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CHAPTER 1

INTRODUCTION

1.1 Introduction

The word reliability is used to denote the efficiency of a person or a mechanic equip-

ment performing its intended function in the social, political, economical and prac-

tical field. The concept of reliability of technical system has been applied not more

than seventy years. Component or system is designed to substantiate certain princi-

ples and aims. A reliable equipment is the one which works for a given stipulated time

period under given environmental conditions without interruptions. It is mandatory

to have a high degrees of reliability. Day by day there is an increase in the complexity

level of technological system and its products. Therefore the reliable performance of

system is really a challenge for the designers and engineers. Reliability is a critical
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measure for the system performance of power generations, spacecrafts, telecommu-

nication networks, oil and gas pipelines, nuclear reactors and control systems. In

binary system reliability theory the system and its components have two possible

states-’working’ or ’failed’. There are limitations in binary system models. For real

life engineering system and its components, there are many states between complete

working and total failure. This leads to multi state reliability modeling. Multi state

system reliability models permits more than two levels of performance for a sys-

tem and its components. Multi state reliability model is an actual representation of

engineering system and it is far more complex than binary reliability model. The

assessment of system performance measures plays a very important role in system re-

liability theory. Reliability can be considered both as discipline and measure. When

reliability stands for discipline it is considered as development and application of

techniques increasing the system effectiveness by reducing the frequency of failures

and high maintenance cost whereas reliability is taken as measure, it means quality

of an equipment in quantitative terms. Reliability means probability that a unit

or system can perform its intended function adequately over a specified period of

time under stated operational conditions. In mathematical terms the reliability of a

component or a system is P (T > t) where T is the life time of the random variable

Multi state system (MSS) reliability assessment methods are based on five differ-

ent approaches namely : Structure function approach, Stochastic process approach

(mainly Markov, Semi-Markov), Universal Generating Function (UGF) approach,

Monte-Carlo simulation approach and Recursive algorithm approach. Structure func-
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tion approach, which is the first method used for binary reliability system, does not

have the ability to investigate the dynamic behavior of multi state system. Stochas-

tic process methods are widely used for MSS reliability analysis. This approach had

been successfully used for reliability assessment of multi state power systems and

some communication system before that the theoretical frame work of MSS was de-

fined. As the number of system state increases with an increase in the number of

system elements, stochastic process method is difficult to apply because it can be

easily applied for small MSS. This problem gets intensified in semi Markov technique

because system of integral equations are solved in it while system of differential equa-

tions are solved in Markov process. Another technique, namely universal generating

function (UGF) technique, was introduced to reduce the computational burden of

stochastic process approach. This technique helps us to find out the performance

distribution of whole MSS using rapid algebraic procedure based on the performance

distribution of components. The main disadvantage of Monte-Carlo simulation ap-

proach is that excess time and high expense are involved in the development and

execution of a model, even though almost every real world MSS can be represented

by the Monte-Carlo simulation for the reliability assessment. Recursive algorithm

approach for reliability evaluation has been developed in recent years. Extension of

UGF technique which is called Lz transform technique is widely used for evaluation

of dynamic behavior of MSS now a days.
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1.2 Review of Literature

The classical works of Barlow and Proshan (1965 and 1975) presented the basic con-

cepts and further developments of binary reliability theory. Many researchers had

addressed the reliability problems in binary setup complementing the work of Bar-

low and Proshan. The ageing properties (increasing failure rate, increasing failure

rate average, decreasing failure rate, decreasing failure rate average etc.) had been

studied by many authors [refer Brayson and Siddiqui (1969) and Deshpande et al.

(1986)]. Evaluation in multi state system is complicated than evaluation in binary

system. The development of MSS reliability analysis started in the second half of

1970s. Murchland (1975), El-Neweihi et al. (1978), Barlow and Wu (1978), Ross

(1979) and Griffith (1980) gave structural and statistical foundation for the finite

state MSS. In their work they defined series MSS, parallel MSS, reliability bounds,

redundancy at series and parallel level, stochastic performance of MSS and compo-

nent importance measures in MSS. The notion of minimal cut set and minimal path

set and coherence and element relevancy were introduced in the context of MSS.

Natvig (1982) and Hudson and Kapur (1982) generalized this results in their works.

The coherence definition was generalized and different types of coherence was studied

by Griffith (1980). Up to date development in MSS theory can be seen in Hudson and

Kapur (1982), Block and Savits (1982, 1984), El-Neweihi and Proschan (1984), Aven

(1985, 1988), Ebrahimi (1991), Abouammoh and Al-kadi (1991, 1995), Brunelle and

Kapur(1999). MSS reliability measure was studied systematically using stochastic
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process by Aven (1993). Korczak (1997) analyzed MSS behavior using semi Markov

process technique. MSS reliability optimization problems was formulated and solved

firstly by El- Neweihi et al. (1988). Application of stochastic methods were presented

in electric power system by Endrenyi (1979) and Billinton and Allan (1996). Natvig

(1986,1993), Lindqvist (1987) used random process method for finding MSS reliabil-

ity bounds. Component in the binary state reliability analysis were demonstrated by

Birnbaum (1969) and Barlow and Proshan (1975). El-Neweihi et al. (1978), Grif-

fith (1980), Bueno (1989) and Abouammoh and Al-kadi (1991) extended the idea of

component importance in binary reliability system to multi state system. The joint

importance measures for multi state systems have been discussed by Chacko and

Manoharan (2011 a, 2011 b).

The basic concepts of MSS, tools for MSS reliability assessment and optimization

problems were discussed by Lisnianski and Levitin (2003). With the application of

reliability functions to the reliability evaluation of large system of multi state system

with degrading components were emphasized by Kolowrocki (2004). A comprehen-

sive introduction to system reliability theory along with failure models, qualitative

system analysis and reliability importance were discussed by Rausand and Hoyland

(2004). A thorough exposition of system reliability theory has been presented by

them. Universal generating function was first introduced and its mathematical ba-

sis was discussed by Ushakov (1986). More detailed mathematical foundations were

exposed by Gnedenko and Ushakov (1995) and Ushakov (2000). The method was

applied to the reliability analysis by Lisnianski et al. (1996). The combined method
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using random process and UGF were suggested by Lisnianski and Levitin (2003).

UGF plays a crucial role in the steady state analysis of MSS. In the series of works

Levitin et al. (1998), Levitin and Lisnianski (1998), Lisnianski et al. (2000) vari-

ous operators providing the evaluation of the whole MSS performance distribution

based on performance distributions of system components were described for MSS

with series, parallel, series-parallel and bridge structure. For extending UGF tech-

nique application to dynamic reliability model, a particular mathematical technique

Lz transform was proposed by Lisnianski (2012). Lz transform technique has been

proved for short term evaluation of the power generating system by Lisnianski and

Ben-Haim (2013). A detailed study of semi Markov process and its application in

reliability theory were demonstrated by Limnios and Oprisan (2001). A periodic

maintenance system was presented and examined by Xu et al. (2008). In this thesis

above techniques are applied to a real case study of reliability analysis of a power

generating system.

Markov regenerative process has been used to evaluating reliability and availabil-

ity of a multi state system. Reliability and availability of power plants and fault tree

systems can be found using this process by Wereley and Walker (1988), Fricks et al.

(1997), Perman et al.(1997). A detailed study of the properties of Phase type (PH)

distribution and its application in stochastic modeling was learned by Neuts (1981).

Reliability modeling using Phase type distribution was demonstrated by Neuts and

Meier (1981). In this work these techniques are effectively used in the reliability

analysis especially for availability context with numerical examples.
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Some of the basic concepts of stochastic process are described briefly in the fol-

lowing sections.

1.3 Continuous Time Markov chain

Stochastic process, continuous time Markov chain, regenerative process and renewal

theory, semi Markov process was demonstrated by Cinlar (1975) and Ross (1996).

According to Cinlar, stochastic process with state space Ω is a collection {X(t); t ∈

T} of random variables. X(t) is defined on the same probability space and taking

values in Ω. The set T is called parameter set.

Consider a continuous time stochastic process {X(t); t ≥ 0} is a continuous time

Markov chain if for all s, t ≥ 0 and non negative integers k, l, x(u), 0 ≤ u ≤ s,

P{X(t+ s) = l/X(s) = k,X(u) = x(u), 0 ≤ u < s}

= P{X(t+ s) = l/X(s) = k}.

In other words, a continuous time Markov chain is a stochastic process having the

Markovian property that the conditional distribution of the future state at time

(t + s), given the present state at s and all past states depend only on the present

state and is independent of the past [refer Ross (1996)].
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1.4 Regenerative process and Renewal theory

Cinlar (1975) defined regenerative process as follows: Consider a stochastic process

Z = {Z(t); t ≥ 0} with state space Ω. Suppose that every time a certain phenomenon

occurs, the future of the process Z after that time becomes a probabilistic replica of

the future after time zero. Such times which is usually random are called regeneration

times of Z and the process is said to be regenerative.

Let Z be a regenerative process with a discrete state space and suppose the

probability f(t) = P{Z(t) = i} for some fixed state i. The process Z regenerates

itself at S1 and the future process Z
′

defined by Z
′
(u) = Z(S1 + u) has the same

probability law as Z itself. If S1 = s ≤ t then Z(t) = Z
′
(t − s) and thenP{Z(t) =

i/S1} = P{Z ′(t − s) = i} = f(t − s) on {S1 = s ≤ t}. Define g(t) = P{Z(t) =

i, S1 > t}. Then

f(t) = g(t) +

∫ t

0

F (ds)f(t− s).

This equation is known as a renewal equation. The renewal theory has been proved

to be a powerful tool for studying regenerative processes and several other stochastic

models.
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1.5 Semi Markov Process

The stochastic process X(t) = {Xn, Tn;n ∈ N} is said to be a Markov renewal pro-

cess with state space Ω provided that P{Xn+1 = j, Tn+1−Tn ≤ t/X0, ..., Xn;T0, ..., Tn}

= P{Xn+1 = j, Tn+1 − Tn ≤ t/Xn} for all n ∈ N, j ∈ Ω and t ∈ R+. X(t) is always

assumed to be time homogeneous. For any i, j ∈ Ω, t ∈ R+,

P{Xn+1 = j, Tn+1 − Tn ≤ t/Xn = i} = Q(i, j, t), i, j ∈ Ω, t ∈ R+ which is called

semi Markov kernel over Ω is independent of n. That is X(t) be a Markov renewal

process with state space Ω and semi Markov kernel Q. L = supnTn, L is the life time

of X(t). The process Y = {Y (t); t ≥ 0} defined by

Y (t) =


Xn if Tn ≤ t < Tn+1,

∆ if t ≥ L

where ∆ is point not in Ω. This continuous time parameter process Y (t) is termed

as semi Markov process associated with X(t) [refer Cinlar (1975)].

A brief description of the concepts of binary and multi state system are given in

the ensuing two sections.

1.6 Binary State System

The theory of binary state system is a unified basis for mathematical and statistical

theory of reliability, see Barlow and Proshan (1965, 1975). In the classical binary
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reliability theory, the system and its components are assumed to be in one of the

two states: functioning or failed. The state of component i ( i = 1, 2, 3, ...n) can be

represented by a binary indicator variable xi where

xi =


1 if ith component is functioning

0 if ith component is failed

.

x = (x1, x2, ...xn) is called state vector.

More over we consider that by knowing the states of all the n components, we can

evaluate whether the system is functioning or not. Similarly the state of the system

can be defined by a binary function φ(x) = φ(x1, x2, ..., xn) where

φ(x) =


1 if the system is functioning

0 if the system is failed

.

The function φ(x) is called structure function of the system. Consider a system

with n different components . A series structure is one that will function if and

only if all its n components function. The structure function is given by φ(x) =∏n
i xi = min(x1, x2, ..., xn). A parallel structure is one that will function if at least

one of its n components function. The structure function is given by φ(x) =
⊔n
i xi =

max(x1, x2, ..., xn). A k out of n structure is one that will function if and only if at
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least k out of n components function. The structure function is given by

φ(x) =


1 if

∑k
i xi ≥ k

0 if
∑k

i xi < k

.

A component is relevant to the system performance if an improvement in component

performance increases the system performance. A system of components is coher-

ent if its structure function φ is increasing and each component is relevant. Esary

and Proschan (1962) contributed the properties of coherent structures in reliability

theory.

Consider a system of n components, which are statistically independent. Suppose

that the state xi of the ith component is random with P [xi = 1] = pi = E(xi),

i = 1, 2, 3, ..., n. pi is called the reliability of component i. The reliability of binary

system is given by

P [φ(x) = 1] = h = E(φ(x)). We can represent system reliability as a function of

component reliabilities h = h(p) where p = (p1, p2, ...pn).

h = h(p) is referred as the reliability function of the structure φ. If the com-

ponents are not independent system reliability may not a function of p alone. In

this case h(p) will not be used. The reliability function is h(p) =
∏n

i pi for series

structure function φ(x) =
∏n

i xi and for parallel structure function φ(x) =
⊔n
i xi has

the reliability function h(p) = 1−
∏n

i (1− pi). The reliability function of k-out of-n
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system is

h(p) =
n∑
i=k

(
n

i

)
pi(1− p)n−i

.

1.7 Multi State System

In many real life situations, however, systems and components have actually diverse

range of levels of performance, varying from perfect functioning to complete failure.

In this circumstance the dichotomized model is an over simplification of a real situ-

ation. So models of multi state system and multi state components are much more

practical in explaining the performance of these systems in respect of the perfor-

mance of their components. Hirsch et al. (1968) perceived the idea of multi state

system in 1968 itself. Earlier we mentioned that more researchers entered in this

area in 1970s and in 1980s. They focussed on multi state system reliability. Efforts

of Lisnianski and Levitin (2003) were remarkable in summarizing multi state relia-

bility theory. Previously we indicated that multi state system reliability evaluation

is based on five different approaches.

The Strucure function approach is an extension of binary models to multi state

case. Application of the Boolean methods to determine the multi state system Struc-

ture and reliability measures in practice are founded by Boedidheimer and Kapur

(1994). Aven (1985) proffered an algorithm which is based on state space decom-
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position. Natvig and Streller (1984) first applied the stochastic process approach

to evaluate multi state system reliability. Modern theory of stochastic process con-

tributes an improved probabilistic framework [Aven (1999)]. This allows us to con-

ceive formulae not only for general failure models but also for computing various

performance measures. It also helps us to determine the optimal replacement poli-

cies in complex situation. The idea of bringing together the Markov processes and

coherent structure function was proposed by Xue and Yang (1995). Brunelle and

Kapoor (1999) comprehensively studied multi state system reliability evaluation us-

ing stochastic process. The universal generating function method in power system

reliability analysis was firstly adapted by Linsianski et al. (1996). Various operators

are contributed by Levitin and Lisnianski (1999) for the determination of the entire

multi state system performance distribution based on the performance distribution

of component. Lisnianski and Ding (2009) put forward a method that extends the

classical reliability block diagram method to a repairable multi state system. This

method is based on combined random processes and the universal generating func-

tion technique. It diminishes intensely the number of states in the multi state model.

Levitin et al. (2011) introduced an algorithm for assessing performance distribution

of complete series- parallel multi state system with propagated failures and imper-

fect problems. The proposed algorithm is based on the universal generating functions

and generalized reliability block diagram method. For the reliability evaluation of

most of the real world multi state system, Monte-Carlo simulation can be applied.

Billinton and Li (1991) introduced a hybrid approach using Monte-Carlo simula-
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tion. They used an enumeration technique for the reliability evaluation of large scale

composite generation transmission systems, including multi state representation of

generating units. Zio et al. (2007) put forward a Monte-Carlo simulation technique

which allows modeling the complex dynamics of multi state components based on

operational dependencies with the system overall state. Zio et al. (2004) introduced

another Monte-carlo simulation approach. This is used to estimate all the impor-

tance measures of the components at a given performance level in a multi state series

parallel system. The fifth approach for multi state system reliability can be evaluated

by Recursive algorithm, which was proposed by Zuo and Tian (2006). This is for

the reliability evaluation of generalized multi state systems k out of n. Li and Zuo

(2008) contributed two models of multi state weighed k out of n system models in

which recursive algorithm is used for reliability evaluation.

Development of optimization algorithm to solve different application problems in

multi state reliability theory is a milestone in multi state reliability research. The

gradient method was modified and applied by Vaurio (1984) to find the minimal cost

configuration of a multi state series - parallel power system structure. Nourelfath

and Ait-Kadi (2007) developed a redundancy optimization model under reliability

constraints, the minimal cost configuration of a multi state series parallel system,

which is based on a specified maintenance policy. Tian et al. (2009) introduced a

method for determining the optimal version and numbers of components and the

optimal set of technical organizational actions for each subsystem of a multi state

series parallel system, so as to minimize the system cost while satisfying the sys-
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tem availability constraint. Li et al. (2010) developed a heterogenous redundancy

optimization method for multi state series parallel systems based on common cause

failures.

A maintenance policy for system with multi state components was presented

by Gurler and Kaya (2002). The joint redundancy and maintenance replacement

schedule optimization problem generalized to multi state system were constructed

by Levitin and Lisnianski (1998). Nourelfath and Ait-kadi (2004) enhanced the re-

dundancy optimization problem of multi state systems to a more general case where

maintenance resources are limited. Zuo et al. (2006) developed replacement repair

policy for multi state deteriorating products under warranty. Two stage preventive

maintenance (PM) policy for multi state degradation system under periodic inspec-

tion was proposed by Huang and Yuan (2010). Wu et al. (2010) described a finite

life cycle multi state system that is based on both degradation and Poisson failures.

He proposed strategies for optimizing maintenance thresholds. A different model was

introduced by Issac et al. (2010). This is for evaluating availability, production rate

and reliability function of multi state degraded systems subjected to minimal repairs

and imperfect preventive maintenance.

Multi state coherent system (MCS) theory was developed by El-Neweihi et al.

(1978). x = (x1, x2, ..., xn) be the vector of states of components i = 1, 2, ..., n.

S = {1, 2, ...,M} be the set of possible states of both components and systems.

(ji,x) = (x1, ..., xi−1, j, xi+1, ..., xn), where j = 0, 1, ...,M. (.i,x) = (x1, ..., xi−1, ., xi+1, ..., xn).

x ∨ y denotes max(x, y). x ∨ y = (x1 ∨ y1, ..., xn ∨ yn). x ∧ y denotes min(x, y).
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x ∧ y = (x1 ∧ y1, ..., xn ∧ yn).

Structural Properties of MCS

Definition 1.7.1. A system of n components is said to be multi state coherent system

(MCS) if its structure function satisfies

1. φ is increasing

2. For level j of component i, there exist a vector (.i,x) such that φ(ji,x) = j while

φ(li,x) 6= j for l 6= j, i = 1, 2, ..., n and j = 0, 1, 2, ...M .

3. φ(j) = j for j = 0, 1, 2, ...M .

This definition is due to Neweihi et.al (1978). The condition (2) mentioned as

the relevance condition.

Theorem 1.7.1. Let φ be a structure function of a MCS , then

1. φ(x ∨ y) ≥ φ(x) ∨ φ(y), and

2. φ(x ∧ y) ≥ φ(x) ∧ φ(y).

equality in (1) and (2) holds for parallel and series system respectively.

The universal generating function (UGF) approach which is a powerful technique

for reliability evaluation of MSS has an important role in this work. The basic

concepts of UGF has been discussed in the next section.
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1.7.1 Universal Generating Function (UGF)

Universal Generating Function (u function) technique was founded by Ushakov (1986).

UGF technique is essentially based on moment generating functions and it is a math-

ematical concept for random variables. It is assumed that functioning of each com-

ponent of the system j is characterized by random discrete performance Gj. The

performance of the whole multi state system is a well defined function of the perfor-

mance of its individual components.

The u function of an independent discrete random variable X is defined as a poly-

nomial

u(z) =
K∑
k=1

pkz
xk .

where the variable X has K possible values and pk is the probability that X is

equal to xk. The polynomial uj(z) defined as probability distribution of component

j (probability mass function of random value Gj). It gives all the probable states of

the component by relating the probabilities of each state to the performance of the

component in that state. If probability distribution of the component j is defined

by gj = {gji }, 1 ≤ i ≤ kj and pj = {pji}, 1 ≤ i ≤ kj, then

uj(z) =

kj∑
i=1

pjiz
gji .

composition operators are introduced for getting the u-function of a system . These

operators decide the u-function for components connected in parallel and in series us-
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ing simple algebraic operations over the individual u-functions of basic components.

The composition operators ⊗par and ⊗ser characterize the parallel and series connec-

tions of two component system. Applying composition operators for two components

in a system we get the following

u(z) = uj(z)⊗par ul(z) =

kj∑
i=1

pjiz
gji ⊗par

kl∑
h=1

plhz
glh

=

kj∑
i=1

kl∑
h=1

pjip
l
hz
{gji+glh}

or

=

kj∑
i=1

kl∑
h=1

pjip
l
hz

max{gji ,g
l
h}

and

u(z) = uj(z)⊗ser ul(z) =

kj∑
i=1

pjiz
gji ⊗ser

kl∑
h=1

plhz
glh

=

kj∑
i=1

kl∑
h=1

pjip
l
hz

min{gji ,g
l
h}

The Ushakov’s composition operators Ωφ(p) (for parallel connections) and Ωφ(s) (for

series connections) or their combinations can be applied over the u function of in-

dividual component for obtaining u function of entire MSS with any number of

components. Lisnianski and Levitin (2003) demonstrated that UGF is very effective

for the reliability evaluation of different types of multi state systems.



Chapter 1 23

The UGF Tecnique can be used for random variables and so we can apply this

method only for evaluation of steady state behaviour of MSS. Hence it led to the

concept of Lz transform which is introduced by Lisnianski (2012).

1.7.2 Lz Transform: Definition, Existence and Uniqueness

Lz transform technique is a new mathematical technique which improvises the ap-

plication of UGF technique for MSS where its components are explicitly described

by discrete state continuous time Markov process. Consider a discrete state con-

tinuous time (DSCT) Markov process X(t) ∈ {x1, x2, ..., xk}, t ≥ 0 with k possible

states i, (i = 1, 2, ..., k) where performance level associated with any state i is xi.

This Markov process is entirely defined by set of possible states x = {x1, x2, ..., xk},

transition intensity matrix A = (aij), i, j = 1, 2, ..., k. Initial state probability distri-

bution is p0 = [p10 = Pr{X(0) = x1}, ..., pk0 = Pr{X(0) = xk}]. Markov process

can be represented as X(t) = {x,A, p0}.

Note: If functions aij(t) = aij are constants then the DSCT Markov process is

said to be time-homogeneous. When aij(t) are time dependent, then the resulting

Markov process is non-homogeneous.

Definition 1.7.2. Lz transform of a discrete state continuous time Markov process

X(t) = {x,A, p0} is a function

Lz{X(t)} = u(z, t, p0) =
k∑
i=1

pi(t)z
xi
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where pi(t) is a probability that the process is in state i at time instant t ≥ 0 for

any given initial states probability distribution and z in a general case is a complex

variable.

Note: u(z, t, p0) can write simply u(z, t) by omitting the symbol p0 keeping in

mind that Lz transform will depend initial probability distribution p0.

Each discrete state continuous time Markov process under certain initial condi-

tion has only one Lz transform u(z, t) and each Lz transform will have only one

corresponding DSCT Markov process X(t) developing from these initial conditions.

We can state this as an existence and uniqueness property of Lz transform.

Proposition 1.7.2. Each Discrete state continuous time Markov process X(t) under

certain initial conditions p0 has unique Lz transform.

Proof. The proof of this is based on Picard theorem [Coddington and Levinson(1955)].

Among theories of differential equations, Picard theorem is an important theorem

in existence and stands apart for its uniqueness of solutions to system of differential

equations with a given initial value problems. State probabilities pi(t) = Pr{X(t) =

xi}, i = 1, 2, ..., k for DSCT are defined by the solution of the following system of

linear differential equations
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d

dt
p1(t) = a11(t)p1(t) + a12(t)p2(t) + . . .+ a1k(t)pk(t),

d

dt
p2(t) = a21(t)p1(t) + a22(t)p2(t) + . . .+ a2k(t)pk(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

d

dt
pk(t) = ak1(t)p1(t) + ak2(t)p2(t) + . . .+ akk(t)pk(t)

(1.1)

under initial conditions

p0 = {p10 = p1(t0), p20 = p2(t0), ..., pk0 = pk(t0)} (1.2)

According to Picard’s theorem, if coefficients aij(t) (i, j = 1, 2, ..., k) are contin-

uous functions of time t, then the system of equations (1.1) has a unique solution

p1(t), p2(t), ...., pk(t) satisfied initial conditions (1.2).

According to the definition of Lz transform for DSCT Markov process X(t) we

have

Lz{X(t)} = u(z, t) =
K∑
i=1

pi(t)z
xi ,

where p1(t), p2(t), ..., pk(t) are evaluated as a unique solution of the system of equa-

tions (1.1) under initial conditions (1.2).

Therefore there exists unique Lz transform for DSCT markov processX(t) = {x,A, p0}

where transition intensities aij(t) are continuous functions of time.

Remark 1.7.3. The inverse statement is also correct. If u(z, t) =
∑k

i=1 pi(t)z
xi
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where pi(t) are described as a solution of the system under initial conditions , then

there exist one and only one DSCT Markov process X(t) for which Lz{X(t)} =

u(z, t) =
∑k

i=1 pi(t)z
xi

Remark 1.7.4. In reliability explanation Lz transform may be executed to an aging

system and to a system at burn in period as well as to a system with constant failure

and repair rates. The unique condition that should be satisfied is the continuity of

transition intensities aij(t).

Following are main properties of Lz transform:

Property 1.7.5. If a constant value a is multiplied by a DSCT Markov process then

it is equal to multiplying that constant value to corresponding performance level xi

at each state i on this value

Lz{aX(t)} =
k∑
i=1

pi(t)z
axi

Property 1.7.6. Lz transform from a single valued function f [G(t), H(t)] of two

independent DSCT Markov processes G(t) and H(t) can be evaluated by applying

Ushakov’s universal generating operator Ωf to Lz transform from G(t) and H(t)

processes over all time points t ≥ 0

Lz{f [G(t), H(t)]} = Ωf{Lz[G(t)], Lz[H(t)]}.

The property allows Lz transform implementation to reliability analysis of multi
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state system.

Lz transform method is very effective for short term evaluation of power systems.

The applicability of this technique to MSS reliability analysis enlarges the possibility

of solving class of problems in reliability analysis.

In this work the techniques UGF and Lz transform are applied for repairable

multi state system

1.8 Repairable System

Reliability is a performance measure for a non repairable system. A component

or system is said to have failed if it does not operate adequately. Reliability of a

system can be improved with the help of repair. According to Asher and Feingold

(1984), repairable system is a system which can be restored to fully satisfactory

performance by a method other than replacement of the entire system after failing

to perform one or more of its function satisfactorily. In recent years analysts of

repairable multi state system has been the main interest of industrial engineers,

statisticians etc. If the system or its components are repairable, the reliability is an

incomplete performance measure for the system as maintenance is not considered

in this measure. Availability, one of the most appropriate measure, considers the

failure behaviors and effects of maintenance action equally in a repairable system.

Availability is defined as the probability that system or components is performing

its required function at a given point of time or over a stated period of time when
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operated and maintained in a prescribed manner [Ebeling (1997)]. As a performance

measure, availability plays a significant role for the improvement of effectiveness of

the repairable system. The availability function is explained as the probability that

the system is operating at time t where the reliability function is the probability that

the system has operated over the interval. The reliability is an interval function while

availability is a point function, explaining the behavior of the system at a specified

period. The reliability function prevents the failure of the system during the interval

under examination where availability function does not force any such limitations

on the behavior of the system. At the steady state situation the reliability function

tends to zero whereas availability function tends to some steady state value. The

aim of this research work is to project the reliability modeling and it’s application

and evaluation of performance measures, especially discussion based on availability,

in a multi state system.

Reliability modeling of a repairable multi state system handles mainly with two

types of repair: perfect repair and minimal repair. Perfect repair helps a system to

’as good as’ new state and minimal repair helps system to ’as bad as’ old state. In

perfect repair each repair is perfect and the system restores a new. In the minimal

repair the system restores to like just before failure. But the reality in practical

situation is in between these two extreme cases. This leads to the significance of

imperfect repair. In imperfect system repair the system returns to an intermediate

state between as bad as old and as good as new.

Phase Type distribution has an important role in reliability analysis due to its
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mathematical simplicity. In the following section the basic ideas of this distribution

are discussed.

1.9 Phase Type Distribution

The concept of method of phases was first proposed by Erlang (1917-18). His idea led

to a generalization of the exponential distribution which is known as Erlangian dis-

tribution. Erlang’s idea was extended by Cox (1955). He gave phase representation

for all probability distribution on the positive real line which has Laplace-Stieltjes

transform. The numerical analysis of this is very difficult because of large use of

complex analysis. Neuts (1975) overcame this drawback. Neuts proposed the theory

of phase-type (PH) distributions which have nice closure properties.

Continuous Phase type Distribution

Continuous Phase type distribution (CPH) is obtained as the distribution of the

time until absorption in a continuous time Markov chain. Consider that {X(t), t ≥ 0}

denote an absorbing continuous time Markov chain with finite state space Ω =

{1, 2, ...,m,m+ 1} and infinitesimal generator Q =

 T T 0

0 0

 . Here T is a square

matrix of dimension m, that is T = (Tij)
m×m

satisfies Tii < 0 for 1 ≤ i ≤ m and

Tij > 0 for i 6= j, 1 ≤ i, j ≤ m and T 0 = (T 0
1 , ...., T

0
m)
′
m×1 = −Te, e denotes column

vector with all components equal to one for which the dimension is determined by

the context. The initial probability vector is given by α = (α, αm+1) such that
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αe+ αm+1 = 1. The first m states 1, ...,m shall be transient.

A probability distribution F (.) on [0,∞) is a phase type distribution (PH distri-

bution) if it is the distribution of the time until absorption in a finite state Markov

chain X(t) with generator Q. It is represented as PH(α, T ). The states {1, 2, ...,m}

are called phases. The distribution function of the time until absorption in to state

m+ 1 is given by, F (x) = 1− α exp(Tx)e for x ≥ 0. The density function of F (.) is

given by f(x) = α exp(Tx)T 0.

We can apply the following property of continuous phase type distribution in

reliability analysis of a multi state system.

Property 1.9.1. Let X and Y be independent random variables with continuous PH

distributions G(.) and H(.) having representations (α, T )m and (β, S)n respectively.

Let F1(.) and F2(.) be the distributions to max(X, Y ) and min(X, Y ) respectively

where F1(.) = G(.)H(.) and F2(.) = [1 − G(.)][1 − H(.)]. Then F1(.) and F2(.) are

also phase type. That is F1(.) ∼ Ph(γ,K)mn+m+n where γ = [α ⊗ β, αm+1β, βn+1α]

and


T ⊗ I + I ⊗ S I ⊗ S0 T 0 ⊗ I

0 T 0

0 0 S

 and F2(.) ∼ (α⊗ β, T ⊗ I + I ⊗ S).

Property 1.9.2. The i th moment of a PH distribution with representation (α, T )

is µ
′
i = (−1)ii!αT−ie
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For further properties and results of PH distribution one may refer to Neuts

(1975).

The following section gives a brief idea of the work presented in this thesis.

1.10 An Outline of the Present Work

The thesis is arranged into eight chapters, including this introductory part, as out-

lined below.

In chapter 1, which is an introductory chapter, basic concepts and definitions used

in this thesis are given. Relevant literature review and elementary ideas of system

reliability theory are also presented. Detailed description of multi state system (MSS)

are presented in chapter 2.

In chapter 3 we propose straight forward stochastic process approach for analyz-

ing models and evaluating system performance measures of multi state system. The

utility of this approach is illustrated in respect of three different structures of system

with constat failure and repair rates.

Universal generating function (UGF) is established by using well known ordinary

generating function and it is confirmed to be very helpful for analysis of numerical

illustration. Combination of stochastic (Markov) process approach and UGF tech-

nique by decomposing MSS in to several subsystem is discussed in chapter 4. It

provides comparatively small computational effort for calculating reliability indices

of a multi state system. A real data obtained from a power station modeled as a
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multi state system which has been divided into two subsystems with many states of

degradation.

Lz transform technique is proposed in chapter 5 for avoiding the curse of dimen-

sionality of stochastic process approach which is often used for the reliability analysis

of multi state system. This technique can drastically minimize the computational

burden for dynamic reliability assessment of repairable multi state system assuming

variable failure rates and repair rates of components of the system. We illustrate

this method for the reliability evaluation of a power station based on real data set

which is used in the preceding chapter.

Reliability analysis of a multi state system with independent components having

many levels of degradation has been considered in chapter 6. Periodic inspection and

maintenance have been performed for each component of the system. For evaluating

steady state probability for each component, the components have been modeled as

discrete state continuous time semi Markov process. Steady state reliability indices

of availability and performance deficiency are obtained using UGF technique to avoid

computational complexity of random process method. Analytical procedures have

been illustrated based on the same data, that was used in previous chapters, from

a power station with independent generators. The availability of the whole system

has been enhanced through monthly periodic inspection and maintenance.

In chapter 7 the dynamic reliability behavior in terms of common cause failures is

identified and a state space model has been formed for the evaluation of performance
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measure of a multi state system. The concept of renewal is employed and Markov

regenerative process has been used for assessment of availability of a multi state

parallel system. A system in which this technique is effectively used is illustrated in

this chapter.

Phase type distribution is very useful for analytical modeling in the study of multi

state reliability systems. It can be used to describe extensive random phenomena

because of its versatility. In chapter 8 we describe a parallel repairable system

with single repair facility in which life time and repair time of components have

phase type distribution. Steady state probability vector, steady state availability

and mean time between failures (MTBF) are evaluated through simple algebraic

formalism. Application of this model is illustrated with a numerical example.

Matlab and Mathematica softwares have been employed for the numerical eval-

uations in the thesis. The thesis is concluded with an epilogue that analyse the

main contribution of the current work and provides a perspective approach to future

research. A reasonably exhaustive bibliography incorporating all papers and books

stated in the thesis are given at the end.



CHAPTER 2

MULTI STATE SYSTEM: BASIC CONCEPTS AND

METHODOLOGIES

2.1 Definition and properties

A complete demonstration of multi state reliability theory with reliability analysis

and optimization techniques furnished by Lisnianski and Levitin (2003). All technical

systems are proposed to fulfilled their intended tasks in a specific environment. The

system which performs their tasks with distinct levels of efficiency is called multi state

system (MSS). The levels of efficiency of a system is usually known as performance

values of multi state system. A binary state system which has two distinct states

(perfect functioning and complete failure) is the simplest form of a multi state system.

A system can be considered as a multi state system which satisfies the following

34
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conditions.

1. Any system with multi state units have a collective effect on the entire system

performance and the performance rate of such system is based on the availabil-

ity of its units. Different numbers of available units can provide different levels

of the task performance.

2. The performance rate of element in a system can vary as a result of the de-

teriorating (fatigue, partial failure) or variant current conditions. Failures of

components lead to a poor performance of the entire MSS.

The performance rate of components of MSS can vary from perfect function to com-

plete failure. The failure that leads to decrease in the performance of components

is called partial failure. After the partial failure components continue to work at

degrading performance rate. After complete failure, the components are totally in-

capable to perform their task.

Consider a multi state system composed of n components. Any component j of

multi state system have kj different states to the performance level constitute by the

set gj = {gj1, ..., gjkj} where gj1 is performance level of component j in the state

i, i ∈ {1, 2, ..., kj}. The performance level of component j at any time t ≥ 0, Gj(t) is

a random variable that hold its value from gj. That is Gj(t) ∈ gj. The probabilities

corresponding to different states (performance levels) of the system component j

at any time t can be represented b the set pj(t) = {pj1(t), pj2(t), ..., pjkj(t)} where

pji(t) = Pr{Gj(t) = gji}. The probability distribution of performance of component
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j at time t can be described by gji, pj(t); i = 1, 2, ..., kj. We can define a generic

model of the multi state system that should involved the performance stochastic

process Gj(t), j = 1, 2, ...n for each system component j and the system structure

function G(t) = φ(G1(t), ..., Gn(t)) which gives stochastic process associated to the

output performance of the entire multi state system. Probability distribution of

performance of the multi state system can be determined by gj, pj(t); j = 1, 2, ...n.

Main properties of multi state system are relevancy of the components of the

system, Coherency and Homogeneity.

1. Relevancy of the components of the system

In a multi state system particular component is relevant if the entire system

state is changed because of any change in that component’s state without

any change in the states of other remaining components. With regard to the

system structure function, the relevancy of component j means that there exist

G1(t), ..., Gn(t) that for some gjk 6= gjm.

φ(G1(t), ..., Gj−1(t), gjk, Gj+1(t), ..., Gn(t))

6= φ(G1(t), ..., Gj−1(t), gjm, Gj+1(t), ..., Gn(t)).

2. Coherency

In a multi state system model, the system is coherent if and only if its structure

function is increasing (non decreasing) in each argument and whole system

components are relevant. This structure function property follows that the
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performance of system is high when the performance of components of the

system is high and performance of system is low when the components of

performance of system is low.

3. Homogeneity

The multi state system is homogeneous when all the components of the system

and system itself must have same number of significant states. Binary state

system always obey this property. In real life problems most of the multi state

system does not obey this property.

2.2 MSS Reliability and its measurs

Multi state System(MSS) acceptability function and reliability

The behaviour of MSS is portrayed by its development in expansion of states. The

whole set of feasible system states can be divided in to two mutually exclusive subsets

which corresponds to acceptable and un acceptable system functioning. Entry of the

system in to the subset of unacceptable states constitutes a failure. The reliability of a

multi state system can be defined as its capacity to continue to exist in the acceptable

states during the functioning period. The state acceptability depends on the value of

output performance G(t) of the system. The acceptability of the state of the system

is based on the association between the performance of the multi state system and

desired level of this performance (demand) which is determined by outside of the

system. Usually demand (W(t)) is a random process with values w = {w1..., wM}
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using acceptability function F (G(t),W (t)), we can express relationship between the

system performance and the demand. It takes non negative values if and only if the

functioning of system is acceptable. The acceptable system states correspond to the

F (G(t),W (t)) ≥ 0 and the unacceptable states correspond to F (G(t),W (t)) < 0.

Acceptability function have the form F (G(t),W (t)) = G(t)−W (t) if the situation,

which is more practical in real life, that performance of MSS should exceed the

demand. The transitions between subsets of acceptable and unacceptable states can

take place an arbitrary number of times for repairable system or for the system with

variable demands.

Relevancy and Coherence in the Reliability Context of MSS

From the perspective of reliability the acceptability of the performance rate of a

system point out system’s ability to perform its intended task. In that circumstance,

a component of the system is relevant of changes of its state without changes of the

states of remaining componens of the system may lead to change in the acceptabil-

ity of the behaviour of system. Relevancy of componentj implies that there exist

G1(t), G1(t), ..., Gn(t) for some gjk 6= gjm

F (φ(G1(t), ..., Gj−1(t), gjk, Gj+1(t), ..., Gn(t)),W ) < 0

while

F (φ(G1(t), ..., Gj−1(t), gjm, Gj+1(t), ..., Gn(t)),W ) ≥ 0.
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The coherency of MSS can be defined using acceptability function as like the

definition of coherency of binary system. Coherency of multi state system requires

the monotonic behaviour of structure function. Multi state system coherency in

the context of reliability means that the improvement in the performance of the

components of the system may not change the entire system transition from an

acceptable state to unacceptable state.

Reliability Indices of MSS

The reliability indices of multi state system has to be determined for evaluating

behaviour of a multi state system numerically. We know that the reliability of a multi

state system can be explained as its capability to stay in the acceptable states during

the operational period. When the system is in given time instant or in steady state,

behaviour of the multi state system is determined by its performance represented as

a random variable. Different types of reliability indices are explained by Lisnianski

and Levitin (2003)

Instantaneous (point) availability of a multi state system is the probability that

the system is one of the acceptable states at t (t > 0).

A(t) = Pr{F (G(t),W (t)) ≥ 0}.

Availability of MSS in the time interval (0, T ] is

AT =
1

T

∫ T

0

I(F (G(t),W (t)) ≥ 0)dt.
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AT describes the portion of time if the performance rate of MSS is in an acceptable

area.

Demand availability is the expected value of AT which is defined by Aven and Jensen

(1999).

AD = E(AT )

As time t → ∞ initial state of the system has no influence on availability of the

system. Stationary availability of multi state system for the constant demand level

W (t) = w can be determined on the basis of probability distribution of the system.

A(w) =
k∑
i=1

piI(F (gi, w) ≥ 0)

where

pi = lim
t→∞

pi(t)

is the steady state probability of the system at state i with the output performance

level gi.

If F (G(t),W (t)) = G(t)−W (t), we get F (gi, w) = gi − w. Then

A(w) =
k∑
i=1

piI(gi ≥ w) =
∑
gi≥w

pi.

The expectation of performance can be used to evaluate measure that describes

average performance of multi state system. Mean of multi state instantaneous out
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put performance at time t is given by

Et = E(G(t)).

If the steady state probabilities exist expected steady state MSS performance

E∞ =
k∑
i=1

pigi.

Mean output performance for a fixed time interval (0, T ] is determined by

ET =
1

T

∫ T

0

Etdt.

Generally it is significant to be aware about the measure of system performance

deviation from a demand when the demand is not met. Instantaneous performance

deviation which is known as instantaneous performance deficiency at instant t of a

system can be defined in the case F (G(t),W (t)) = G(t)−W (t) as

D(t) = max{W (t)−G(t), 0}.

Expected value of multi state performance deficiency at instant t

Dt = E(D(t)).

If the system is in steady state with constant demand W (t) = w, expected per-
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formance deficiency is not a function of time. Expected steady state performance

deficiency with constant demand W (t) = w can be obtained from probability distri-

bution of system at steady state.

D∞ =
k∑
i=1

pimax(w − gi, 0).

2.3 Types of Multi State System

According to generic model different types of MSS can be described by explaining

the stochastic behaviour of its component and the structure function of system.

Series Structure

The series structure of components of multi state system represent that an overall

system failure is resulted by the failure of a single component. That is in the series

connection of system components of a multi state system, a failure of an individ-

ual component becomes the cause of the failure of entire system. The fundamental

property of the series system that its operation depends on the complete availability

of its components. That is the series connection should maintain its main prop-

erty that the complete failure of any component of the system (corresponding to

its performance rate equal to zero) will be resulted in the complete failure of the

system (system performance rate equal to Zero). Different types of series MSS are

distinguished by the type of performance and the nature of the interconnection of

the components. First consider a system which uses its component capacity as the
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performance measure. Examples of these types of systems are power systems, energy

or material continuous transmission systems, continuous productive systems etc. In

this case for the series structure the capacity of the system is equal to the capacity of

its weakest component. Another type of series is a task processing system in which

the performance means it is defined by an operation time (processing speed). Ex-

amples of these types of systems are control systems, information or data processing

systems, manufacturing systems with constrained operation time etc. In this case

operation time of the entire system is equal to sum of the operation time of all its

components. The performance of the component or system is measured in terms of

processing speed (reciprocal of the operation time) the total failure corresponds to

a performance rate zero. The MSS fails totally if it at least one component of the

system is in a state of complete failure.

Parallel Structure

In parallel connection of component of the multi state system, failure of the

system occurs only when all its components fail. That is system fails if and only if

all of its components fail. The assumption is that if the components of multi state

system are connected in parallel structure some of the tasks can be performed by any

one of the components. In multi state system with work sharing, the performance

rate of the whole system is equal to the sum of performance rate of components

which are connected in parallel. Examples of parallel system with work sharing

are flow transmission and task processing systems in which performance rate of

the system is taken as sum of the performance rate of the components. In multi
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state system without work sharing performance rate of the system depends on the

discipline of the activation of components. In such situation the performance rate of

the system is the performance rate of the available component having greatest value.

Examples of parallel system without work sharing are flow transmission system and

task processing system in which performance rate of the system is taken as maximum

performance rate of the available components in operation.

A multi state system composed of series and parallel structures results in series-

parallel multi state systems. That is mixed combination of series and parallel struc-

tures makes the series-parallel system. The performance rate of these structures can

be derived by the successive evaluation of the performance rate of a pure series or

parallel sub systems. The reliability of the multi state system for the series, parallel

and series-parallel structured can be described as the probabilities that the overall

performance rate of the system meets a specified demand. k-out of-n system relia-

bility is explained as the probability that at least k components out of n components

are workable conditions. For details of different types of multi state system one may

refer to Lisnianski and Levitin (2003).



CHAPTER 3

RELIABILITY EVALUATION FOR A MULTI

STATE SYSTEM USING STOCHASTIC PROCESS

METHOD

3.1 Introduction

This chapter is intended for describing the application of stochastic process approach

to reliability analysis of a multi state system (MSS). Markov process with continuous

time and discrete state space (continuous time Markov chain) are extensively applied

in multi state system reliability analysis. A detailed study of continuous time Markov

chain was given by Ross (1996). A remarkable illustration of continuous time Markov

chain and its implementation in reliability theory was presented by Cocozza and

45
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Thivet (1997). Rausand and Hoyland (2003) discussed application of continuous

time Markov chain in reliability and availability of MSS. Lisnianski and Levitin (2003)

demonstrated basic concepts and ideas of use of random process method in reliability

theory of MSS. In this chapter multi state system reliability models will be analysed

based on the Markov process. The number of failures in arbitrary time interval in

many real life situations can be explained as Poisson process and also time up to

the failures and repair times are generally exponentially distributed. In such cases

the Markov process is extensively applied for reliability analysis. Multi state system

reliability measures as availability, expected performance, performance deficiency etc

can be evaluated using Markov process. But in all real life situation basic assumptions

about exponential distributions of times between failures and repair times do not

satisfied. In such cases complex stochastic process technique known as semi-Markov

processes can be adapted.

This chapter is organized as follows. Section 3.2 briefly describes the traditional

Markov process and application of continuous time Markov chain in reliability anal-

ysis. In section 3.3 a power generating system with two independent generators is

illustrated. The steady state distribution and system performance characteristics

are determined for the system in the case of three specific structures viz, parallel

structure with work sharing of independent components, parallel structure without

work sharing and series structure.
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3.2 Markov Model

The implementation of conventional Markov technique to the reliability analysis

of multi state system consists of two phases. One is evolution of state transition

diagram. Organized description of state of the system is developed if pictorial form

of the state transition diagram is more complicated. Second phase is evaluation of

reliability of a system by solving a system of differential equations based on the state

transition diagram or organized description of state of system.

A multi state system with several components is considered and each combina-

tion of the state of components of system represent a unique state of the system.

For jth component of system kj different states are to be assigned according to the

corresponding performance out put defined by the set gj = {gj1, ..., gjkj}. The per-

formance rate is Gj(t) of component j. The performance level of a multi state system

can be determined for any combination of performance levels of components of that

system by utilizing the structure function of the whole system. The output perfor-

mance of the entire MSS G(t) at any instant t is a continuous time Markov chain

which takes values from g = {g1, ..., gk}. For applying Markov technique to the re-

liability analysis of MSS, at first state transition diagram for whole MSS have to

be developed. It is a tedious work for the MSS which have large number of states.

If the pictorial representation of state transition diagram is impossible, a detailed

description of it is to be presented. The transition intensity matrix A has to be

evaluated for the corresponding Markov model. Failure rates and repair rates are
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calculated for every component of the multi state system. the set of failure rates

and repair rates in a specific order are as follows {λkj ,kj−1
, ..., λkj ,1, ..., λ3,2, λ3,1, λ2,1}

{µ1,2, ..., µ1,kj , ..., µkj−2,kj , µkj−1,kj}. The failure rate is equal to zero in failure rate set

if there is no failure for the component and the repair rate is equal to zero in repair

rate set if there is no repair for that component. All probable states of MSS are

produced as distinct combinations of all the states of possible output performance of

components of system. A set of corresponding state of the component of the system

should be assigned for every state of the system. All the pairs of state of the system

have to be evaluated for finding transition rates of the system. The transition rates

aij for i 6= j i, j ∈ Ω,Ω = {1, 2, ..., k} for each transition are specified. Each tran-

sition will usually involves a failure or a repair. The transition rates will therefore

be failure rates and repair rates and combinations of these. Transition rates aij as a

matrix is called transition intensity matrix. It is also called infinitesimal generator

of the process.

A =



a11 a12 . . . a10k

a21 a22 . . . a2k

...
...

...
...

ak1 ak2 . . . akk


,

where the diagonal elements of this matrix should be described as

aii = −
k∑

j=1,j 6=i

aij.
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The system of differential equations characterizing the behavior of the system can be

derived based on the state transition intensity matrix. The distribution of Markov

process at time t is described as the row vector p(t) = [p1(t), ..., pk(t)]. We recognized

that the process started in state i at time 0. The distribution p(t) will be calculated

from the Kolmogrove forward equations [refer Ross (1996 p.242)] given in matrix as

d

dt
p(t) = p(t).A (3.1)

The system of differential equations with initial conditions pi(0) = 1 and pj(0) =

0, j 6= i can be solved and the probabilities pi(t) can be evaluated for all the states

of system i = 1, 2, ..., k. Equation (3.1) is termed as state equation for the Markov

process. Reliability applications are likely to be interested in long run (steady state)

probabilities. The state probabilities pi(t) approached a steady state pi as t → ∞.

For an irreducible Markov process [refer Ross (1996)], the limit

lim
t→∞

pi(t) = pi

for i = 1, 2, ..., k always exist and are independent of the initial state of the process.

If pi(t) tends to a constant value (steady state value) as t→∞, then

lim
t→∞

d

dt
p(t) = 0

for i = 1, 2, ..., k. The steady state probability vector p = [p1, p2, ..., pk] must satisfy
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the matrix equation

[p1, p2, ..., pk].



a11 a12 . . . a10k

a21 a22 . . . a2k

...
...

...
...

ak1 ak2 . . . akk


= [0, 0, ..., 0] (3.2)

and

k∑
i=1

pi = 1 (3.3)

The steady state probabilities p1, p2, ..., pk are evaluated using k of the k+1 linear

algebraic equations from the matrix equation (3.2) and in addition to this the sum

of the steady state probabilities is always equal to one (3.3).

System Performance Measures

According to section 2.2 of the chapter 2 system performance measures at steady

situation for a constant demand w can be obtained as

Steady state availability

A∞(w) =
∑
gi≥w

pi
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Mean steady state MSS performance

E∞ =
k∑
i=1

gipi

Expected steady state MSS performance deficiency

D∞ =
k∑
i=1

pimax(w − gi, 0)

3.3 Numerical Illustration

Consider a power generating system with two independent components (generators)

that can have only minor failures and minor repairs for components. The minor

failures cause state transition only from the state k to adjacent state k − 1 and the

minor repairs cause state transition only from the state k − 1 to adjacent state k.

Each generator has 3 possible performance levels. For generator 1 states are 1, 2

and 3 with performance outputs g11 = 0MW , g12 = 80MW and g13 = 150MW . For

generator 2 states are 1, 2 and 3 with performance outputs States of g21 = 0MW ,

g22 = 50MW and g23 = 100MW .That is G1(t) ∈ {g11, g12, g13} = {0, 80, 150} and

G2(t) ∈ {g21, g22, g23} = {0, 50, 100}. The initial state is the best state 3 for each

generator. The failure rates and repair rates corresponding to two generators are

λ
(1)
21 = 10−3, λ

(1)
32 = 2× 10−4, λ

(2)
21 = 1.2× 10−3, λ

(2)
32 = 2.3× 10−4
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µ
(1)
12 = µ

(1)
23 = 2× 10−2 µ

(2)
12 = µ

(2)
23 = 2.5× 10−2.

We evaluate the steady state reliability analysis of parallel MSS with work shar-

ing, parallel MSS without work sharing and series MSS of independent components

(generators).

Parallel MSS with work sharing

Assuming that the generators are connected in parallel and the total generating

capacity of the system is determined as sum of the generating capacities of the two

generators. For every state, the system output performance rate is computed based

on MSS additive structure function G(t) = φp(G1(t), G2(t)) = G1(t) +G2(t)

System State State of Gen 1 State of Gen 2 System Out put

1 1 1 0MW

2 1 2 50MW

3 2 1 80MW

4 1 3 100MW

5 2 2 130MW

6 3 1 150MW

7 2 3 180MW

8 3 2 200MW

9 3 3 250MW
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Figure 3.1: State transition diagram of the system

Transition intensity matrix

A =



α1 µ
(2)
12 µ

(1)
12 0 µ

(1)
12 µ

(2)
12 0 0 0 0

λ
(2)
21 α2 µ

(1)
12 λ

(2)
21 µ

(2)
23 µ

(1)
12 0 µ

(1)
12 µ

(2)
23 0 0

λ
(1)
21 λ

(1)
21 µ

(2)
12 α3 0 µ

(2)
12 µ

(1)
23 0 µ

(1)
23 µ

(2)
12 0

0 λ
(2)
32 0 α4 µ

(1)
12 λ

(2)
32 0 µ

(1)
12 0 0

λ
(1)
21 λ

(2)
21 λ

(1)
21 λ

(2)
21 λ

(1)
21 µ

(2)
23 α5 µ

(1)
23 λ

(2)
21 µ

(2)
23 µ

(1)
23 µ

(1)
23 µ

(2)
23

0 0 λ
(2)
32 0 λ

(1)
32 µ

(2)
12 α6 0 µ

(1)
12 0

0 λ
(1)
21 λ

(2)
32 0 λ

(1)
21 λ

(2)
32 0 α7 µ

(1)
23 λ

(2)
32 µ

(1)
23

0 0 λ
(1)
32 λ

(2)
21 0 λ

(1)
32 λ

(2)
21 λ

(1)
32 µ

(2)
23 α8 µ

(2)
23

0 0 0 0 λ
(1)
32 λ

(2)
32 0 λ

(1)
32 λ

(2)
32 α9


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where

α1 = −(µ
(2)
12 + µ

(1)
12 + µ

(1)
12 µ

(2)
12 )

α2 = −(λ
(2)
21 + µ

(1)
12 λ

(2)
21 + µ

(2)
23 + µ

(1)
12 + µ

(1)
12 µ

(2)
23 )

α3 = −(λ
(1)
21 + λ

(1)
21 µ

(2)
12 + µ

(2)
12 + µ

(1)
23 + µ

(1)
23 µ

(2)
12 )

α4 = −(λ
(2)
32 + µ

(1)
12 λ

(2)
32 + µ

(1)
12 ),

α5 = −(λ
(1)
21 λ

(2)
21 + λ

(1)
21 + λ

(2)
21 + λ

(1)
21 µ

(2)
23 + µ

(1)
23 λ

(2)
21 + µ

(2)
23 + µ

(1)
23 + µ

(1)
23 µ

(2)
23 )

α6 = −(λ
(2)
32 + λ

(1)
32 µ

(2)
12 + µ

(1)
12 )

α7 = −(λ
(1)
21 λ

(2)
32 + λ

(1)
21 + λ

(2)
32 + µ

(1)
23 λ

(2)
32 + µ

(1)
23 )

α8 = −(λ
(1)
32 λ

(2)
21 + λ

(1)
32 + λ

(2)
21 + λ

(1)
32 µ

(2)
23 + µ

(2)
23 )

α9 = −(λ
(1)
32 λ

(2)
32 + λ

(1)
32 + λ

(2)
32 ).

The steady state probability vector

p = [p1 p2 p3 p4 p5 p6 p7 p8 p9]

satisfy the matrix equation (3.2) and normalizing condition (3.3). We get the follow-

ing system of equations,

α1p1 + λ
(2)
21 p2 + λ

(1)
21 p3 + λ

(1)
21 λ

(2)
21 p5 = 0

µ
(2)
12 p1 + α2p2 + λ

(1)
21 µ

(2)
12 p3 + λ

(2)
32 p4 + λ

(1)
21 p5 + λ

(1)
21 λ

(2)
32 p7 = 0
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µ
(1)
12 p1 + µ

(1)
12 λ

(2)
21 p2 + α3p3 + λ

(2)
21 p5 + λ

(2)
32 p6 + λ

(1)
32 λ

(2)
21 p8 = 0

µ
(2)
23 p2 + α4p4 + λ

(1)
21 µ

(2)
23 p5 + λ

(1)
21 p7 = 0

µ
(1)
12 µ

(2)
12 p1 + µ

(1)
12 p2 + µ

(2)
12 p3 + µ

(1)
12 λ

(2)
32 p4 + α5p5 + λ

(1)
32 µ

(2)
12 p6

+λ
(2)
32 p7 + λ

(1)
32 p8 + λ

(1)
32 λ

(2)
32 p9 = 0

µ
(1)
23 p3 + µ

(1)
23 λ

(2)
21 p5 + α6p6 + λ

(2)
21 p8 = 0

µ
(1)
12 µ

(2)
23 p2 + µ

(1)
12 p4 + µ

(2)
23 p5 + α7p7 + λ

(1)
32 µ

(2)
23 p8 + λ

(1)
32 p9 = 0

µ
(1)
23 µ

(2)
12 p3 + µ

(1)
23 p5 + µ

(2)
12 p6 + µ

(1)
23 λ

(2)
32 p7 + α8p8 + λ

(2)
32 p9 = 0

µ
(1)
23 µ

(2)
23 p5 + µ

(1)
23 p7 + µ

(2)
23 p8 + α9p9 = 0

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 = 1.

In order to obtain steady state probabilities nine out of ten above equations should

be solved.

p1 = 4.044× 10−7 p2 = 1.079× 10−5 p3 = 2.962× 10−6 p4 = 0.00001279

p5 = 0.0004866 p6 = 0.0002587 p7 = 0.009821 p8 = 0.008998 p9 = 0.9804.

System performance measures are evaluated for a constant demand w = 80 MW

A∞(w = 80MW ) = 0.9999994

E∞ = 248.77MW

D∞(w = 80MW ) = 0.00036MW
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Parallel MSS without work sharing

Assuming that the generators are connected in parallel and the total generating

capacity of the system is determined as maximum of the generating capacities of the

two generators. For every state ,the system output performance rate is computed

based on MSS parallel (Maximum) structure function for every state.

G(t) = φp(G1(t), G2(t)) = Max(G1(t), G2(t))

Figure 3.2: State transition diagram of the system
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System State State of Gen 1 State of Gen 2 System Output

1 1 1 0MW

2 1 2 50MW

2 1

3 2 2 80MW

1 3

4 2 3 100MW

3 1

3 2

5 3 3 150MW

Transition intensity matrix

A =


β1 µ

(2)
12 µ

(1)
12 (1 + µ

(2)
12 ) 0 0

λ
(2)
21 β2 µ

(1)
12 (1 + λ

(2)
21 ) µ

(2)
23 (1 + µ

(1)
12 ) 0

λ
(1)
21 (1 + λ

(2)
21 ) λ

(1)
21 (1 + µ

(2)
12 ) β3 µ

(2)
23 (1 + λ

(1)
21 ) µ

(1)
23 (2 + µ

(2)
12 + λ

(1)
21 + µ

(2)
23 )

0 λ
(2)
32 (1 + λ

(1)
21 ) λ

(2)
32 (1 + µ

(1)
12 ) β4 µ

(1)
23 (1 + λ

(2)
32 )

0 0 λ
(1)
32 (2 + µ

(2)
12 + λ

(2)
21 + λ

(2)
32 ) λ

(1)
32 (1 + µ

(2)
23 ) β5


where

β1 = −(µ
(2)
12 + µ

(1)
12 (1 + µ

((2))
12 )),

β2 = −(λ
(2)
21 + µ

(1)
12 (1 + λ

(2)
21 ) + µ

(2)
23 (1 + µ

(1)
12 )),

β3 = −(λ
(1)
21 (1 + λ

(2)
21 ) + λ1

21(1 + µ
((2)
12 ) + µ

(2)
23 (1 + λ

(1)
21 ) + µ

(1)
23 (2 + µ

(2)
12 + λ

(1)
21 + µ

(2)
23 ))
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β4 = −(λ
(2)
32 (1 + λ

(1)
21 ) + λ

(2)
32 (1 + µ

(1)
12 ) + µ

(1)
23 (1 + λ

(2)
32 ))

β5 = −(λ
(1)
32 (2 + µ

(2)
12 + λ

(2)
21 + λ

(2)
32 ) + λ

(1)
32 (1 + µ

(2)
23 )),

The steady state probability vector

p = [p1 p2 p3 p4 p5]

satisfy the equations (3.2) and (3.3).

−(µ
(2)
12 + µ

(1)
12 (1 + µ

((2))
12 ))p1 + λ

(2)
21 p2 + λ

(1)
21 (1 + λ

(2)
21 )p3 = 0

µ
(2)
12 p1 − (λ

(2)
21 + µ

(1)
12 (1 + λ

(2)
21 ) + µ

(2)
23 (1 + µ

(1)
12 ))p2 + λ

(1)
21 (1 + µ

(2)
12 )p3 + λ

(2)
32 (1 + λ

(1)
21 )p4 = 0

µ
(1)
12 (1 + µ

(2)
12 )p1 + µ

(1)
12 (1 + λ

(2)
21 )p2

−(λ
(1)
21 (1 + λ

(2)
21 ) + λ

(1)
21 (1 + µ

((2)
12 ) + µ

(2)
23 (1 + λ

(1)
21 ) + µ

(1)
23 (2 + µ

(2)
12 + λ

(1)
21 + µ

(2)
23 ))p3

+λ
(2)
32 (1 + µ

(1)
12 )p4 + λ

(1)
32 (2 + µ

(2)
12 + λ

(2)
21 + λ

(2)
32 )p5 = 0

µ
(2)
23 (1 + µ

(1)
12 ))p2 + µ

(2)
23 (1 + λ

(1)
21 )p3 − (λ

(2)
32 (1 + λ

(1)
21 ) + λ

(2)
32 (1 + µ

(1)
12 ) + µ

(1)
23 (1 + λ

(2)
32 ))p4

+λ
(1)
32 (1 + µ

(2)
23 )p5 = 0

µ
(1)
23 (2 + µ

(2)
12 + λ

(1)
21 + µ

(2)
23 )p3 + µ

(1)
23 (1 + λ

(2)
32 )p4

−(λ
(1)
32 (2 + µ

(2)
12 + λ

(2)
21 + λ

(2)
32 ) + λ

(1)
32 (1 + µ

(2)
23 ))p5 = 0

p1 + p2 + p3 + p4 + p5 = 1.

Steady state probabilities are evaluated by solving five equations in the above six
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system of equations.

p1 = 0.00015 p2 = 0.00029 p3 = 0.00554 p4 = 0.01837 p5 = 0.97566

A∞(w = 80MW ) = 0.99985

E∞ = 148.6437MW

D∞(w = 80MW ) = 0.0207MW

Series MSS

Assuming that the generators are connected in series and the total generating ca-

pacity of the system is determined as minimum of the generating capacities of the two

generators. Based on the series structure function, the system output performance

rate is computed as φS(G1, G2) = Min(G1, G2).

System State State of Gen 1 State of Gen 2 System Output

1 1

1 2

1 1 3 0MW

2 1

3 1

2 2

2 3 2 50MW

3 2 3 80MW

4 3 3 100MW
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Figure 3.3: State transition diagram of the system

Transition intensity matrix

A =


γ1 µ

(1)
12 (1 + µ

(2)
12 + λ

(2)
32 ) + µ

(2)
12 (2 + µ

(1)
23 + λ

(1)
32 ) µ

(1)
12 (1 + µ

(2)
23 ) 0

λ
(1)
21 (1 + λ

(2)
21 + µ

(2)
23 ) + λ

(2)
21 (2 + µ

(1)
23 + λ

(1)
32 ) γ2 µ

(2)
23 (1 + λ

(1)
32 ) µ

(2)
23 (1 + µ

(1)
23 )

λ
(1)
21 (1 + λ

(2)
32 ) λ

(2)
32 (1 + µ

(1)
23 ) γ3 µ

(1)
23

0 λ
(2)
32 (1 + λ

(1)
32 ) λ

(1)
32 γ4



where

γ1 = −(µ
(1)
12 (1 + µ

(2)
12 + λ

(2)
32 ) + µ

(2)
12 (2 + µ

(1)
23 + λ

(1)
32 ) + µ

(1)
12 (1 + µ

(2)
23 )),

γ2 = −(λ
(1)
21 (1 + λ

(2)
21 + µ

(2)
23 ) + λ

(2)
21 (2 + µ

(1)
23 + λ

(1)
32 ) + µ

(2)
23 (1 + λ

(1)
32 ) + µ

(2)
23 (1 + µ

(1)
23 )),

γ3 = −(λ
(1)
21 (1 + λ

(2)
32 ) + λ

(2)
32 (1 + µ

(1)
23 ) + µ

(1)
23 )

γ4 = −(λ
(2)
32 (1 + λ

(1)
32 ) + λ

(1)
32 )
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The steady state probabilities

p = [p1 p2 p3 p4]

satisfy equations (3.2) and (3.3).

−(µ
(1)
12 (1 + µ

(2)
12 + λ

(2)
32 ) + µ

(2)
12 (2 + µ

(1)
23 + λ

(1)
32 ) + µ

(1)
12 (1 + µ

(2)
23 ))p1

+λ
(1)
21 (1 + λ

(2)
21 + µ

(2)
23 ) + λ

(2)
21 (2 + µ

(1)
23 + λ

(1)
32 )p2 + λ

(1)
21 (1 + λ

(2)
32 )p3 = 0

µ
(1)
12 (1 + µ

(2)
12 + λ

(2)
32 ) + µ

(2)
12 (2 + µ

(1)
23 + λ

(2)
32 )p1

−(λ
(1)
21 (1 + λ

(2)
21 + µ

(2)
23 ) + λ

(2)
21 (2 + µ

(1)
23 + λ

(1)
32 + µ

(2)
23 (1 + λ

(1)
32 ) + µ

(2)
23 (1 + µ

(1)
23 ))p2

+λ
(2)
32 (1 + µ

(1)
23 )p3 + λ

(2)
32 (1 + λ

(1)
32 )p4 = 0

µ
(1)
12 (1 + µ

(2)
23 )p1 + µ

(2)
23 (1 + λ

(1)
32 )p2

−(λ
(1)
21 (1 + λ

(2)
32 ) + λ

(2)
32 (1 + µ

(1)
23 ) + µ

(1)
23 )p3 + λ

(1)
32 p4 = 0

µ
(2)
23 (1 + µ

(1)
23 )p2 + µ

(1)
23 p3 − (λ

(2)
32 (1 + λ

(1)
32 ) + λ

(1)
32 )p4 = 0

p1 + p2 + p3 + p4 = 1.

Steady state probabilities are evaluated by solving four equations in the above

five system of equations.

p1 = 0.00037 p2 = 0.00598 p3 = 0.01346 p4 = 0.98019
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A∞(w = 80MW ) = 0.99963

E∞ = 99.3948MW

D∞(w = 80MW ) = 0.209MW

3.4 Conclusion

Comparison between system performance measures of different structure of indepen-

dent generators of the power generating system helps in effective decision making.

The dimension of the system of equations is the critical factor that decides the diffi-

culty of computational complexity in random process method. The method used in

this chapter is extensively applied for the multi state system reliability analysis and

is more universal than other methods.



CHAPTER 4

EVALUATION OF SYSTEM PERFORMANCE

MEASURES OF MULTI STATE DEGRADED

SYSTEM WITH MINIMAL REPAIR

4.1 Introduction

1 A combined method in reliability evaluation of a multi state system based on

stochastic process and universal generating function (UGF) is discussed in this chap-

ter. The traditional random process method are often suggested for evaluation of

performance measures of a multi state system which is discussed in the previous

chapter. But this method is not effective enough for the multi state system in

which the system modeling is complicated when the number of states of the sys-

1Some contents of this chapter are based on Manoharan and Vidhya (2017).

63
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tem is extremely large. Universal generating function technique has been developed

by Ushakov (1986) and it is successfully implemented by Lisnianski et al. (1996),

Levitin et al. (1997) and Levitin and Lisnianski (1998) in reliability analysis and op-

timization of power system. A detailed discussion on many technical application of

universal generating function models was given by Lisnianski and Levitin (2003) and

Levitin (2005). They explained application of the UGF based reliability block dia-

gram technique which minimizes the dimension of system of equations in a stochastic

process method. This technique is being implemented for multi state systems with

statistically independent repairable components. At first system of equations for

each component of the system is solved one by one in this combined approach and

the results are consolidated using UGF technique for reliability evaluation of a multi

state system. Levitin (2007) proposed a modification of the generalized reliability

block diagram method for reliability assessment of multi-state systems with uncov-

ered failures. Combined UGF and random process method described by Lisnianski

and Ding (2009) for reliability evaluation of inter connected repairable multi state

system . A multi state system that consists of multi state components with minor

failures and minor repairs was considered by Qin et al. (2016) and combined method

is considered for obtaining reliability indices of the system.

In this chapter we focuss on problem of evaluation of steady state probabili-

ties and system performance measures of a MSS consists of independent repairable

components with minor repairs. Description of model with assumptions has been

presented in section 4.2. In section 4.3 the combined stochastic process and UGF
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technique approach is applied for multi state degraded system for avoiding dimen-

sion damnation problem of the stochastic process approach. A different approach

of decomposing a system in to two or more sub systems (each sub system consists

of the same type of components) has been proposed. Steady state probabilities and

system performance characteristics are calculated for subsystems using the random

process method and reliability indices of the entire system in steady state situation

are finally evaluated using UGF technique. A more realistic system has been taken

to validate the applicability of this approach. A power station with two sub systems

(each sub system with three generators ) has been illustrated in section 4.4 of this

chapter.

4.2 Multi state degraded system

A multi state system with n subsystems is considered and each subsystem consists of

m components. Any subsystem j of MSS have kj different states with performance

rates are represented by the set g(j) = {g(j)
1 , g

(j)
2 , g

(j)
3 , . . . , g

(j)
kj
} where g

(j)
i is the output

of subsystem j in state i, i ∈ {1, 2, . . . kj} . The output Gj(t) of subsystem j at any

instant t ≥ 0 is a random variable and it takes values from gj : Gj(t) ∈ g(j).

Assumptions

• The system or subsystem may have many levels of degradation which vary from

perfect functioning to a complete failure.
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• The system or subsystem might fail any ’up’ state to its ’down’ states and it

is minimally repaired.

• The components of the system might fail independently and they are operated

on continuous basis.

• The components of the system are repaired independently.

4.3 Analysis of Model

State space of jth subsystem is S = {0, 1, 2, ...kj}. Components of the system have

variable failure rates and variable repair rates . When a component fails a repair

action is initiated to bring the component back to its initial up state. The Markov

model for each subsystem, which is described in chapter 1, will be developed. The

system of differential equations describing the nature of the system can be derived

based on the state transition intensity matrix. The distribution of Markov process

at time t is described as the row vector p(t) = [p1(t), ..., pkj(t)]. We recognized that

the process started in state i at time 0. The distribution p(t) will be calculated from

the Kolmogrove forward equations

Steady state probability vector p = [p1, p2, ..., pkj ] must satisfy the matrix equa-

tion

pA = 0 (4.1)
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and

kj∑
i=1

pi = 1 (4.2)

where A is the state transition matrix of each subsystem. The steady state proba-

bilities p1, p2, ...,pkj are evaluated using k of the k+1 linear algebraic equations from

the matrix equation (4.1) and in addition to this the sum of the steady state proba-

bilities is always equal to one (4.2). This can be computed easily using computation

algorithms based on Mathematica.

In general, a system consists of n subsystems with each subsystem possessing kj

states. Here g(j) = {g(j)
1 , g2

(j), g
(j)
3 , . . . , g

(j)
kj
} is the performance level of subsystem j.

The steady state probability of jth subsystem p(j) = {p(j)
1 , p

(j)
2 , . . . p

(j)
kj
} is determined

by previously described stochastic process approach.

The UGF of the jth subsystem is determined as

uj(z) =

kj∑
i=1

p(i)zg
(i)

The structure function of a MSS consisting of series and parallel subsystem may

be determined by reliability block diagram method ie, iteratively composing the

structure functions of the independent subsystems. In order to find u-function for

the entire MSS the corresponding operators ΩΦ operators should be applied. ΩΦs

and ΩΦp are used for the subsystems connected in series and parallel respectively.
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For MSS with n subsystem connected in parallel the system structure function is in

the form

U(z) = ΩΦp{u1(z), u2(z), . . . un(z)}

which corresponds to output probability distribution g = {g1, g2, ..., gk},

p = {p1, p2, ..., pk}

Reliability indices of the system in steady state situation

We have multi state system probability distribution (PD) in the form of universal

generating function as

U(z) =
k∑
i=1

piz
gi

1. Steady state MSS availability

Steady state MSS availability can be obtained for any arbitrary constant de-

mand w using the following operator δA.

A∞(w) = δA(U(z), w) = δA(
k∑
i=1

piz
gi , w) =

k∑
i=1

piI(F (gi, w) ≥ 0)

where F (gi, w) is an acceptability function.
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2. Expected Steady state MSS performance

Expected steady state output performance (Mean Steady state performance)

can be obtained for the given U(z) using the following operator δE.

E∞ = δE(U(z)) = δE(
k∑
i=1

piz
gi) =

k∑
i=1

pigi

3. Expected steady state MSS performance deficiency

Expected steady state MSS performance deficiency (mean performance defi-

ciency for the given U(z) can be obtained for an arbitrary demand w using the

following operator δD.

D∞(w) = δD(U(z), w) = δD(
k∑
i=1

piz
gi , w) =

k∑
i=1

pi.max(w − gi, 0)

4.4 Numerical Example

In this section the aforesaid method is applied to carry out the reliability analysis

based on the data collected from Kuttiady Hydro Electric Project, governed by

Kerala State Electricity Board (KSEB) under Govt. of Kerala, located at Kakkayam,

Kozhikode district. With an installed capacity 75 MW (3 generators each with

25 MW), the Kuttiady power station was commissioned on 30-09-1972. The next
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generator with installed capacity 50MW was commissioned on 27-01-2001. Last two

generators with installed capacity each 50 MW were commissioned on 30-10-2010

and 10-11-2010. Total capacity of the power station is 225 MW. The generation of

the power station is controlled by state Load Despatch Centre, a functional unit of

KSEB, which is the apex body to ensure integrated operation of the power system

in Kerala. According to the centre the production of generators are categorized into

three - either in full generation mode or half generation mode or zero generation

mode. Three generators with installed capacity 75MW (each with 25MW) have

same features. States and outputs of Generator 1, 2 and 3 (G1, G2 and G3) are

respectively 1 (0 MW), 2 (12.5 MW) and 3 (25 MW) and these constitute Subsystem

1. Other three generators with installed capacity 150 MW (each with 50 MW)

have same features. States and outputs of Generators 4, 5 and 6 (G4, G5 and

G6) are respectively 1 (0MW), 2 (25 MW)and 3 (50 MW) and these generators

constitute subsystem 2. The generators in subsystems are connected in parallel and

two subsystems are also connected in parallel. That is total output of the subsystems

is equal to the sum of the outputs of the generators and total output of the system

is the sum of the outputs of the subsystems.

Here the system is a power station and is made up of two sub systems. Each sub

systems contains same type of generators. The steady state probabilities of each sub

system can be evaluated as following.
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Figure 4.1: Reliability block diagram of the system

Subsystem 1

Sub system 1 consists of three generators (components) G1, G2 and G3. Each

component of the sub system has three states with corresponding outputs 0 MW,

12.5 MW and 25 MW and whole sub system has seven states with corresponding

out puts 0 MW, 12.5 MW, 25 MW, 37.5 MW, 50 MW, 62.5 MW and 75 MW. The

steady state probability vector p = [p
(1)
1 p

(1)
2 p

(1)
3 p

(1)
4 p

(1)
5 p

(1)
6 p

(1)
7 ] is obtained using
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equations (4.1) and (4.2).

a11p
(1)
1 + a21p

(1)
2 + a31p

(1)
3 + a41p

(1)
4 + a51p

(1)
5 + a61p

(1)
6 + a71p

(1)
7 = 0

a12p
(1)
1 + a22p

(1)
2 + a32p

(1)
3 + a42p

(1)
4 + a52p

(1)
5 + a62p

(1)
6 + a72p

(1)
7 = 0

a13p
(1)
1 + a23p

(1)
2 + a33p

(1)
3 + a43p

(1)
4 + a53p

(1)
5 + a63p

(1)
6 + a73p

(1)
7 = 0

a14p
1
1 + a24p

1
2 + a34p

1
3 + a44p

1
4 + a54p

1
5 + a64p

1
6 + a74p

1
7 = 0

a25p
(1)
2 + a35p

(1)
3 + a45p

(1)
4 + a55p

(1)
5 + a65p

(1)
6 + a75p

(1)
7 = 0

a36p
(1)
3 + a46p

(1)
4 + a56p

(1)
5 + a66p

(1)
6 + a76p

(1)
7 = 0

a47p
(1)
4 + a57p

(1)
5 + a67p

(1)
6 + a77p

(1)
7 = 0

p
(1)
1 + p

(1)
2 + p

(1)
3 + p

(1)
4 + p

(1)
5 + p

(1)
6 + p

(1)
7 = 1

where

a21 = λ
(1)
21 + λ

(2)
21 + λ

(3)
21

a31 = λ
(1)
21 λ

(2)
21 + λ

(1)
21 λ

(3)
21 + λ

(2)
21 λ

(3)
21 + λ

(2)
31 + λ

(1)
31 + λ

(3)
31

a41 = λ
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(3)
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31
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(3)
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(1)
21 λ
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31 λ
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(2)
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(2)
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(3)
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(2)
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31
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(1)
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(3)
31



Chapter 4 73

a12 = µ
(1)
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12
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a11 = −(a12 + a13 + a14) a22 = −(a21 + a23 + a24 + a25)

a33 = −(a31 + a32 + a34 + a35 + a36)

a44 = −(a41 + a42 + a43 + a45 + a46 + a47)

a55 = −(a51 + a52 + a53 + a54 + a56 + a57)

a66 = −(a61 + a62 + a63 + a64 + a65 + a67)

a77 = −(a71 + a72 + a73 + a74 + a75 + a76)

Transition rates of the generators G1,G2 and G3 per hour( h−1) are calculated from

the collected data and are given in the table below.

Table 4.1: Transition Rates
Generator µ12 µ23 λ21 λ32 λ31

G1 7.1× 10−2 6.4× 10−2 3× 10−3 6.7× 10−2 3.3× 10−3

G2 7.3× 10−2 6.5× 10−2 3× 10−3 6.8× 10−2 3.3× 10−3

G3 7.4× 10−2 6.1× 10−2 3× 10−3 6.2× 10−2 3.3× 10−3

Using Mathematica, the steady state probabilities are obtained as p
(1)
1 = 0.0056,

p
(1)
2 = 0.0421, p

(1)
3 = 0.093, p

(1)
4 = 0.156,p

(1)
5 = 0.2021,p

(1)
6 = 0.271 and p

(1)
7 = 0.2302 .

Subsystem 2

Sub system 2 consists of three generators (components) G4, G5 and G6. Each

component of the sub system has three states with corresponding outputs 0 MW,

25 MW and 50 MW and whole sub system has seven states with corresponding out

puts 0 MW, 25 MW, 50 MW, 75 MW, 100 MW, 125 MW and 150 MW. The steady

state probability vector p = [p
(2)
1 p

(2)
2 p

(2)
3 p

(2)
4 p

(2)
5 p

(2)
6 p

(2)
7 ] is obtained using equations
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(4.1) and (4.2).

b11p
1
(2) + b21p

(2)
2 + b31p

(2)
3 + b41p

(2)
4 + b51p

(2)
5 + b61p

(2)
6 + b71p

(2)
7 = 0

b12p
(2)
1 + b22p

(2)
2 + b32p

(2)
3 + b42p

(2)
4 + b52p

(2)
5 + b62p

(2)
6 + b72p

(2)
7 = 0

b13p
(2)
1 + b23p

(2)
2 + b33p

(2)
3 + b43p

(2)
4 + b53p

(2)
5 + b63p

(2)
6 + b73p

(2)
7 = 0

b14p
(2)
1 + b24p

(2)
2 + b34p

(2)
3 + b44p

(2)
4 + b54p

(2)
5 + b64p

(2)
6 + b74p

(2)
7 = 0

b25p
(2)
2 + b35p

(2)
3 + b45p

(2)
4 + b55p

(2)
5 + b65p

(2)
6 + b75p

(2)
7 = 0

b36p
1
3 + b46p

1
4 + b56p

1
5 + b66p

1
6 + b76p

1
7 = 0

b47p
1
4 + b57p

1
5 + b67p

1
6 + b77p

1
7 = 0

p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6 + p2
7 = 1

where
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(4)
31 + λ

(6)
31

b41 = λ
(4)
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(4)
31 λ

(5)
31 λ

(6)
21 + λ
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(4)
32 λ

(6)
21 + λ

(4)
31 µ

(5)
12 λ

(6)
21

+µ
(4)
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12 µ

(6)
23 + µ

(4)
12 µ

(5)
23 λ

(6)
21 + µ

(4)
12 λ

(5)
21 µ

(6)
23 + µ

(4)
12 λ

(5)
32 µ

(6)
12

+λ
(4)
32 µ

(5)
12 µ

(6)
12 + µ

(4)
12 µ

(5)
12 λ

(6)
32

b54 = 3λ
(4)
21 + 2λ

(5)
21 + λ

(6)
21 + 3λ

(4)
32 + 3λ

(5)
32 + 3λ

(6)
32 + λ

(4)
32 µ

(5)
23 λ

(6)
21 + λ

(4)
32 λ

(5)
21 µ

(6)
23 + λ

(4)
31 µ

(5)
23

+λ
(4)
31 µ

(6)
23 + λ

(5)
31 µ

(6)
23 + µ

(4)
23 λ

(5)
32 λ

(6)
21 + µ

(4)
23 λ

(5)
31 + λ

(4)
21 λ

(5)
32 µ

(6)
23 + µ

(5)
23 λ

(6)
31 + µ

(4)
23 λ

(5)
21 λ

(6)
32

+λ
(4)
21 µ

(5)
23 λ

(6)
32 + µ

(4)
12 λ

(5)
32 λ

(6)
32 + µ

(4)
12 λ

(6)
31 + µ

(4)
12 λ

(5)
31 + λ

(4)
32 µ

(5)
12 λ

(6)
32 + µ

(4)
12 λ

(6)
32 + λ

(4)
32 µ

(5)
12

+λ
(4)
31 λ

(5)
31 µ

(6)
12 + λ

(5)
32 µ

(6)
12 + λ

(4)
31 µ

(6)
12
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b64 = 2λ
(4)
31 + 2λ

(5)
31 + 2λ

(6)
31 + λ

(4)
32 λ

(5)
32 + λ

(4)
32 λ

(6)
21 + λ

(4)
32 λ

(5)
31 µ

(6)
23 + λ

(5)
32 λ

(6)
21 + λ

(4)
31 λ

(5)
32 µ

(6)
23

+λ
(5)
32 λ

(6)
32 + µ

(4)
23 λ

(5)
32 λ

(6)
31 + µ

(4)
23 λ

(5)
31 λ

(6)
32 + λ

(4)
21 λ

(6)
32 + λ

(4)
21 λ

(5)
32 + λ

(4)
32 λ

(6)
32

+λ
(4)
31 µ

(5)
23 λ

(6)
31 + λ

(4)
32 λ

(5)
21 + λ

(5)
21 λ

(6)
32 + µ

(5)
23 λ

(6)
32

b74 = λ
(4)
32 λ

(5)
32 λ

(6)
32 + λ

(4)
32 λ

(6)
31 + λ

(4)
32 λ

(5)
31 + λ

(5)
32 λ

(6)
31 + λ

(5)
31 λ

(6)
32 + λ

(4)
31 λ

(6)
32 + λ

(4)
31 λ

(5)
32

b25 = µ
(4)
23 µ

(5)
12 µ

(6)
12 + µ

(4)
12 µ

(5)
23 µ

(6)
12 + µ

(4)
12 µ

(5)
12 µ

(6)
23

b35 = µ
(4)
23 µ

(6)
12 + µ

(5)
23 µ

(6)
12 + µ

(4)
23 µ

(5)
23 + µ

(4)
23 µ

(5)
12 + µ

(5)
12 µ

(6)
23 + µ

(4)
23 µ

(6)
23 + µ

(4)
12 µ

(5)
23 + µ

(4)
12 µ

(6)
23

+µ
(5)
23 µ

(6)
23 + µ

(4)
12 µ

(6)
12 + µ

(5)
12 µ

(6)
12 + µ

(4)
12 µ

(5)
12

b45 = 3µ
(4)
23 + 3µ

(5)
23 + 3µ

(6)
23 + 2µ

(4)
12 + 2µ

(5)
12 + 2µ

(6)
12 + λ

(4)
21 µ

(5)
23 µ

(6)
23 + µ

(4)
23 λ

(5)
21 µ

(6)
23

+µ
(4)
23 µ

(5)
23 λ

(6)
21 + µ

(4)
23 λ

(5)
32 µ

(6)
12 + µ

(4)
23 µ

(5)
12 λ

(6)
32 + λ

(4)
32 µ

(5)
23 µ

(6)
12

+λ
(4)
32 µ

(5)
12 µ

(6)
23 + µ

(4)
12 λ

(5)
32 µ

(6)
23 + µ

(4)
12 µ

(5)
23 λ

(6)
32

b65 = λ
(4)
21 + λ

(5)
21 + λ

(6)
21 + 2λ

(4)
32 + 2λ

(5)
32 + 2λ

(6)
32 + λ

(4)
32 λ

(5)
32 µ

(6)
23 + λ

(4)
31 µ

(6)
23 + λ

(5)
31 µ

(6)
23

+µ
(4)
23 λ

(5)
32 λ

(6)
32 + µ

(4)
23 λ

(5)
31 + µ

(4)
23 λ

(6)
31 + λ

(4)
32 µ

(5)
23 λ

(6)
32 + λ

(4)
31 µ

(5)
23 + µ

(5)
23 λ

(6)
31

b75 = λ
(5)
32 λ

(6)
32 + λ

(4)
32 λ

(5)
32 + λ

(4)
32 λ

(6)
32 + λ

(4)
31 + λ

(5)
31 + λ

(6)
31

b36 = µ
(4)
23 µ

(5)
23 µ

(6)
12 + µ

(4)
23 µ

(5)
12 µ

(6)
23 + µ

(4)
12 µ

(5)
23 µ

(6)
23

b46 = µ
(4)
23 µ

(5)
23 + µ

(5)
23 µ

(6)
23 + µ

(4)
23 µ

(6)
23 + µ

(4)
23 µ

(6)
12 + µ

(4)
23 µ

(5)
12 + µ

(5)
23 µ

(6)
12 + µ

(5)
12 µ

(6)
23

+µ
(4)
12 µ

(6)
23 + µ

(4)
12 µ

(5)
23

b56 = 2µ
(4)
23 + 2µ

(5)
23 + 2µ

(6)
23 + µ

(4)
12 + µ

(5)
12 + µ

(6)
12 + λ

(4)
32 µ

(5)
23 µ

(6)
23 + µ

(4)
23 µ

(5)
23 λ

(6)
32

b76 = λ
(4)
32 + λ

(5)
32 + λ

(6)
32 a47 = µ

(4)
23 µ

(5)
23 µ

(6)
23

b57 = µ
(5)
23 µ

(6)
23 + µ

(4)
23 µ

(6)
23 + µ

(4)
23 µ

(5)
23 a67 = µ

(4)
23 + µ

(5)
23 + µ

(6)
23
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b11 = −(b12 + b13 + b14) b22 = −(b21 + b23 + b24 + b25)

b33 = −(b31 + b32 + b34 + b35 + b36)

b44 = −(b41 + b42 + b43 + b45 + b46 + b47)

b55 = −(b51 + b52 + b53 + b54 + b56 + b57)

b66 = −(b61 + b62 + b63 + b64 + b65 + b67)

b77 = −(b71 + b72 + b73 + b74 + b75 + b76)

Transition rates of the generators G4 , G5 and G6 per hour (h−1) are calculated

from the collected data and are given in the table below.

Table 4.2: Transition Rates
Generator µ12 µ23 λ21 λ32 λ31

G4 7.8× 10−2 6.6× 10−2 3.3× 10−3 6.9× 10−2 3× 10−3

G5 7.8× 10−2 6.4× 10−2 3.4× 10−3 6.7× 10−2 3× 10−3

G6 7.9× 10−2 6.4× 10−2 3.3× 10−3 6.7× 10−2 3× 10−3

Using Mathematica,the steady state probabilities are obtained as

p
(2)
1 = 0.0042,p

(2)
2 = 0.0323, p

(2)
3 = 0.0814, p

(2)
4 = 0.15, p

(2)
5 = 0.2081, p

(2)
6 = 0.2842

and p
(2)
7 = 0.2398.

For Subsystem 1 we have

g(1) = {0, 12.5, 25, 37.5, 50, 62.5, 75},

p(1) = {p(1)
1 , p

(1)
2 , p

(1)
3 , p

(1)
4 , p

(1)
5 , p

(1)
6 , p

(1)
7 },

u1(z) = p
(1)
1 z0 + p

(1)
2 z12.5 + p

(1)
3 z25 + p

(1)
4 z37.5 + p

(1)
5 z50 + p

(1)
6 z62.5 + p

(1)
7 z75.
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For Subsystem 2 we have

g(2) = {0, 25, 50, 75, 100, 125, 150},

p(2) = {p(2)
1 , p

(2)
2 , p

(2)
3 , p

(2)
4 , p

(2)
5 , p

(2)
6 , p

(2)
7 },

u2(z) = p
(2)
1 z0 + p

(2)
2 z25 + p

(2)
3 z50 + p

(2)
4 z75 + p

(2)
5 z100 + p

(2)
6 z125 + p

(2)
7 z150.

For System we have

g = {0, 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100, 112.5,

125, 137.5, 150, 162.5, 175, 187.5, 200, 212.5, 225},

p = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19}.

The u-function of the structure of entire system in which two subsystems are con-

nected in parallel (total output of the power station is determined as the outputs of

the two sub systems) is

U(z) = Ωφp[u1(z), u2(z)]

= Ωφp(p
(1)
1 z0 + p

(1)
2 z12.5 + p

(1)
3 z25 + p

(1)
4 z37.5 + p

(1)
5 z50 + p

(1)
6 z62.5 + p

(1)
7 z75

, p
(2)
1 z0 + p

(2)
2 z25 + p

(2)
3 z50 + p

(2)
4 z75 + p

(2)
5 z100 + p

(2)
6 z125 + p

(2)
7 z150)
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= p1z
0 + p2z

12.5 + p3z
25 + p4z

37.5 + p5z
50 + p6z

62.5 + p7z
75 + p8z

87.5

+p9z
100 + p10z

112.5 + p11z
125 + p12z

137.5 + p13z
150 + p14z

162.5

+p15z
175 + p16z

187.5 + p17z
200 + p18z

212.5 + p19z
225

where

p1 = p1
1p

2
1 = 0.00002, p2 = p1

2p
2
1 = 0.00018

p3 = p1
1p

2
2 + p1

3p
2
1 = 0.0006, p4 = p1

2p
2
2 + p1

4p
2
1 = 0.002

p5 = p1
1p

2
3 + p1

3p
2
2 + p1

5p
2
1 = 0.0043, p6 = p1

2p
2
3 + p1

4p
2
2 + p1

6p
2
1 = 0.0096

p7 = p1
1p

2
4 + p1

3p
2
3 + p1

5p
2
2 + p1

7p
2
1 = 0.016, p8 = p1

2p
2
4 + p1

4p
2
3 + p1

6p
2
2 = 0.0278

p9 = p1
1p

2
5 + p1

3p
2
4 + p1

5p
2
3 + p1

7p
2
2 = 0.039

p10 = p1
2p

2
5 + p1

4p
2
4 + p1

6p
2
3 = 0.0542

p11 = p1
1p

2
6 + p1

3p
2
5 + p1

5p
2
4 + p1

7p
2
3 = 0.07

p12 = p1
2p

2
6 + p1

4p
2
5 + p1

6p
2
4 = 0.0851, p13 = p1

1p
2
7 + p1

3p
2
6 + p1

5p
2
5 = 0.1044

p14 = p1
2p

2
7 + p1

4p
2
6 + p1

6p
2
5 = 0.1108, p15 = p1

3p
2
7 + p1

5p
2
6 + p1

7p
2
5 = 0.1276

p16 = p1
4p

2
7 + p1

6p
2
6 = 0.1144, p17 = p1

5p
2
7 + p1

7p
2
6 = 0.1139

p18 = p1
6p

2
7 = 0.065, p19 = p1

7p
2
7 = 0.0552

According to Load Despatch Centre average demand for a particular month of this

power station is w = 108.4 MW.
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Steady state availability of the power station for this demand level is given by

A∞(w = 108.4) = δA(U(z), w = 108.4) = δA(
19∑
i=1

piz
gi , 108.4)

= p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 = 0.9006

Mean Steady state performance

E∞ =
k∑
i=1

pigi = 161.45MW

Expected steady state MSS performance deficiency For w = 108.4 MW

D∞(w = 108.4) =
19∑
i=1

pimax(108.4− gi, 0) = 2.35MW

4.5 Conclusion

Mathematical model based on straight forward stochastic process is not effective

enough for system with several components with huge number of states. A different

approach has been presented in this chapter by decomposing the entire MSS in to

several subsystems. By using the method of combination of markov process and UGF

technique, multi state system modeling and solving of system of differential equations

will need only a little effort. So analysis of system has been greatly simplified and

reliability indices of MSS with minimal repair can be predicted easily.



CHAPTER 5

DYNAMIC RELIABILITY ANALYSIS OF POWER

GENERATING SYSTEM USING LZ TRANSFORM

5.1 Introduction

1 Generally stochastic process method is used for evaluating the multi state system

reliability measures. The disadvantage of this method is that the stochastic pro-

cess models are very difficult for application to real world MSS consisting of many

elements with many states. We discussed the disadvantage of this method earlier

and during the recent years a specific approach named universal generating function

(UGF) procedure has been used for MSS reliability analysis which was explained

in chapter 4. UGF technique is essentially based on moment generating functions

1Some contents of this chapter are based on Vidhya and Manoharan (2018a).
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and it is a mathematical concept for random variables. UGF plays a crucial role in

the steady state analysis of MSS. In previous chapter we successfully applied this

technique to steady state reliability evaluation of a power generating system with

six generators. The disadvantage of this powerful technique is that it can only be

theoretically applied to random variable and so only steady state reliability is eval-

uated through this technique. Lisnianski et al. (2010) proposed a special transform

called z transform connected with stochastic process. Lz transform is similar to this

transform for discrete state continuous time stochastic process and Usakov’s operator

can be enforced in this transform. For a Discrete State Continuous Time (DSCT)

Markov process Lz transform which is an extension of UGF technique is introduced

by Lisnianski (2011). The Lz transform method was applied by him for dynamic

reliability analysis of some MSS. After that Lz method was used by Frenkel et al.

(2012) for computation of availability for complex aging refrigeration system. Lis-

nianski and Ben-Haim (2013) employed this method for short term evaluation of a

power generating system and also several important indices of the system have been

evaluated. An instantaneous availability model for multi state repairable system

with common bus performance sharing has been proposed by Yu et al. (2014). Here

the idea used by the above mentioned authors have been adapted and employed in

the case of a power generating system of n components with multiple states con-

nected in parallel. If we want to learn about the short term behavior of a multi state

system, it can not be evaluated through steady state behaviours. Important short

term reliability performance measures such as availability, loss of load probability
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and expected generating capacity deficiency are basically distinct from important

steady state reliability performance measures. State probabilities pi(t) are out of

universal generating function technique because it is time dependent. Lz transform

technique can be described below by the following steps.

1. In order to get state probabilities of each component of the multi state sys-

tem, traditional differential equations for Markov model of each component are

taken into account. State probabilities are obtained as functions of time. Lz

transform of each component has been determined using these state probabil-

ities.

2. The Lz transform has been obtained for the entire multi state system by using

corresponding Ushakov’s universal generating operators. Multi state system

short term reliability performance measures can be evaluated using the Lz

transform of the entire system.

We have to evaluate short term behavior of the same power generating system in

chapter 4 with six components each having three states. In order to find state prob-

abilities for the system we can use classical Markov model. If we use Markov model

36 = 729 states are contained in that model and corresponding differential equations

can be solved for evaluation of system reliability. For the steady state reliability anal-

ysis of this power system we applied UGF technique in previous chapter. Evidently

total output of the system in the above power generating system model is equal to

the sum of the outputs of the individual components. We determine Lz transform
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for each individual element after solving differential equations for Markov model of

each system element in order to obtain state probabilities as functions of time. By

using Ushakov’s universal generating operator (UGO) we get Lz transform for the

entire system output and also determine the reliability measures of corresponding

power system. Application of this approach on power system reliability analysis is

illustrated by a numerical example. Based on these lines six sections in this paper

are developed and presented.

5.2 Model Description and Methodology

Assumptions

• The power generating system may have many levels of degradation which vary

from perfect functioning to complete failure.

• The system might fail from any ’up’ state to its ’down’ states and it is minimally

repaired.

• The components of the system might fail independently and they are operated

on continuous basis.

• The components of the system can be repaired independently.

• The failure rates and repair rates from one state to other state are varying for

each component of the system.
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Consider a system with n components each having 1, 2, ...kj states where kj is the

best functioning state and 1 is the worst state. The state space of the component of

the system is S = {1, 2, ...kj}.

Consider a power station with n generators, having states k1, k2, ..., kn respec-

tively. Markov model of whole power station will have k1× k2× ...× kn states. This

model can be analysed for finding reliability indices of the power station. If con-

ventional stochastic process approach is applied, it will require huge effort even for

relatively small n and kj, j = 1, 2, ..., n. UGF technique can be applied for avoid-

ing this dimension- damnation problem. Since UGF defined for random variables,

one needs to consider only the steady state behavior of the power system. Here Lz

transform method is applied for finding reliability indices for short term reliability

evaluation of a power station consisting of numerous different generating units. Con-

sider a discrete state continuous time (DSCT) Markov process X(t) ∈ {x1, x2 . . . xk}

which has k possible states i, (i = 1, 2 . . . k) where performance level associated with

state i is xi. This Markov process is completely defined by set of possible states

X = {x1, x2 . . . xk}, transition intensities matrix A = (aij(t)), i, j = 1, 2 . . . k and

probability distribution of initial states. Probability distribution of initial states is

represented by corresponding set

p0 = [p10 = Pr{X(0) = x1}, p20 = Pr{X(0) = x2}, . . . . . . . . . pk0 = Pr{X(0) = xk}].
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In general case jth component of a power generating system (j ∈ {1, 2 . . . n})

have kj different states corresponding to different performances. It is represented by

the set gj = {gj1, gj2, . . . gjkj} where gji is the performance level of component j in

the state i, (i ∈ {1, 2 . . . kj} and j ∈ {1, 2 . . . n}).

According to Lisnianski (2011) Lz transform of a DSCT Markov process X(t) is

a function defined as follows

Lz{X(t)} =
k∑
i=1

pi(t)z
gi

where pi(t) is a probability that the process is in state i at time instant t ≥ 0 for

a given initial states probability distribution p0 and z in general case is a complex

variable.

At first stage a Markov model should be constructed for each multi state element

in MSS. Solving the following system of linear differential equation of jth component

[refer Trivedi (2002)].

d

dt
pj1(t) = a11(t)pj1(t) + a12(t)pj2(t) + . . .+ a1kj(t)pjkj(t)

d

dt
pj2(t) = a21(t)pj1(t) + a22(t)pj2(t) + . . .+ a2kj(t)pjkj(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d

dt
pjkj(t) = akj1(t)pj1(t) + akj2(t)pj2(t) + . . .+ akjkj(t)pjkj(t)
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under the given initial conditions p0 = {p10, p20 . . . pkj0} we get the probabilities

pji(t), i = 1.2...kj, j = 1, 2, ...n The individual Lz transform for each component j

can be obtained by the formula

Lz{Gj(t)} =

kj∑
i=1

pji(t)z
gji , j = 1, 2...n (5.1)

Lz transform of whole MSS can be obtained based on Lz transform for each

component and system structure function f . By applying Ushakov’s operator Ωf

over all Lz transform of individual elements we get the resulting Lz transform,

Lz{G(t)} linked with output performance stochastic process G(t) of the whole MSS.

Employing Ushakov’s Universal Generating Operator to all individual Lz transforms

Lz{Gj(t)} which is obtained by equation (5.1) over all time point t ≥ 0 we can obtain

Lz{G(t)} = Ωf{Lz{G1(t)}, Lz{G2(t)}, . . . Lz{Gn(t)}} (5.2)

Ushakov’s operator is well defined by Lisnianski et al. (2010) for many different

structure functions. By using technique of Lz transform we can drastically minimize

computational burden and Lz{G(t)} is associated with the output performance of

the entire MSS. Multi state system reliability measure can be obtained from the

resulting Lz transform Lz{G(t)}, as summarized in the next section.
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5.3 System Reliability Measures

If Lz-transform

Lz{G(t)} =
K∑
k=1

pk(t)z
gk (5.3)

of the entire MSS’s output stochastic process

G(t) ∈ {g1, g2, . . . gk} is known, then important system reliability measures can be

easily obtained [refer Yu et al. (2014)].

The power station availability for demand level w is defined as system ability to

provide power supply to consumers with summarized load w. That is, the power

station should be in states with generating capacity more or equal w.

Therefore the system availability for the constant demand w at instant t ≥ 0 is

given by

Aw(t) =
∑
gk≥w

pk(t). (5.4)

In order to find MSS instantaneous availability we should summarize all probabilities

in Lz transform from terms where powers of z are greater or equal to demand w.

Loss of load occurs when the system load exceeds the generating capacity available

for use. Loss of Load Probability (LOLP) is a projected value of how much time, in

the long run, the load on a power system is expected to be greater than the capacity
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of the available generating resources. It is defined as the probability that the load

will exceed the available generation.

Loss of Load probability (LOLPw) for a given level w is then obtained as

LOLPw(t) = 1− Aw(t). (5.5)

The expected generating capacity deficiency (ECDw) of the system is given by

ECDw(t) =
K∑
k=1

pk(t)(w − gk)I(w−gk) (5.6)

where

Iw−gK =


1 if w − gk > 0

0 if w − gk ≤ 0

.

Reliability measures for a power system depend strongly on initial states of units.
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5.4 Reliability Evaluation of a power station with

six generating units connected in parallel

In this section we apply the methods presented in the foregoing section to carry out

the availability analysis based on the same data in the previous chapter. Taking up

the terminology used earlier, we have a Markov model at hand and we shall apply

the Lz transform technique to evaluate the dynamic reliability of the power system.

Transition intensities aij drawn up as a matrix, called infinitesimal generator of

the process is given by

A = |aij| =



a11 a12 . . . a1kj

a21 a22 . . . a2kj

...
...

...
...

akj1 akj2 . . . akjkj



=


−µj12 µj12 0

λj21 −(λj21 + µj23) µj23

λj31 λj32 −(λj31 + λj32)

 , j = 1, 2, 3, 4, 5, 6

We have Kolmogorov forward equation in matrix term

d

dt
pj(t) = pj(t) A.



Chapter 5 95

Figure 5.1: State space diagram of the power generating system with six generators
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Table 5.1: Transition rates of the generators per hour(h−1)
Generator µ12 µ23 λ21 λ32 λ31

G1 7.1× 10−2 6.4× 10−2 3× 10−3 6.7× 10−2 3.3× 10−3

G2 7.3× 10−2 6.5× 10−2 3× 10−3 6.8× 10−2 3.3× 10−3

G3 7.4× 10−2 6.1× 10−2 3× 10−3 6.2× 10−2 3.3× 10−3

G4 7.8× 10−2 6.6× 10−2 3.3× 10−3 6.9× 10−2 3× 10−3

G5 7.8× 10−2 6.4× 10−2 3.4× 10−3 6.7× 10−2 3× 10−3

G6 7.9× 10−2 6.4× 10−2 3.3× 10−3 6.7× 10−2 3× 10−3

For elements j = 1, 2, 3;

gj = {gj1, gj2, gj3} = {0, 12.5, 25}

pj(t) = {pj1(t), pj2(t), pj3(t)}

d

dt
pj1(t) = −µj12(t)pj1(t) + λj21pj2(t) + λj31pj3(t)

d

dt
pj2(t) = µj12(t)pj1(t)− (λj21 + µj23)pj2(t) + λj32pj3(t)

d

dt
pj3(t) = −µj23(t)pj2(t)− (λj31 + λj32)pj3(t)

Initial conditions are pj3(t) = 1, pj2(t) = pj1(t) = 0.

For elements j = 4, 5, 6;

gj = {gj1, gj2, gj3} = {0, 25, 50}

pj(t) == {pj1(t), pj2(t), pj3(t)}



Chapter 5 97

d

dt
pj1(t) = −µj12(t)pj1(t) + λj21pj2(t) + λj31pj3(t)

d

dt
pj2(t) = µj12(t)pj1(t)− (λj21 + µj23)pj2(t) + λj32pj3(t)

d

dt
pj3(t) = −µj23(t)pj2(t)− (λj31 + λj32)pj3(t)

Initial conditions are pj3(t) = 1, pj2(t) = pj1(t) = 0.

After solving six separate system of differential equations under the given initial

conditions, we get the state probabilities pj(t) for j = 1, 2, 3, 4, 5, 6. Having the sets

gj, pj(t) we can define Lz transforms for each individual element j as follows.

Lz{G1(t)} = p11(t)zg11 + p12(t)zg12 + p13(t)zg13

= p11(t)z0 + p12(t)z12.5 + p13(t)z25

Lz{G2(t)} = p21(t)zg21 + p22(t)zg22 + p23(t)zg23

= p21(t)z0 + p22(t)z12.5 + p23(t)z25

Lz{G3(t)} = p31(t)zg31 + p32(t)zg32 + P33(t)zg33

= p31(t)z0 + p32(t)z12.5 + p33(t)z25

Lz{G4(t)} = p41(t)zg41 + p42(t)zg42 + p43(t)zg43

= p41(t)z0 + p42(t)z25 + p43(t)z50

Lz{G5(t)} = p51(t)zg51 + p52(t)zg52 + p53(t)zg53

= p51(t)z0 + p52(t)z25 + p53(t)z50
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Lz{G6(t)} = p61(t)zg61 + p62(t)zg62 + p63(t)zg63

= p61(t)z0 + p62(t)z25 + p63(t)z50

Using composition operator Ωf par for MSS elements 1,2,3,4,5 and 6 connected in

parallel we get the Lz transform

Lz{G(t)} = Ωfpar{p11(t)z0 + p12(t)z12.5 + p13(t)z25,

p21(t)z0 + p22(t)z12.5 + p23(t)z25,

p31(t)z0 + p32(t)z12.5 + p33(t)z25,

p41(t)z0 + p42(t)z25 + p43(t)z50,

p61(t)z0 + p62(t)z25 + p63(t)z50}

= a1b1z
0 + a2b1z

12.5 + [a1b2 + a3b1]z25 + [a2b2 + a4b1]z37.5 + [a1b3 + a3b2 + a5b1]z50

+[a2b3 + a4b2 + a6b1]z62.5 + [a1b4 + a3b3 + a5b2 + a7b1]z75 + [a2b4 + a4b3 + a6b2]z87.5

+[a1b5 + a3b4 + a5b3 + a7b2]z100 + [a2b5 + a4b4 + a6b3]z112.5

+[a1b6 + a3b5 + a5b4 + a7b3]z125 + [a2b6 + a4b5 + a6b4]z137.5

+[a1b7 + a3b6 + a5b5 + a7b4]z150 + [a2b7 + a4b6 + a6b5]z162.5

+[a3b7 + a5b6 + a7b5]z175 + [a4b7 + a6b6]z187.5

+[a5b7 + a7b6]z200 + a6b7z
212.5 + a7b7z

225
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where

a1 = p11(t)p21(t)p31(t)

a2 = p11(t)p21(t)p32(t) + p11(t)p22(t)p31(t) + p12(t)p21(t)p31(t)

a3 = p11(t)p21(t)p33(t) + p11(t)p22(t)p32(t) + p11(t)p23(t)p31(t) + p12(t)p21(t)p32(t)

+p12(t)p22(t)p31(t) + p13(t)p21(t)p31(t)

a4 = p11(t)p22(t)p33(t) + p11(t)p23(t)p32(t) + p12(t)p21(t)p33(t) + p12(t)p22(t)p32(t)

+p12(t)p23(t)p31(t) + p13(t)p21(t)p32(t) + p13(t)p22(t)p31(t)

a5 = p11(t)p23(t)p33(t) + p12(t)p22(t)p33(t) + p12(t)p23(t)p32(t) + p13(t)p21(t)p33(t)

+p13(t)p22(t)p32(t) + p13(t)p23(t)p31(t)

a6 = p12(t)p23(t)p33(t) + p13(t)p22(t)p33(t) + p13(t)p23(t)p32(t)a7 = p13(t)p23(t)p33(t)

b1 = p41(t)p51(t)p61(t)

b2 = p41(t)p51(t)p62(t) + p41(t)p52(t)p61(t) + p42(t)p51(t)p61(t)

b3 = p41(t)p51(t)p63(t) + p41(t)p52(t)p62(t) + p41(t)p53(t)p61(t) + p42(t)p51(t)p62(t)

+p42(t)p52(t)p61(t) + p43(t)p51(t)p61(t)

b4 = p41(t)p52(t)p63(t) + p41(t)p53(t)p62(t) + p42(t)p51(t)p63(t) + p42(t)p52(t)p62(t)

+p42(t)p53(t)p61(t) + p43(t)p51(t)p62(t) + P43(t)p52(t)p61(t)

b5 = p41(t)p53(t)p63(t) + p42(t)p52(t)p63(t) + p42(t)p53(t)p62(t) + p43(t)p51(t)p63(t)

+p43(t)p52(t)p62(t) + p43(t)p53(t)p61(t)

b6 = p42(t)p53(t)p63(t) + p43(t)p52(t)p63(t) + p43(t)p53(t)p62(t)

b7 = p43(t)p53(t)p63(t)
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Thus

Lz{G(t)} =
19∑
k=1

pk(t)z
gk (5.7)

The state probabilities of the components of this power generating system can be

calculated by solving system of differential equations of each component under given

initial conditions. We can apply eigen value-eigen vector method for finding solution

of differential equation [refer Braun (1993)] and also with the help of Matlab software

we can evaluate state probabilities.

For Element 1:

p11(t) = 0.0405− 0.4445 exp{−0.0743t}+ 0.404 exp{−0.134t}

p12(t) = 0.9594− 0.057 exp{−0.0743t} − 0.9024 exp{−0.134t}

p13(t) = 0.0000005 + 0.5015753 exp{−0.0743t}+ 0.4984242 exp{−0.134t}

For Element 2:

p21(t) = 0.04− 0.43 exp{−0.0763t}+ 0.39 exp{−0.136t}

p22(t) = 0.96− 0.069 exp{−0.0763t} − 0.891 exp{−0.136t}

p23(t) = 0.000002 + 0.501940 exp{−0.0763t}+ 0.498058 exp{−0.136t}
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For Element 3:

p31(t) = 0.0418− 0.3495 exp{−0.0771t}+ 0.3077 exp{−0.1261t}

p32(t) = 0.956− 0.163 exp{−0.0771t}+ 0.793 exp{−0.1261t}

p33(t) = 0.0018 + 0.5131 exp{−0.0771t}+ 0.4851 exp{−0.1261t}

For Element 4:

p41(t) = 0.04− 0.39 exp{−0.081t}+ 0.35 exp{−0.1383t}

p42(t) = 0.957− 0.116 exp{−0.081t} − 0.841 exp{−0.1383t}

p43(t) = 0.003 + 0.504 exp{−0.081t}+ 0.493 exp{−0.1383t}

For Element 5:

p51(t) = 0.039− 0.364 exp{−0.0809t}+ 0.325 exp{−0.1345t}

p52(t) = 0.955− 0.138 exp{−0.0809t} − 0.817 exp{−0.1345t}

p53(t) = 0.0052 + 0.5034 exp{−0.0809t}+ 0.4914 exp{−0.1345t}
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For Element 6:

P61(t) = 0.038− 0.352 exp{−0.0819t}+ 0.314 exp{−0.1344t}

P62(t) = 0.957− 0.154 exp{−0.0819t} − 0.803 exp{−0.1344t}

P63(t) = 0.0041 + 0.5058 exp{−0.0819t}+ 0.4901 exp{−0.1344t}

Based on the resulting Lz transform Lz{G(t)} of the entire MSS (5.7), we can obtain

instantaneous availability for the given demand w.

According to Load Despatch Centre average demand for a particular month of

this power station is w = 108.4 MW. Reliability performance measures are obtained

by equation(5.4), (5.5) and (5.6).

The power station availability for this demand level is given by

A108.4(t) =
∑

gk≥108.4

pk(t)

= [a2b5 + a4b4 + a6b3] + [a1b6 + a3b5 + a5b4 + a7b3] + [a2b6 + a4b5 + a6b4]

+[a1b7 + a3b6 + a5b5 + a7b4] + [a2b7 + a4b6 + a6b5] + [a3b7 + a5b6 + a7b5]

+[a4b7 + a6b6] + [a5b7 + a7b6] + a6b7 + a7b7.

The LOLP for the demand w = 108.4 is

LOLP108.4(t) = 1− A108.4(t).
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The Expected generating capacity deficiency for the demand w = 108.4 is

ECDw=108.4(t)

= a1b1 × 108.4 + a2b1 × 95.9 + [a1b2 + a3b1]× 83.4 + [a2b2 + a4b1]× 70.9

+[a1b3 + a3b2 + a5b1]× 58.4 + [a2b3 + a4b2 + a6b1]× 45.9

+[a1b4 + a3b3 + a5b2 + a7b1]× 33.4 + [a2b4 + a4b3 + a6b2]× 20.9

+[a1b5 + a3b4 + a5b3 + a7b2]× 8.4.

The MSS instantaneous availability A(t) of the power system is calculated for dif-

ferent hours and the computed values are presented in the figure 2. The figure

Figure 5.2: Graph of power system Availability (for the demand w=108.4 MW) as
a function of time

shows that instantaneous availability of the power system is one up to few hours and

decreases after few hours and later eventually attains a stable value.
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Figure 5.3: Graph of loss of load probability (for the demand w=108.4 MW) as a
function of time

Figure 5.4: Graph of the expected generating capacity deficiency(for the demand
w=108.4 MW) as a function of time

5.5 Conclusion

In this chapter Lz transform for discrete state continuous time Markov process is

presented for a power generating system of multiple components with multiple states

connected in parallel. The methods are employed as a case study for a power sta-

tion with six generating units connected in parallel. Lz transform is obtained using
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simple algebra and it is proved to be a very effective method. The idea in this

chapter supports the engineering decision making by providing required availabil-

ity measure for such complex multi-state system with multiple components. Lz-

transform remarkably simplifies the reliability evaluation of MSS when it compared

with straightforward Markov method.



CHAPTER 6

RELIABILITY ANALYSIS OF PERIODICALLY

MAINTAINED SYSTEMS USING SEMI-MARKOV

PROCESS BASED UGF TECHNIQUE

6.1 Introduction

The degeneration of a multi state system or component is due to failure or deterio-

ration or transition from one state to other. If we are not aware of the failure of a

component, the repair of the component will not take place and this leads to break

down of the component or the system. As such the scheduled or periodic inspec-

tion takes place and there by lead to periodically maintained system which will be

discussed in this chapter. The periodic inspection and preventive maintenance im-

106
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prove the component and system performance. The main intention of a preventive

maintenance technique is to prevent the failure of a component before it actually

happens. A degenerated repairable MSS with an imperfect preventive maintenance

(PM) policy was examined and a model for assessing the availability, the produc-

tion rate and the reliability function of the multi-state degraded system subjected to

minimal repairs and imperfect preventive maintenance was developed by Issac et al.

(2010)

In various real life problems, the life time and repair time distribution need not be

exponentially distributed. The main disadvantage of Markov process is that it does

not allow any other distribution for sojourn time, other than exponential. A semi-

Markov process, that allows any distribution for transition between states, is used

in reliability analysis for many real life problems. Here steady state probabilities of

different states of a component is evaluated using semi-Markov process. Semi Markov

process are excellently applicable for reliability analysis of multi state system and it

is very effective in many engineering problems. When we apply Markov process in

reliability analysis, we have a closure property that is product of independent Markov

process is also a Markov process. But this closure property is not valid for semi

Markov process. This is the main difficulty in using semi Markov process in reliability

analysis of MSS. But the semi Markov process gives a better model for reliability

analysis of multi state system than the Markov process. In real life problems of multi

state system inspection is generally performed at deterministic time interval and

inspection and repair times are generally distributed. For the foundations of semi-
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Markov process we can refer Cinlar (1975). A detailed study of semi-Markov process

and it’s application in reliability theory were discussed by Limnios and Oprisan

(2001). Steady state reliability analysis using continuous time semi-Markov process

(CTSMP) was presented by Lisnianski and Levitin (2003). Application of semi-

Markov process models in reliability analysis for a repairable system and its reliability

characteristics were demonstrated by Grabski (2007). The process of degradation

with the corrective action of minimal repair, major repair and restart technique

using a semi- Markov process was modeled by Resham and Dharmaraja (2012). The

main dependability measures of periodically maintained system which is modeled as

CTSMP, were studied by Sonia et al. (2014).

Several components of different levels of degradation of a system is rather involved

in the application of any random process method and in particular semi-Markov

technique. In this chapter we propose a combined semi-Markov process and UGF

technique for the reliability analysis of a complex multi state system with periodic

inspection and maintenance. We build discrete state continuous time semi-Markov

process for each MSS element. We evaluate steady state probabilities of different

states of the components. Universal generating function has been obtained for each

component and by using composition operators in UGF technique, universal gen-

erating function of the whole MSS has been evaluated. Combined Markov process

and UGF technique was discussed and combined semi-Markov process and UGF

technique were also mentioned by Lisnianski and Levitin (2003). A combination of

Markov process and UGF technique was applied for reliability analysis of a MSS by
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decomposing whole system into several sub systems in chapter 4. In this chapter as-

sumptions, descriptions and analysis of model are presented in section 6.2. In section

6.3 analytical expressions for steady state reliability indices have been derived. We

consider the same power station which is analysed in previous chapters and here a

periodic inspection within a period of thirty days is introduced for that power gener-

ating system. The power station with six independent generators as components has

been discussed as an illustrative example in section 6.4. A periodic inspection and

thereafter maintenance has been performed for each component. Steady state reli-

ability indices using combined semi-Markov process and UGF technique have been

evaluated for this MSS and its performance is assessed.

6.2 Model Description and Analysis

Assumptions

• The system consists of several independent components and components may

have many levels of degradation corresponding to discrete performance rate

which vary from perfect working to complete failure.

• The system might fail from any state (ie, from the perfect functioning state or

any degraded state) and it is minimally repaired.

• All transition times are arbitrarily distributed. Here in particular case, the

transition times are exponentially distributed.
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• The components of the system are periodically inspected. That is the compo-

nents are tested every T time units.

A multi state system (MSS) consists of ’n’ independent components and the com-

ponents of the system are initially in its perfect functioning state. As time progress,

it can either go to the first degraded state because of degradation or transition or it

can go to a failed state. A minimal repair has been performed in a failed state. When

a system reaches the first degraded state it can either go to the second degraded state

because of degradation or can go to a failed state. The same procedure will continue

in all degraded state. Periodic inspection during specific interval is conducted in any

state and when a failure is detected in periodic inspection, maintenance has been

performed.

Components : j = 1, 2, ..., n

States: i = 1, 2, ..., kj

State 1 : Perfect functioning

State 2i− 1 : Degraded state; i = 2, 3, ..., d

State 2i : Failed from an operational state; i = 1, 2..., d

αjik : Degradation or transition rate from one state to other for jth component;

i = 1, 3, ..., (2d− 3), (2d− 1), k = 1, 2, ..., (2d− 1)

λjik: Failure rate of jth component; i = 1, 3, ...(2d− 3), k = 2, 4, ..., 2d

µjik : Repair rate of jth component; i = 2, 4, ...2d, k = 1, 3, ..., (2d− 3)
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βji : Probability of detecting a failure when the component is in state i; i =

1, 3, ...(2d− 3)

Figure 6.1: State transition diagram of a component of a system

At any time instant t ≥ 0 the component of the system is in one of the pos-

sible states with performance rate g1, g2 . . . gkj . The component characteristic is

defined by the discrete state continuous time stochastic performance process G(t) ∈

{g1, g2 . . . gkj}

Let {X(t)}t≥0 be the semi-Markov process that gives the progress in time of the

above jth component with state space S = {1, 2 . . . kj}. The kernel matrix |Q(t)| and

the initial state completely gives the stochastic behaviour of semi-Markov process.

Each element Qik(t) of the kernel matrix decides the probability that transition from
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state i to state k happens during time period [0,t].

One step transition probabilities for embedded Markov chain can be evaluated

with the help of kernel matrix

Πik = lim
t→∞

Qik(t).

Cumulative distribution function (cdf) of conditional sojourn time in the state i can

be calculated as

F ∗ik(t) =
Qik(t)

Πik

.

Cdf of unconditional sojourn time Ti in any state i based on the kernel matrix can

be defined as

Fi(t) =

kj∑
k=1

Qik(t).

The mean unconditional sojourn time in the state i can be evaluated as

Ti =

kj∑
k=1

ΠikTik
∗
.

where Tik
∗

mean conditional sojourn time in the state i given the component or the

system transits from state i to state k.
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pi, i = 1, 2...kj are steady state probabilities of embedded Markov chain. These

probabilities are obtained from the solution of the following system of equations.

pk =

kj∑
i=1

piΠik

kj∑
i=1

pi = 1

For computing steady state probabilities of each component of the system using the

formula.

θi =
piTi∑kj
i=1 piTi

In this model the system consists of n components with each component possessing

kj states. gj = {gj1, g
j
2...g

j
kj
} and θj = {θj1, θ

j
2...θ

j
kj
} are performance level and steady

state probabilities of jth component which can be obtained by semi-Markov approach.

The Universal generating function of jth component is defined as

uj(z) =

kj∑
i=1

θji z
gji , j = 1, 2...n (6.1)

To find u-function of the entire system the corresponding composition operators

ΩΦ(s) and ΩΦ(p) or their combinations can be applied over the u-function of the

individual components. For MSS with n components connected in parallel the u
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function of entire system is in the form.

U(z) = ΩΦ(p){u1(z), u2(z), ..., un(z)} (6.2)

6.3 System Reliability Indices in Steady State Sit-

uation

The resulting u function of whole system is given by (6.2). We get this function as

U(z) =
t∑

k=1

θkz
gk

Based on this function, reliability indices in steady state situation can be obtained.

1. Steady state MSS availability

Steady state MSS availability can be obtained for any arbitrary constant de-

mand w

A∞(w) = δA(U(z), w) =
t∑

k=1

(θkz
gk , w) (6.3)

2. Mean Steady state MSS performance

Mean Steady state MSS performance is

E∞ = δE(U(z)) = δE(
t∑

k=1

θkz
gk) =

t∑
k=1

θkgk (6.4)



Chapter 6 115

3. Expected Steady state MSS performance deficiency

Expected steady state MSS performance deficiency can be obtained for any

constant demand w

D∞(w) = δD(U(z), w) = δD(
t∑

k=1

θkz
gk , w) =

t∑
k=1

θk.max(w − gk, 0) (6.5)

6.4 Numerical Illustration

Consider the same power station with six independent generators (3 generators each

with 25 MW and 3 generators each with 50 MW ) which is discussed as the numerical

example in previous chapters. Total capacity of the power station is 225 MW and

repair time, failure time and transition time are exponentially distributed for each

generator. Each generator is considered as a component of the system and each

generator is periodically inspected and maintained. So the transition is affected by

the specific inspection interval of 30 days. Thus the Markovian property of the system

is not valid, even if the repair and the failure time distributions are exponential. State

space of each component is S = {1, 2, 3, 4, 5}. βj1 be the probability of detecting a

failure when the component is in state 1 and βj2 be the probability of detecting

a failure when the component is in state 3 through periodic inspection for j =

1, 2, 3, 4, 5, 6.
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For generators 1,2 and 3 (G1, G2, and G3)

States 1 2 3 4 5

Performance Rate 25 0 12.5 0 0

For generators 4, 5 and 6 (G4, G5 and G6)

States 1 2 3 4 5

Performance Rate 50 0 25 0 0

Figure 6.2: State space diagram of the component of power generating system
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Semi-Markov kernel of the transition probabilities of states is

Q(t) =



0 Q12(t) Q13(t) 0 0

Q21(t) 0 0 0 0

Q31(t) 0 0 Q34(t) Q35(t)

0 0 Q43(t) 0 0

0 0 Q53(t) 0 0



where

Q12(t) =
βj1λ

j
12

αj13 + λ12j
[1− exp(−(αj13 + λj12)t)]

Q13(t) =
αj13

αj13 + λj12

[1− exp(−(αj13 + λj12)t)]

Q21(t) = [1− exp(−µj21t)]Q31(t) =
αj31

αj31 + λk34 + αj35

[1− exp(−(αj31 + λj34 + αj35)t)]

Q34(t) =
βj2λ

j
34

αj31 + λj34 + αj35

[1− exp(−(αj31 + λj34 + αj35)t)]

Q35(t) =
αj35

αj31 + λj34 + αj35

[1− exp(−(αj13 + λj34 + αj35)t)]

Q43(t) = [1− exp(−µj43t)]

Q53(t) = [1− exp(−αj53t)].
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Table 6.1: Transition rates of the generators per hour(h−1) are calculated from the
collected data and are given the table below

Generator α13 α31 α35 α53 λ12 µ21 λ34 µ43

G1 6.7× 10−2 6.4× 10−2 1.4× 10−3 3.3× 10−2 3.3× 10−3 3.3× 10−2 1.6× 10−3 3.8× 10−2

G2 6.8× 10−2 6.5× 10−2 1.4× 10−3 3.5× 10−2 3.3× 10−3 3.3× 10−2 1.6× 10−3 3.8× 10−2

G3 6.2× 10−2 6.1× 10−2 1.4× 10−3 3.6× 10−2 3.3× 10−3 3.3× 10−2 1.6× 10−3 3.8× 10−2

G4 6.9× 10−2 6.6× 10−2 1.3× 10−3 3.8× 10−2 3× 10−3 3.8× 10−2 2× 10−3 4× 10−2

G5 6.7× 10−2 6.4× 10−2 1.3× 10−3 3.8× 10−2 3× 10−3 3.8× 10−2 2.1× 10−3 4× 10−2

G6 6.7× 10−2 6.4× 10−2 1.3× 10−3 3.9× 10−2 3× 10−3 3.8× 10−2 2× 10−3 4× 10−2

U function of the individual elements are determined by the set {gj, θj}.

For elements 1,2 and 3 (G1, G2 and G3)

gj = {25, 0, 12.5, 0, 0, 0}

θj = {θj1, θ
j
2, θ

j
3, θ

j
4, θ

j
5}

uj(z) =

kj∑
i=1

θji z
gji j = 1, 2, 3

u1(z) = 0.3521z25 + 0.0101z0 + 0.6225z12.5 + 4.3× 10−3z0 + 0.011z0

u2(z) = 0.3524z25 + 0.0101z0 + 0.6228z12.5 + 4.7× 10−3z0 + 0.01z0

u3(z) = 0.359z25 + 0.01z0 + 0.6156z12.5 + 4.5× 10−3z0 + 0.0109z0



Chapter 6 119

For elements 4,5 and 6 (G4, G5 and G6)

gj = {50, 0, 25, 0, 0, 0}

θj = {θj1, θ
j
2, θ

j
3, θ

j
4, θ

j
5}

uj(z) =

kj∑
i=1

θji z
gji j = 4, 5, 6

u4(z) = 0.3543z50 + 0.008z0 + 0.6236z25 + 0.009z0 + 0.009z0

u5(z) = 0.3542z50 + 0.008z0 + 0.6234z25 + 0.0054z0 + 0.009z0

u6(z) = 0.3497z50 + 0.0078z0 + 0.6307z25 + 0.0031z0 + 0.0087z0

U function of the entire system in which six independent components are connected

in parallel is

u(z) = ΩΦ(p){u1(z), u2(z), u3(z), u4(z), u5(z), u6(z)}

=
19∑
i=1

θjz
gi = 2× 10−10z0 + 1× 10−8z12.5

+3× 10−7z25 + 1× 10−6z37.5 + 3× 10−5z50 + 0.0003z62.5 + 0.0011z75

+0.0075z87.5 + 0.0189z100 + 0.0808z112.5 + 0.1282z125 + 0.1791z137.5

+0.1961z150 + 0.1624z162.5 + 0.118z175 + 0.0666z187.5 + 0.0288z200

+0.0103z212.5 + 0.002z225
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We mentioned in chapter 4 that according to Load Despatch Center average demand

for a particular month of this power station w = 108.4 MW. Reliability indices are

obtained by the equations (6.3), (6.4) and (6.5).

Steady State MSS Availability for the constant w = 108.4 MW

A∞(w = 108.4) = θ10 + θ11 + θ12 + θ13 + θ14 + θ15 + θ16 + θ17 + θ18 + θ19 = 0.9816

Mean steady state performance

E∞ =
19∑
k=1

θkgk = 150MW

Steady state performance deficiency for w = 108.4 MW

D∞(w = 108.4) =
19∑
k=1

θkmax(108.4− gk, 0) = θ1 × 108.4 + θ2 × 95.9

+θ3 × 83.4 + θ4 × 70.9 + θ5 × 58.4 + θ6 × 45.9

+θ7 × 33.4 + θ8 × 20.9 + θ9 × 8.4 = 0.3679MW

6.5 Conclusion

This chapter explores steady state reliability analysis of MSS with several indepen-

dent components. A periodic inspection during a specific interval has been done

for each component and maintenance has been performed after detecting a failure.
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Here a combination of semi-Markov process and UGF technique has been employed

and the methodology applied for analysis of real set of data of a power station with

six independent generators. The component has been modeled as a continuous time

discrete state semi-Markov process. For avoiding dimension damnation problem,

method of combination of semi-Markov process and UGF technique has been used

for evaluating steady state reliability indices.



CHAPTER 7

AVAILABILITY ANALYSIS OF A MULTI STATE

SYSTEM WITH COMMON CAUSE FAILURES

USING MARKOV REGENERATIVE PROCESS

7.1 Introduction

1 Failure of multiple components of a system due to a common cause is called Com-

mon Cause Failures (CCF). CCF is one of the most important issues in evaluation of

system reliability. When compared to random failures, which affect individual com-

ponents, the frequency of CCF has relatively low expectancy. According to Rausand

and Hoyland (2004) common cause failures is a dependent failure in which two or

more component fault states exist simultaneously or within a short interval of time

1Some contents of this chapter are based on Vidhya and Manoharan (2018b).
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and are direct result of a shared cause. The CCFs are single faults that causes failure

of multiple components. The design error deficiencies, complexity of equipment, hu-

man error in installation, maintenance and operation, extreme operating conditions

such as high temperature, humidity and external shocks generated by earth quakes,

floods etc. are some of the reasons involved in the happening of CCFs. Beta(β) fac-

tor model which is introduced by Fleming (1974), is the most commonly used model

for common cause failures of the multi state system. The β factor model describes

the correlation between the independent random component failures and common

cause failures in a redundant multi state system. It is an approximation method

applied for quantitative assessment of CCFs. In this method the likelihood of the

CCF is estimated in relation to the random failure rate of the component of the

system. A β factor is determined such that β% of the failure rate is assigned to the

CCF and (1− β)% is assigned to the random failure rate of the component. In the

β factor model the failure rate of component [λ] is divided in to an independent part

[(1− β)λ] and a dependent part [βλ] due to common cause. This factor is described

as a fraction of the component failures which is due to common cause.

A set of powerful techniques that proved for the solution of non-Markovian mod-

els is based on the ideas grouped under the Markov renewal theory. The application

of Markov renewal theory for finding reliability and availability of stochastic systems

is discussed By Kulkarni (1995). We know that Semi-Markov process is the most

widely used and adopted non Markovian model for evaluating reliability and avail-

ability of multi state system. Semi Markov modeling based UGF tecnique has been
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discussed for the reliability analysis of multi state system in chapter 6. The station-

ary character of Markov regeneratve process (MRGP) has been studied by Pyke and

Schaufele (1966). Most of the theoretical foundations of Markov regeneratve process

(MRGP) were discussed by Cinlar (1975) in which it is named as semi regenerative

process. The transient and steady state analysis of stochastic petri nets was dis-

cussed analytically and numerically by Choi et al. (1994). MRGPs have been used

to evaluating reliability and availability of the system. We discussed in chapter 1

that some examples concerning reliability and availability of power plants and fault

tree systems could be found in Wereley and Walker (1988), Fricks et al. (1997),

Perman et al.(1997), Fricks et al. (2002) . Many other examples and applications of

MRGP in the dependability context has been solved using SHARPE software [refer

Sahner et al. (1995)] by Xie et al.(2003). Semi Markov, Markov regenerative models

and Phase type expansion with a number of solved examples were discussed Trivedi

and Bobbio (2017).

In this chapter we present a Markov regenerative model for a multi state system

with common cause failures. In forthcoming section, we describe the application of

Markov regenerative process technique in reliability analysis in transient state and

steady state of a multi state system. A parallel system with single repair facility

with CCF is analysed using this technique in section 7.3. Steady state probability

vector and steady state availability is evaluated using this technique for a numerical

example in section 7.4 which is followed by a brief conclusion.
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7.2 Markov Regenerative Process

The definition of regenerative process {Z(t), t ≥ 0} with state space Ω is briefly

described in chapter 1. In a Markov Regenerative Process (MRGP) the stochastic

evolution between two successive regeneration points depends only on the state of

regeneration and not on the evolution before regeneration.

According to Choi et al. (1994) a stochastic process {Z(t), t ≥ 0} on Ω is called

an MRGP if there exist a Markov renewal sequence {(Yn, Sn), n ≥ 0} of random

variable such that all conditional finite dimensional distribution of {Z(Sn+ t), t ≥ 0}

given {Z(u), 0 ≤ u ≤ Sn, Yn = i} i ∈ Ω are the same as those of {Z(t), t ≥ 0} given

Y0 = i.

From the above definition we obtain embedded Markov chain in {Z(t), t ≥ 0}. Global

kernel K(t) gives a description of the evolution of process from the Markovian regen-

erative moment without describing the happenings between regenerative moments.

K(t) = Kij(t) = P{Y1 = j, S1 ≤ t/Y0 = i} ∀i, j ∈ Ω

An MRGP can change states between two consecutive Markov renewal moments and

we have to take these changes through the local kernel matrix E(t). E(t) explains

the state probabilities of the process during the interval between successive Markov

regenerative moments.

E(t) = Eij(t) = Pr{Z(t) = j, S1 > t/Y0 = i} ∀i, j ∈ Ω
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Conditional transition probabilities are given by

Vij(t) = Pr{Z(t) = j/Z(0) = Y0 = i} ∀i, j ∈ Ω

In many real life problems involving Markov Renewal Process our primary aim is

to compute Vij(t) effectively and hence it leads to several performance measures of

interest like Availability, Reliability based on Vij(t)

The conditional transition probabilities Vij(t) at any instant t can be computed

as [refer Choi et al. (1994)].

Vij(t) = Pr{Z(t) = j, S1 > t/Z(0) = i}+
∑
k∈Ω

∫ t

0

dK(u)Vkj(t− u) ∀i, j ∈ Ω

A Markov renewal equation is defined by this set of integral equations. Equation can

be expressed in Matrix form as

V (t) = E(t) +K(t).V (t)

Laplace-Steiltjes transform K(s) and E(s) of K(t) and E(t) respectively can

obtained as

K(s) =

∫ ∞
0

e−stdK(t)

E(s) =

∫ ∞
0

e−stdE(t)
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Then

V (s) = E(s) +K(s)V (s) = [I −K(s)]−1E(s) (7.1)

V (t) can be obtained by taking inverse laplace transform of V (s) which is given

by equation (7.1)

P (t)1×Ω = P (0)1×Ω × V (t)Ω×Ω

For the purpose of the steady state analysis of an MRGP the following two

matrices φ = [φij] and α = [αij]should be calculated. φ = [φij] is the one step

transition probability matrix of the Embedded Markov Chain. αij is the Mean time

the process from state i spends in state j.

The two matrices are defined as

φ = lim
t→∞

K(t) = lim
s→0

K(s) (7.2)

α =

∫ ∞
t=0

E(t) dt = lim
s→0

1

s
E(s) (7.3)

To obtain the steady-state probabilities of the MRGP, at first we have to solve the

steady-state probabilities of the embedded discrete time Markov chain by solving the
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following system of equations.

ν = ν.φ

ν.e = 1

(7.4)

where e is a column vector with its elements equal to 1 and ν is a Steady state

probability vector.

ν = [ν1, ν2, . . . , νk] where k ∈ Ω

The steady state probability of the MRGP is given by

π =
να

ναe
(7.5)

Steady state Availability of system

Let Ω = {0, 1, . . . , k} be the set of all possible states of a system. Let Ω
′

denote

the subset of states in which the system is functioning and let F = Ω − Ω
′

denote

the states in which the system is failed. The long term availability of the system is

the mean proportion of time when the system is functioning. Steady state system

availability can be obtained by

A∞ =
∑
j∈Ω′

πj (7.6)
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7.3 Parallel System with Single Repair Facility

and CCF

Consider a system which consists of two components named A and B. A single repair-

man is assigned for the system with the First Come First Served (FCFS) scheduling

policy for repair. When the components A or B fails the repairman begins to repair

if he is not busy. When one component is already under repair and the other compo-

nent fails then the second component has to wait for repair till the repairman is free.

The lifetime of components A and B are exponentially distributed with the rates λA

and λB respectively. The distribution function of the repair times of components

A and B are GA(t) and GB(t) respectively. Let µA(t) and µB(t) be the respective

repair rates of components A and B. Also in this case common cause failure involv-

ing both components A and B can occur with probability β. We can define the

stochastic process Z = {Z(t); t ≥ 0} to represent the system state at any instant t.

Z(t) ∈ {1, 2, 3, 4, 5}

System is in state

1, if both components are working at time t

2, if component A is under repair while component B is working at time t

3, if component B is under repair while component A is working at time t

4, if component A is under repair while component B is waiting for repair at time t

or due to common cause failure in which the repairman randomly selects component

A is the first to be repaired



Chapter 7 130

5, if component B is under repair while component A is waiting for repair at at time t

or due to common cause failure in which the repairman randomly selects component

B is the first to be repaired

We can define that all state transitions correspond to Markov renewal moments

S = {Sn;n ∈ N} and the embedded Markov chain Yn;n ∈ N such that Yn is the

state of the system at time Sn+ (i.e,Yn = Z(Sn+))

Figure 7.1: State transition diagram

Analysis of the resultant reliability transition diagram shows that Z is an MRGP

with an embedded Markov Chain (EMC) defined by the states 1, 2 and 3. We can

observe the transition to states 4 and 5 do not belong to the EMC since they are

non-renewal moments. System is in state 1 if both A and B are up states and the
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repairman is free. Component A can fail at rate λA and reach state 2. The component

A is repaired with cdf GA(t) to bring the system back to state 1. If component B

falls down during repair time of component A, the system jumps to state 4. When

the component B is down the system reaches the state 3 and when B is repaired

with repair time cdf GB(t) to back the system state 1. But the component A fails

jumping from state 3 to state 5. To find the distribution of Z for MRGP we have to

construct kernel matrices [Global kernel matrix K(t) and local kernel matrix E(t)].

Let RA, RB be the time to repair and LA and LB be the times to failure of A and B

respectively.

K(t) =


0 k12(t) k13(t)

k21(t) 0 k23(t)

k31(t) k32(t) 0

 ,

K12(t) = Pr{If A fail before B or common cause failures occurs and repairman chose

to repair A first and complete the repair action}

= Pr{Z(S1) = 2, S1 ≤ t/Z0 = 1} = Pr{(LA ≤ t ∩ LB > LA) ∪ (RA ≤ t ∩ (LA = LB) ≤ RA)}

= (1− β)λA

∫ t

0

e−(λA+λB)udu+
β

2
(λA + λB)

∫ t

0

e−(λA+λB)uGA(t− u)du

K13(t) = (1− β)λB

∫ t

0

e−(λA+λB)udu+
β

2
(λA + λB)

∫ t

0

e−(λA+λB)uGB(t− u)du
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K21(t) = Pr{Repair A is finished up to time t and B has not failed during repair A}

= Pr{Z(S1) = 1, S1 ≤ t/Z0 = 2} == Pr{RA ≤ t ∩ LB > RA} =

∫ t

0

e−λBudGA(u)

K23(t) = Pr{Repair A is not finished up to time t and B failed during the repair A}

= Pr{Z(S1) = 3, S1 ≤ t/Z0 = 2} =

∫ t

0

(1− e−λBu)dGA(u)

K31(t) = Pr{Z(S1) = 3, S1 ≤ t/Z0 = 3} =

∫ t

0

e−λAudGB(u)

K32(t) = Pr{Z(S1) = 2, S1 ≤ t/Z0 = 3} =

∫ t

0

(1− e−λAu)dGB(u)

E(t) =


E11(t) 0 0 E14(t) E15(t)

0 E22(t) 0 E24(t) 0

0 0 E33(t) 0 E35(t)

 ,

E11(t) = Pr{Remaining state 1 until time t}

= Pr{Z(t) = 1, S1 > t/Z0 = 1} = (1− β)e−(λA+λB)t
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E22(t)=Pr{repair A is not finished up to time t and B has not failed}

= Pr{Z(t) = 2, S1 > t/Z0 = 2} = (1−GA(t))e−λBt

E33(t) = (1−GB(t)e−λAt

E14(t) =
β

2
e−(λA+λB)t

E15(t) =
β

2
e−(λA+λB)t

E24(t) =Pr{repair A is not finished up to time t and B has not failed}

= (1−GA(t))(1− e−λBt)

E35(t) = (1−GB(t))(1− e−λAt)

Laplace-Steiltjes transform of Global Kernel Matrix is

K(s) =


0 (1−β)λA

s+λA+λB
+ β(λA+λB)GA(s)

2(s+λA+λB)
(1−β)λB
s+λA+λB

+ β(λA+λB)GA(s)
2(s+λA+λB)

GA(s+ λB) 0 GA(s)−GA(s+ λB)

GB(s+ λA) GB(s)−GB(s+ λA) 0

 ,

Laplace-Steiltjes transform of Local Kernel Matrix is
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E(s) =

(
E1(s) E2(s)

)
,

where

E1(s) =


(1−β)s

s+λA+λB
0 0

0 s
s+λB

(1−GA(s+ λB)) 0

0 0 s
s+λA

(1−GB(s+ λA))


and

E2(s) =


βs

2(s+λA+λB)
βs

2(s+λA+λB)

λB
s+λB

−GA(s) + s
s+λB

GA(s+ λB) 0

0 λA
s+λA

−GB(s) + s
s+λA

GB(s+ λA)


7.4 Numerical Illustration

Consider a numerical example which has deterministic repair-time distribution func-

tion.

GA(t) = u(t− µA), µA > 0

GB(t) = u(t− µB), µB > 0

where u(t) is the unit step function. The units are hours for repair-time (parameters

µA and µB) and hour−1 for the failure rates (parameters λA and λB). The values of

parameters of the system are given below
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Component λ µ

A 0.01 5
B 0.01 5

K(s) =


0 (1−β)0.01

s+0.02
+ β0.02e−5s

2(s+0.02)
(1−β)0.01
s+0.02

+ β0.02e−5s

2(s+0.02)

e−5(s+0.01) 0 e−5s − e−5(s+0.01)

e−5(s+0.01) e−5s − e−5(s+0.01) 0

 ,

E1(s) =


(1−β)s
s+0.02

0 0

0 s
s+0.01

(1− e−5(s+0.01)) 0

0 0 s
s+0.01

(1− e−5(s+0.01))

 ,

E2(s) =



βs
2(s+0.02)

βs
2(s+0.02)

0.01
s+0.01

− e−5s + s
s+0.01

e−5(s+0.01) 0

0 0.01
s+0.01

− e−5s + s
s+0.01

e−5(s+0.01)


The matrices φ and α are obtained by solving the equations (7.2) and (7.3).

φ =


0 0.5 0.5

0.951229424 0 0.048770576

0.951229424 0.048770576 0


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α =


50(1− β) 0 0 25β 25β

0 4.877058 0 0.877058 0

0 0 4.877058 0 0.877058


Steady state probabilities of embedded Markov chain can be evaluated by solving

the system of equation (7.4)

[ν1, ν2, ν3] = [0.487503, 0.256249, 0.256249]

The Steady state probability vector is obtained by the equation (7.5)

[
π1, π2, π3, π4, π5

]
=[

0.0.892074(1− β), 0.045738, 0.045738, 0.446037β + 0.008225, 0.446037β + 0.008225

]

We get steady state Availability by the equation (7.6)

A∞ = π1 + π2 + π3 = 0.98355(1− β)

Impact of the common cause failures on the system should be evaluated for the

corresponding model. The MRGP steady state availability can be calculated for

varying common cause failure probability β value. By analyzing the MRGP for the

above numerical values, the graph depicted in Fig. 2 is obtained.

The graph reveals the variation of the steady state availability (A∞) of the system

by changing the common cause failure probability β from 0 to 0.5. On viewing the

graph we can observe a clear linear trend of the A∞ with respect to β.
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Figure 7.2: Steady state availability of the system for varying β

7.5 Conclusion

In this chapter analytical techniques based on Markov regenerative process are ex-

plored for modeling and evaluation of availability of multi state system. A parallel

system of two components with common cause failures were elaborated to show the

applicability of MRGP in the evaluation of performance measures with numerical ex-

ample. Since Markov regenerative process can overcome limitations of semi Markov

process to some extent, one can solve wide range of problems in system reliability on

similar lines.



CHAPTER 8

PHASE TYPE MODELING IN MULTI STATE

SYSTEM RELIABILITY

8.1 Introduction

Phase type distribution has been introduced as an instrument for integrating differ-

ent types of stochastic models and initially it has been applied effectively in various

queueing models. Even though it has been used in reliability analysis for quite some

time, now the possibility of this important distribution is more actively discussed in

the reliability analysis of multi state system. In the reliability theory, assessed distri-

bution functions are often continuous. Life time models are determined from various

distributions such as exponential, Erlang, Weibull etc. which have been verified as

beneficial in practical applications. If the model is fabricated from observations,
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always it is not easy to adopt one specific distribution because none of the known

distributions nearly fits the data set. In continuous case we can solve this problem

by considering the distribution for the data set by a continuous phase type distri-

bution. Variety of phase type distribution are involved in many stochastic models.

Phase based techniques has a significant applicability in multi state system reliability

theory than other models in which we use Markov process semi Markov process and

Markov regenerative process.

In this chapter we aim to demonstrate usefulness of phase type distribution in the

evaluation of reliability analysis of repairable parallel multi state system with single

repair facility. Here we take a little bit of effort to show how effective the phase

type distribution is in reliability analysis. We know that phase type distribution was

introduced by Neuts (1981). The main advantage of employing phase type (PH) dis-

tribution in reliability theory is its mathematical simplicity. Phase type distribution

gives excellent computational performance which makes analytic modeling easy. The

complicated numerical differentiation and integration can be turned to the appropri-

ate matrix operations in models involving phase type distribution. System with two

components without external failures using phase type distribution was considered by

Neuts and Meier (1981). Another important advantage of PH distribution is that it

is closed under some operations which are helpful in reliability analysis of multi state

system. Closure properties of phase type distributions under some operations which

are applicable in multi state reliability theory were discussed by Assaf and Levikson

(1982). A parallel system of ’n’ identical components having a single repairman
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with operational times exponentially distributed and the repair times distributed as

phase type was discussed by Chakravarthy (1983) from the viewpoint of queueing

theory. Manoharan et al. (1992) have obtained a preservation result of phase type

distribution under Poisson shock models. Repairable models with operating and re-

pair times distributed as phase type have been discussed Neuts et al. (2000) and

performance measures of the systems were evaluated for the proposed models. Two

models of a repairable two unit system with phase type operational and repair times

were presented by Perez-Ocon and Ruiz Castro (2004). Phase type distribution has

been fruitfully employed for the study of shock models in reliability theory [refer

Montoro-Cazorla (2007), Montoro-Cazorla (2009) and Segovia and Labeau (2013)].

Phase type modeling has been suggested for dynamic assessment of non repairable

multi state system by Eryilmaz (2015) when the system degrades based on Markov

process. Phase type distribution enables us to use more complex models in practi-

cal situations. Systems with different repair strategies can be learned through this

phase type assumption. Denseness of PH distribution can effectively enhance the

expressive ability of the model.

In this chapter we use continuous phase type distribution for reliability analysis

of two component parallel system with single repair facility. The definition of contin-

uous phase type distribution is explained briefly in the introductory chapter. Some

of the definitions of the matrix operations which are very useful for the calculations

in this chapter are given below.
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Definition 8.1: If A and B are rectangular matrices of dimensions m1×m2 and

n1 × n2, respectively, their Kronecker product A ⊗ B is the matrix of dimensions

m1n1 ×m2n2, written in compact form as (aijB)

A useful property of this product is the following equality (A ⊗ B)(C ⊗ D) =

AC ⊗BD, which holds whenever the ordinary matrix product is well defined.

Definition 8.2: If A and B are matrices of dimensions m × m and n × n,

respectively, their Kronecker sum A⊕B is the matrix dimensions mn×mn written

as

A⊕B = A⊗ In + Im ⊗B

where In and Im are the identity matrices of order n and m respectively. A functional

property of this sum is the following equality for the matrices above

exp(A⊕B) = exp(A)⊗ exp(B)

For more aspects about these operations, refer Bellman (1960).

Phase type modeling for a multi state parallel system of two components having

single repair facility is discussed in forthcoming section. Here operational and repair

times of components of the system are followed phase type distribution, instead of

other typical distribution like exponential distribution.
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8.2 Two component parallel system with single re-

pair facility

Assumptions

• A parallel system which contains two different components with single repair

facility is considered.

• The life time of components is independently and identically distributed and

it follows continuous PH distribution

• The failed components are repaired and the components are ’as good as new’

after the repair action is completed. (That is repair action is considered to be

perfect.)

• The repair time also follows continuous PH distribution.

We consider a system with two independent components . When a failure occurs

for a component, it goes to the repair channel. Let Xk be the life time and Yk be

the repair time for component k, where k = 1, 2. We assume that Xk follows a

continuous PH distribution (α(k), T (k)) with order mk and repair time Yk follows

a continuous PH distribution (δ(k), U(k)) with order nk. We denote the absorbtion

rate vectors of the life time is T 0(k) (k = 1, 2) and absorbtion rate vector of repair

time is U0(k)
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First of all we can describe states of the components. In terms of these states of

the components we can describe the states of the system. We have to define states

of the component k, for k = 1, 2. We denote wk as state of the component k when

component k is operational, rk when it is in repair and qrk when it is waiting for

repair (ie, it is in queue for repairing). Following are the states of the system

S0 : {w1, w2}, S1 : {w1, r2}, S2 : {r1, w2}, S3 : {r1, qr2}, S4 : {qr1, r2}

Infinitesimal generator for this two component parallel system can be written as

Q =



Q00 Q01 Q02 0 0

Q10 Q11 0 0 Q14

Q20 0 Q22 Q23 0

0 Q31 0 Q33 0

0 0 Q42 0 Q44


,

where

Q00 = T (1)⊕ T (2), Q01 = Im1 ⊗ T 0(2)δ(2), Q02 = T 0(1)δ(1)⊗ Im2

Q10 = Im1 ⊗ U0(2)α(2), Q11 = T1 ⊕ U2, Q14 = T 0(1)δ(1)⊗ In2

Q20 = U0(1)α(1)⊗ Im2 , Q22 = U(1)⊕ T (2), Q23 = In1 ⊗ T 0(2)δ(2)

Q31 = U0(1)α(1)⊗ In2 , Q33 = U(1)⊗ In2

Q42 = In1 ⊗ U0(2)α(2), Q44 = In1 ⊗ U(2)
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If component 1 experiences the transition between its operational states, the

transition probability matrix can be written as T (1)⊗ Im2 , in which Im2 is a identity

matrix having the same order with matrix T (2). Similarly if component 2 experiences

the transition between its operational states, the transition probability matrix can

be written as Im1 ⊗ T (2). Hence the transition probability matrix of the system

inside state space S0 is Q00 = T (1)⊗ Im2 + Im1 ⊗ T (2) = T (1)⊕ T (2).

The transition probability matrix from state space S0 to S1 can be written as

Q01 = Im1 ⊗ T 0(2)δ(2), which means that component 1 does not change and com-

ponent 2 enters the absorbing state (ie, failed state ) with the transition probabil-

ity T 0(2) and then enters repair phase of the system with the probability distribu-

tion δ(2). Similarly the transition probability matrix S0 to S2 can be written as

Q02 = T 0(1)δ(1)⊗ Im2 .

The transition probability matrix S1 to S0 can be written as Q10 = Im1 ⊗

U0(2)α(2), in which component 1 does not change and component 2 is repaired.

The transition probability matrix inside the the state S1 is Q11 = T1 ⊕ U . The

transition probability matrix S1 to S4 is Q14 = T 0(1)δ(1)⊗ In2 .

When two component parallel system attains steady state, according to the def-

inition of stationary probability vector in continuous time Markov process, The sta-

tionary probability vector

π =

(
π0 π1 π2 π3 π4

)
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satisfies the equation πQ = 0, subject to normalization condition πe = 1. We can

use matrix analytical methods and suitable computer software to solve the above

equations. After getting steady state probability vector πi, i = 0, 1, 2, 3, 4, stationary

availability can be easily solved. Stationary availability of two component parallel

system is:

A =
2∑
i=0

πie

We shall apply the following proposition of PH distribution in the present contest

[refer Neuts (1975), He (2014)].

Proposition 8.2.1. Assume that X1 has a PH-distribution with PH-representation

(α, T ), X2 has a PH-distribution with PH-representation (β, S), and X1 and X2 are

independent. ThenX = max{X1, X2} has a PH-distribution with PH-representation

(γ, U) where

γ = (α⊗ β, (1− αe)β, (1− βe)α),

U =


T ⊕ S T 0 ⊗ I I ⊗ S0

0 S 0

0 0 T



Proof. The proof is based on

P{max{X1, X2} ≤ t} = P{X1 ≤ t}P{X2 ≤ t}
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for independent random variables X1 and X2. It is easy to check that the above

representation is a PH representation of a PH random variable, to be called X. The

distribution function of X can be calculated routinely as follows, for t > 0,

P{X ≤ t} = 1− (α⊗ β, (1− αe)β, (1− βe)α)exp(


T ⊕ S T 0 ⊗ I I ⊗ S0

0 S 0

0 0 T

 t)e

= 1− (α⊗ β, (1− αe)β, (1− βe)α)


exp(Tt)e⊗ (e− exp(St)e) + e⊗ exp(St)e

exp(St)e

exp(Tt)e



= (1− αexp(Tt)e)(1− βexp(St)e) = P{X1 ≤ t}P{X2 ≤ t} = P{max{X1, X2} ≤ t}.

This completes the proof.

Theorem 8.2.2. The work time of two component, where kth component’s life time

Xk follows a continuous PH distribution (α(k), T (k)) with order mk (k = 1, 2),

parallel system follows continuous phase type distribution (β, S)with order m1m2 +

m1 +m2 where

β = (α(1)⊗ α(2), (1− α(1)e)α(2), (1− α(2)e)α(1)),
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S =


T (1)⊕ T (2) Im1 ⊗ T 0(2) T 0(1)⊗ Im2

0 T (1) 0

0 0 T (2)


Proof. The system enters the failed state when both the components fail. According

to property 1.9.1, phase type distribution are closed under minimum and maximum.

That is the minimum and maximum of two independent phase type random variable

is also a phase type random variable. The life time of two component parallel system

is the maximum value of the life time of the components. The system life time follows

phase type distribution (β, S) using proposition 8.2.1.

This theorem states that two component parallel system has the life time distri-

bution following the phase type distribution, PH(β, S).

According to property 1.9.2, Mean time between failure (MTBF) of system is

obtained as µ1 = −βS−1e.

Remark 8.2.3. A parallel system with more than two components can be dealt

with on similar lines to evaluate the stationary characteristics and performance of

the system. The dimensions of the matrices involved in such cases may be quite large,

but the algorithmic methods suggested in this chapter could be easily extended for

the purpose.

We consider here a numerical example of two component parallel system with

operational times and repair times of components are governed by phase type distri-
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bution having the following matrices

α(1) =

(
1 0 0

)
T (1) =


−0.02 0.02 0

0.01 −0.08 0.07

0.005 0 −0.01


and

α(2) =

(
1 0 0

)
T (2) =


−0.2 0.1 0

0.03 −0.05 0.02

0.02 0 −0.02

 .

δ(1) = δ(2) =

(
1 0 0

)

U(1) = U(2) =


−1.499 0 1.499

0 −1.499 0

0 1.499 −1.499


and

Absorption rate vectors of the operational times of the components are

T 0(1) =


0

0

0.095

 , T 0(2) =


0.1

0

0

 .
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U0(1) = U0(2) =


0

1.499

0

 .

Using Mathematica software we can calculate stationary probability vectors as

π0 =

(
0.1316 0.2634 0.2636 0.0325 0.0658 0.0659 0.0231 0.0461 0.0461

)
π1 =

(
0.009 0.0087 0.0089 0.0022 0.0022 0.0022 0.0015 0.0015 0.0015

)
π2 =

(
0.0016 0.0029 0.0029 0.0014 0.0029 0.0029 0.0015 0.0029 0.0028

)
π3 =

(
0.0001 0 0 0.0003 0 0 0.0002 0 0

)
π4 =

(
0.001 0.0003 0.0002 0 0 0 0 0 0

)

Steady state availability is A = 0.9979.

We can evaluate the matrices β and S as

β =

(
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)
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and

S =



−0.22 0.1 0 0.02 0 0 0 0 0 0.1 0 0 0 0 0

0.03 −0.07 0.02 0 0.02 0 0 0 0 0 0 0 0 0 0

0.02 0 −0.04 0 0 0.02 0 0 0 0 0 0 0 0 0

0.01 0 0 −0.28 0.1 0 0.07 0 0 0 0.1 0 0 0 0

0. 0.01 0 0.03 −0.13 0.02 0 0.07 0 0 0 0 0 0 0

0 0 0.01 0.02 0 −0.1 0 0 0.07 0 0 0 0 0 0

0.005 0 0 0 0 0 −0.3 0.1 0 0 0 0.1 0.095 0 0

0 0.005 0 0 0 0 0.03 −0.15 0.02 0 0 0 0 0.095 0

0 0 0.005 0 0 0 0.02 0 −0.12 0 0 0 0 0 0.095

0 0 0 0 0 0 0 0 0 −0.02 0.02 0 0 0 0

0 0 0 0 0 0 0 0 0 0.01 −0.08 0.07 0 0 0

0 0 0 0 0 0 0 0 0 0.005 0 −0.01 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −0.2 0.1 0

0 0 0 0 0 0 0 0 0 0 0 0 0.03 −0.05 0.02

0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 −0.02


Then Mean time between failures MTBF = 301 hours.

8.3 Conclusion

Phase type distribution is applied in this chapter to study the availability and MTBF

of a repairable parallel system. Phase type distribution can represent as matrix form,

which helps the computation by applying suitable softwares and matrix analytic

theory. Its good analytic characteristics helps to solve the multi state reliability

problems. In the study of real life situation, modeling becomes more qualitative by

using this distribution.
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In recent years, reliability analysis of multi state system has witnessed a remark-

able development in the field of engineering. Many works have been created in the

study of multi state system in reliability engineering. In this work, different meth-

ods were considered for reliability analysis of various multi state repairable systems.

Probability concepts are incorporated in the evaluation of performance measures of

multi state system. The main performance measures used in this thesis are avail-

ability, expected steady state performance and expected steady state performance

deficiency. In the first chapter, preliminary ideas on continuous time Markov chain,

Regenerative process, semi Markov process, binary state system, multi state system,

phase type distribution etc with proper literature review were extensively presented.

Definition, properties, performance measures and types of multi state system were

comprehensively explained in the second chapter.

In chapter 3 we discussed basic ideas of applying stochastic process method for
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reliability assessment of a multi state system. Steady state reliability of different

structures of independent components of a system is analyzed based on continuous

time Markov chain. Traditional method such as stochastic process method is not

usually effective in the application of reliability evaluation of complex multi state

system. The combined Markov process technique and universal generating function

(UGF) technique which is used in chapter 4 diminishes the dimension of the system

of equations. In this work the technique is used for multi state system which is

composed of statistically independent repairable components.

The major disadvantage of UGF technique is that theoretically it can be applied

only for random variables and so this technique works with only steady state per-

formance probability distribution when we consider reliability analysis of multi state

system. In order to extend the application of UGF technique to dynamic reliability

analysis of MSS, we demonstrate a special transform for a discrete state continuous

time Markov chain which is known as Lz transform in chapter 5. Short term relia-

bility evaluation of a power generating system using this method is presented in this

chapter. Component criticality and importance analysis of multi state system is a

hopeful area of study in reliability theory. The Lz transform method can be applied

for assessing various importance measures in multi state system. The Lz transform

technique has an important role in short term risk evaluation of power stations.

Application of Markov chain model in which transition time between any states

of the system or component distributed as exponential, is not practicable into real

world problems of reliability analysis. The principle advantage of semi Markov model
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is that it allows non exponential distribution for transition between states of compo-

nents or system in reliability analysis. Preventive maintenance is defined as the series

of actions taken on systematically for abolishing accumulative deterioration when the

system is still in operating states. In chapter 6 we considered modeling of a multi

state system with a periodic inspection during a specific period and hence it takes

place preventive maintenance. A semi Markov reliability model for a power gener-

ating system is presented in that chapter. With the help of semi Markov process,

we can develop algorithm of the complex periodic inspection policies for multi state

system by increasing the maintenance effectively. Also we have to determine mainte-

nance policies that maximizes the availability of multi state system while minimizing

the cost of working of the system.

A multi state system reliability model with common cause failures, based on

MRGP is presented in chapter 7. We can solve many other real life problems in

multi state system reliability theory using Markov regenerative process. In chapter 8

we considered phase type modeling for the evaluation of a repairable parallel system

using phase type distributions because of its versatility. we can develop various

models for handling of maintenance and reliability of repairable multi state system.

In this work we considered only multi state systems with independent compo-

nents. Modeling of multi state system with dependent components is an interesting

problem in reliability analysis and it has many practical application in real life situa-

tion. Furthermore we have primarily learned parallel structure of multi state system

in this work. Many problems have to be solved in reliability analysis of multi state
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series system, series- parallel system, k out of n systems etc. Optimization problems

are important problem in multi state reliability theory. The combination of differ-

ent types of multi state system with various norms and restrictions can form a lot

of different stimulating optimization problems. For example, including economical

indices connected with various levels of performance of system gives a vast variety

of models in which design maintenance activity, warranty policy etc are optimized.

Since computers are an integral part of our daily life, software reliability research

has an important role in reliability analysis of MSS. More software reliability models

needed to be developed as future research.

As a comparatively new discipline multi state system reliability has a lot of phe-

nomena to be fulfilled. In the future, many auspicious multi state reliability research

direction can be concentrated on component criticality and importance analysis, as-

sessment and fault-tolerant design of multi state network systems, condition based

maintenance system based on multi state system reliability theory, modeling prob-

abilistic risk evaluation of multi state system, system state allocation, state space

optimization, modeling of system degradation, optimization and estimation of relia-

bility of complex multi state system and so on.
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