it is also assumed that
CA(x = 0, t) is kept fixed at the junction point of the electrolytes. For experiments,
0.005 ≤ CB0/CA0 ≤ 0.1.

(2) The boundary which separates the outer and inner electrolytes (gel–solution interface)
is located at x = 0, in the y–z plane. Also the type B ions are assumed to be uniformly
distributed inside the gel medium and the initial concentrations are

CA = CA0, CB = 0; x < 0, t = 0 (8)
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and

CA = 0, CB = CB0; x > 0, t = 0. (9)

(3) As the reaction front advances into the medium in the positive x-direction, the
concentration of type A ions varies and at the position of a band

CA = CA0; 0 < x ≤ xn, t ∼ tn. (10)

This assumption holds well as the reservoir concentration CA0 of type A ions is
sufficiently large compared to the initial concentration CB0 of type B ions.

(4) The motion of the particles from one band to the other is assumed to be more or less
uniform and therefore it can be assumed that the boundary layer shifts from one band
to the next with uniform speed.

The concentration profile of type A ions in the gel is assumed to be [16]

CA(x, t) = CA0 exp {−β(x − xn(t))/ξn+1} , xn ≤ x ≤ xn+1, (11)

where β > 0, is a constant for a given system and ξn+1 is the separation between the nth
and (n + 1)th bands. For type B ions, the homogeneity of its concentration profile inside
the gel column has been disturbed by the reaction process. It can be taken as

CB(x, t)=ηCB0 exp {−γ (xn(t)−x)/ξn}+CB0(1−η′ exp{−γ (x−xn(t))/ξn+1}).
(12)

Here γ is another constant. The first term on the right side of eq. (11) represents those
components of B which have successfully penetrated the band in the negative x-direction.
Since this fraction is very small, the coefficient η will be a very small positive quantity.
The coefficient η′ appearing in the second term signifies the factor of CB0 which had been
eliminated from its initial level due to the formation of the reaction product C∗. Applying
the condition for band formation as stated in the ion product theory,

CA(x, t)CB(x, t) | xn, tn = C∗ (13)

and

∂/∂x{CA(x, t)CB(x, t)} | xn, tn = 0. (14)

Substituting the values of CA(x, t) and CB(x, t) from eqs (10) and (11) in eqs (12) and
(13), we get

(η − η′ + 1)CA0CB0 = C∗ (15)

and

η′(β/γ + 1) = β/γ + η(β/γ − ξn+1/ξn). (16)

Writing ξn+1/ξn = 1 + p and β/γ = α, one obtains

η(α − (1 + p)) + α = η′(α + 1). (17)
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Eliminating η′ from eq. (14) and by substituting in eq. (16),

p = K C∗/ηC2
B0 + KαC∗ − (1 + 2η)C2

B0/CA0(KηCB0), (18)

where K = CA0/CB0 which obviously is the Matalon–Packater law. It is now desirable to
calculate the values of the positive constants η and η′ which were mentioned earlier. For
this, substitute the value of C∗ in eq. (17) and approximate the two concentration profile
indices as the same. This will lead to

p = C2
B0α(η − η′ + 1) − (1 + 2η)/ηC2

B0 (19)

and finally to

p = (1 − 2η′)/η. (20)

If we assume the upper limit for p as 0.5, then the two constants η and η′ will become
0.05 and 0.493 respectively. On the other hand, if p assumes the lowest range, i.e., p ∼ 0
as in the case of equidistant band system, one of the constants becomes 1/2(η) and the
other ambiguous. Thus the limiting ranges of the two new constants involved in the above
calculation can be fixed. Using this value we may get a picture of the reaction mechanism.
When η′ approaches 0.493, 49.3% of CB0 had been eliminated from its initial level, due to
the formation of the reaction product (C∗). This seems to be a large value, but generally in
the precipitation band structure thick bands observed near the interface, nevertheless signi-
fies this approximation. The value of η which is small describes the intensity of penetration
of type B ions into the negative direction. Here, in the approximation, η ∼ 0.05 proposes a
very low penetration of the B ions in the backward (−x) direction.

An analysis of the width law is also possible at this juncture using the moving boundary
concept. One of the main features of the intermediate species theory is that the substance to
be precipitated is formed first as a continuous homogeneous colloidal dispersion [32,36,37].
A phase separation mechanism, the reason for which is not yet clear, occurs in the medium
which segregates, the colloidal precipitants into a band. Different techniques were proposed
to explain the phenomenon of phase separation. Droz et al analysed the phenomenon by
employing spinoidal decomposition processes [38,39] and by the action of a moving reac-
tion front. The reaction front produces colloidal particles and small clusters of particles
nucleate and aggregate behind the front. The phase separation mechanism distributes the
homogeneous colloidal particles of uniform initial concentration c0 into two parts: a band
having concentration cb and a gap having concentration cg. Applying the rules of matter
conservation we write

wncb + (ξn − wn)cg = ξnc0, (21)

where wn is the width of the nth band.
The width of the nth band as a function of the concentration is

wn = (c0 − cg)/(cb − cg)ξn, (22)

or

wn = fcξn, (23)

where

fc = (c0 − cg)/(cb − cg) (24)
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is the width coefficient, which will be more or less constant for a steady pattern. Thus
the width of the precipitation bands depends exclusively on the concentration of the
intermediate colloidal particles.

For the evaluation of the values of fc, the following approximations are useful:

(1) During the diffusion processes, type A particles will move towards the positive
x-direction and a fraction of type B particles will move towards the negative x-
direction. The remaining type B particles with concentration (1 − η)CB0, available in
the diffusion zone, are capable of initiating the reactions.

(2) The quantity of colloidal precipitants formed will be a further fraction of the available
electrolytes. Hence we proceed to assume μ(1−η)CB0 as the amount of the colloidal
particles generated.

(3) The colloidal particles which segregate on the band is yet another fraction λ(1−η)CB0

of the total colloidal particles generated.
(4) All the remaining particles will present in the gap.

Also from these assumptions, we equate the total concentration of colloidal precipitants
produced c0 and the concentration of the precipitants on the band cb as,

c0 = μ(1 − η)CB0, (25)

cb = λ(1 − η)CB0. (26)

Upon substituting these values in eq. (23) it becomes,

fc = λ/(2λ − μ). (27)

Majority of the colloidal particles appear to segregate on the bands and the void region
contains practically very few colloidal particles. When λ = 0, fc also becomes zero,
which gives the no-band condition. Between the values 0 ≤ λ ≤ 0.5, fc becomes negative
and band formation is forbidden. The width coefficient fc has an anomalous behaviour at
λ = 0.5 and it takes the value 0.5 asymptotically. We may conclude that for sustained
band formation, λ ≥ 0.5, which is somewhat a critical condition. Hence it may be safer to
approximate

fc ≈ 1/2 (28)

when μ 
 λ and λ = 1 as special case and we simulate the patterns for this case. This
gives an immediate conclusion

wn = ξn/2. (29)

The widths of the bands become half the separation distance and this is true only for small
values of n. When n becomes larger, the contribution of μ in eq. (26) becomes considerably
large and the widths of the bands become lesser than this value.

3. Experimental methods

An experiment was carried out to obtain precipitation bands. This consists of silver dichro-
mate precipitation bands in gelatin gel. The concentration of the outer (silver nitrate) and
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Figure 1. Dependence of the half-separation distance on the width of the band for the
first five bands in silver dichromate system in 12.5 wt% gelatin gel. The concentration
of the outer (silver nitrate) and the inner (potassium dichromate) electrolytes are 0.25 M
and 0.0036 M, respectively. The obtained spacing coefficient is 0.074. The size of the
experimental picture is 5.6 cm × 1.7 cm.

the inner (potassium dichromate) electrolytes are 0.25 M and 0.0036 M, respectively. Well-
defined bands were seen at regular intervals in the gel column depicting the geometric
sequence of Liesegang patterns. The width of the bands was approximately half of the
interband separation (figure 1), supporting the theoretical predictions made on the basis of
the moving boundary model.

4. Simulation

The algorithm of the program for simulation contains the following procedures:

(1) Assuming the values of p, compute the constants η and η′.
(2) Compute the position of the first band using spacing law, assuming x0 = 1.
(3) Continue the process for ten successive steps by assuming the concentration CA0 as

fixed.
(4) Compute the separation distance for each band and hence calculate the width of the

bands using eq. (29).
(5) Then plot the bands using the above steps.

On the basis of this algorithm, two-dimensional band structures were generated by a Mat-
lab programme, resembling Liesegang-type patterns. The geometry of the pattern bears all
distinguishable features of the experimentally observed structure. These two-dimensional
patterns are obtained for p = 0.077 and 0.5, respectively (figures 2 and 3). The pattern in
the figure shows fixed values for y-axis, maximum or zero. The maximum corresponds to
the initial concentration of outer diffusant (CA0). This parameter does not vary between
xn and xn + wn (shown as the shaded region) as envisaged in the moving boundary model.
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Figure 2. Computer simulated pattern for spacing coefficient p = 0.5. The con-
centrations taken on y-axis represent millimoles per litre and the distance on x-axis
is in cm.

Beyond this point the concentration of type A ions falls to zero (blank region). This repeats
periodically in space and hence the system is obtained. However, it does not mean that con-
centration of type A ions has a discontinuous regime before the precipitation zone. As p

Figure 3. Computer simulated pattern for spacing coefficient p = 0.077. The concen-
trations taken on y-axis represent millimoles per litre and the distance taken on x-axis
is in cm.
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increases, the spacing and hence the width of the bands increases. Hence different patterns
may be obtained for different concentrations of electrolytes. Plotting may also be possible
for λ values ranging from 0.5 to 1. Three-dimensional patterns can also be obtained by a
similar analysis.

5. Conclusions

The moving boundary model provides a reasonable conclusion on the spatial positioning of
the periodic band structure observed in reaction-limited diffusion systems. The theoretical
calculations based on the model suggest that the width of the precipitation bands depends
exclusively on the concentration of the intermediate colloidal particles. Also the theory
could stipulate a critical condition for sustained band formation in the reaction–diffusion
systems. This idea was sequentially developed to generate patterns in a Matlab program.
The algorithm for this was prepared entirely on the basis of moving boundary concept
and the simulated patterns bear the characteristic nature of the experimentally observed
Liesegang patterns. The intermediate colloid formation hypothesis was once again ascer-
tained in the model and it seems to be useful in illustrating many other phenomena, in
particular, the self-sustained steady patterns.
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