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CHAPTER

ONE

INTRODUCTION

1.1 Introduction

The modern statistical distribution theory has its stress on problem-solving, con-

fronted by the practitioners and the applied researchers in various fields. It becomes

necessary to introduce a variety of probability models that suits the problem for a

better assessment and proper decision making in real life phenomenon.

Statistical distributions are widely applied in various fields for modelling of life-

time data, from reliability engineering for the study of machine life cycles, medical

sciences for the modelling of survival times of patients after surgery or duration to

recurrence of a kind of cancer after surgical removal, computer sciences for the mod-

elling of the failure rates of a software system, the modelling of durations without

15



16 Chapter 1: Introduction

claims of customer policies in the insurance sector, to the modelling of duration of

marriage till divorce in social sciences. The well known fundamental continuous dis-

tributions such as exponential, gamma, Weibull and Rayleigh are very limited in

their characteristics and are unable to show wide flexibility in lifetime data mod-

elling. Generalized distributions have been widely studied in statistics literature and

numerous authors have developed various classes of distributions.

The Weibull distribution is very popular in modelling lifetime data and modelling

phenomenon with monotone failure rates. This distribution is named after Waloddi

Weibull, who was the first to promote the uses of this distribution to model the

breaking strength of materials (Weibull,1939). A similar model was proposed earlier

by Rosin and Rammler (1933) in the context of modelling the variability in the

diameter of powder particles which are being greater than a specific size. An earliest

known publication dealing with the Weibull distribution is a work by Fisher and

Tippett (1928), which is obtained as the limiting distribution of the smallest extremes

in a sample. Gumbel (1958) refers to the Weibull distribution as the third asymptotic

distribution of the smallest extremes. The Weibull and related models have been

applied in many areas, and for solving a variety of problems from many disciplines.

An extensive review of some modifications of the Weibull distribution is presented

in Murthy et al. (2004). (See also, Pham and Lai (2007) and Lai et al. (2011)).

Jayakumar and Babu (2015) studied some generalizations of Weibull distribution

and the related time series models.

Here we give a brief description of some extended families of continuous and
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discrete Weibull distributions, which are mentioned in the various chapters of this

thesis.

1.2 Weibull and Related Distributions

A continuous random variable X is said to follow two parameter Weibull distribution

if its cumulative distribution function (cdf) is given by

F (x; β, α) = 1− e−(βx)α

; x > 0, (1.2.1)

where, β > 0 is the scale parameter and α > 0 is the shape parameter. This distri-

bution includes the exponential and Rayleigh distribution as special cases. Setting

λ = βα, this distribution can be expressed as

F (x) = 1− e−λxα

; x > 0. (1.2.2)

The corresponding probability density function (pdf) and hazard rate function (hrf)

are respectively
f(x) = λαxα−1e−λxα

; x > 0, (1.2.3)

and
h(x) = λαxα−1 ; x > 0, (1.2.4)

where λ, α > 0. The hrf can be increasing, decreasing or constant depending on

α > 1, α < 1 or α = 1. Weibull distribution does not exhibit any kind of non-

monotonic hazard rate shape. For more details on Weibull and related distributions

see, Rinne (2009).

The exponential distribution is one of the widely applied continuous distributions.

A continuous random variableX is said to have an exponential distribution with scale



18 Chapter 1: Introduction

parameter β > 0, if its cdf is given by

F (x; β) = 1− e−βx ; x > 0. (1.2.5)

This distribution can be viewed as a continuous analogue of the geometric distribu-

tion.

A continuous random variable X is said to follow generalized exponential distri-

bution if its cdf is given by

F (x; β, θ) = (1− e−βx)θ ; x > 0, (1.2.6)

where, β > 0 is the scale parameter, θ > 0 is the shape parameter. This distribution

is introduced by Gupta and Kundu (1999).

If Y = 1
X

, where X follows the Weibull distribution, then Y has the inverse

Weibull (IW) distribution. The cdf, pdf and hrf of an IW distribution are respectively

given by

F (y) = e−λy−α

; y > 0, (1.2.7)

f(y) = λαy−α−1e−λy−α

; y > 0, (1.2.8)

and
h(y) = λαy−α−1 ; y > 0, (1.2.9)

where λ, α > 0. The hrf of the IW distribution has unimodal shape. This distribution

is also called as the type 2 extreme value or Fréchet distribution. Some generaliza-

tions of IW distribution are Kumaraswamy inverse Weibull distribution studied in

Shahbaz et al. (2012) and beta inverse Weibull distribution studied in Khan (2010).
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Let X be a Weibull random variable with parameters λ and α. Then Y−a
b

=

log(λXα) has the log-Weibull distribution with cdf, pdf and hrf are respectively

given by

F (y) = 1− exp{−e
y−a

b } ; −∞ < y <∞, (1.2.10)

f(y) =
1

b
e

y−a
b exp{−e

y−a
b }, (1.2.11)

and

h(y) =
1

b
e

y−a
b , (1.2.12)

where −∞ < a <∞ and b > 0. The hrf is an increasing function of y. This distribu-

tion is also known as the type I extreme value distribution or Gumbel distribution.

Cohen (1973) introduced the reflected Weibull distribution by considering the

transformation Y = −X, where X is a Weibull random variable. The cdf, pdf and

hrf are respectively given by

F (y) = e−λ(−y)α

; −∞ < y < 0, (1.2.13)

f(y) = λα(−y)α−1e−λ(−y)α

, (1.2.14)

and

h(y) =
λα(−y)α−1e−λ(−y)α

1− e−λ(−y)α , (1.2.15)

where λ, α > 0. The hrf is an increasing function of y.

Mudholkar and Srivastava (1993) introduced the exponentiated Weibull (EW)

distribution by adding a new shape parameter θ to the Weibull distribution. The
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cdf, pdf and hrf are respectively given by

F (x) = (1− e−λxα

)θ ; x > 0, (1.2.16)

f(x) = θλαxα−1e−λxα

(1− e−λxα

)θ−1, (1.2.17)

and

h(x) =
θλαxα−1e−λxα

(1− e−λxα
)θ−1

1− (1− e−λxα)θ
, (1.2.18)

where θ, λ, α > 0. This distribution accommodates unimodal, bathtub and a broad

variety of monotone failure rates.

Xie and Lai (1995) introduced the additive Weibull (AW) distribution by com-

bining the failure rates of two Weibull distributions of which one has a decreasing

failure rate and the other has an increasing failure rate. The cdf, pdf and hrf of AW

distribution are respectively given by

F (x) = 1− e−(βxα+γxδ), (1.2.19)

f(x) = (αβxα−1 + δγxδ−1)e−(βxα+γxδ), (1.2.20)

and
h(x) = (αβxα−1 + δγxδ−1), (1.2.21)

where β > 0, γ > 0 are scale parameters and α > δ > 0 or δ > α > 0 are shape

parameters. The hrf increases when α > 1 and δ > 1, decreases when α < 1 and

δ < 1, and bathtub shape when α > 1 and δ < 1 (or α < 1 and δ > 1).

Lai et al. (2003) introduced the modified Weibull distribution with cdf, pdf and
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hrf are respectively given by

F (x) = 1− e−λxαeβx

; x > 0, (1.2.22)

f(x) = λ(α+ βx)xα−1eβxe−λxαeβx

, (1.2.23)

and

h(x) = λ(α+ βx)xα−1eβx, (1.2.24)

where λ > 0, α, β ≥ 0 and at most one of α or β is equal to zero. When β = 0, this

becomes the Weibull distribution. The hrf can be increased or bathtub shaped.

The modified Weibull extension with bathtub shaped failure rate function was

proposed by Xie et al. (2002). The cdf, pdf and hrf are respectively given by

F (x) = 1− exp{−λα(1− e(
x
α

)β

)} ; x > 0, (1.2.25)

f(x) = λβ(
x

α
)β−1 exp{(x

α
)β + λα(1− e(

x
α

)β

)}, (1.2.26)

and

h(x) = λβ(
x

α
)β−1 exp{(x

α
)β}, (1.2.27)

where λ, α, β > 0. The hrf is an increasing function when β ≥ 1 and is bathtub

shaped when β < 1.

Sarhan and Zaindin (2009) introduced a three parameter modified Weibull dis-
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tribution with cdf, pdf and hrf are respectively given by

F (x) = 1− e−(βx+γxδ) ; x > 0, (1.2.28)

f(x) = (β + γδxδ−1)e−(βx+γxδ), (1.2.29)

and
h(x) = β + γδxδ−1, (1.2.30)

where β, γ, δ > 0. This distribution can be obtained as a particular case of additive

Weibull distribution by setting one of the two shape parameters α or δ in Eqn.(1.2.19)

to be equal to one. The hrf is monotonically increasing if δ > 1 and is monotonically

decreasing if δ < 1.

The beta Weibull distribution was proposed by Famoye et al. (2005). The cdf

and pdf are respectively given by

F (x) = I1−e−λxα (a, b) ; x > 0, (1.2.31)

and

f(x) =
1

B(a, b)
λαxα−1(1− e−λxα

)a−1e−abxα

, (1.2.32)

where a, b, λ, α > 0 and I{.}(a, b) denotes the incomplete gamma distribution. The

hrf of this distribution increases if α ≥ 1 and aα > 1, decreases if α < 1 and aα < 1,

bathtub shaped if α > 1 and aα < 1, and unimodal shaped if α ≤ 1 and aα > 1.

When a = b = 1, this distribution becomes two parameter Weibull distribution.

The beta modified Weibull distribution with five parameters was introduced by

Silva et al. (2010a). The cdf and pdf are respectively

F (x) = I
1−e−λxαeβx (a, b) ; x > 0, (1.2.33)
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and

f(x) =
1

B(a, b)
λ(α+ βx)xα−1eβx(1− e−λxαeβx

)a−1e−λbxαeβx

, (1.2.34)

where a, b, α, λ > 0 and β ≥ 0. When a = b = 1 and β = 0, this distribution be-

comes the two parameter Weibull distribution. The hrf allows increasing, decreasing,

bathtub and unimodal shapes.

Carrasco et al. (2008) introduced the generalized modified Weibull distribution.

Its cdf, pdf and hrf are respectively given by

F (x) = (1− e−λxαeβx

)θ ; x > 0, (1.2.35)

f(x) = λθxα−1(α+ βx)eβx−λxαeβx

[1− e−λxαeβx

]θ−1, (1.2.36)

and

h(x) =
λθxα−1(α+ βx)eβx−λxαeβx

[1− e−λxαeβx
]θ−1

1− (1− e−λxαeβx)θ
, (1.2.37)

where λ, θ > 0, α, β ≥ 0 and at most one of the α or β is equal to zero. The hrf

allows increasing, decreasing, bathtub and unimodal shapes.

Cordeiro et al. (2010) introduced the Kumaraswamy Weibull distribution. The

cdf, pdf and hrf are respectively given by

F (x) = 1− [1− (1− e−λxα

)a]b ; x > 0, (1.2.38)

f(x) = abλαxα−1e−λxα

(1− e−λxα

)a−1[1− (1− e−λxα

)a]b−1, (1.2.39)

and

h(x) =
abλαxα−1e−λxα

(1− e−λxα
)a−1

1− (1− e−λxα)a
, (1.2.40)
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where λ, α, a, b > 0. The hrf can be constant, increasing, decreasing, bathtub and

unimodal shapes. Cordeiro et al. (2014) studied the Kumaraswamy modified Weibull

distribution. Eissa (2017) studied the exponentiated Kumaraswamy-Weibull distri-

bution.

Now we discuss some discrete Weibull distributions which are used in our study

for deriving new results.

1.2.1 Discrete Weibull distributions

Nakagawa and Osaki (1975) introduced the type I discrete Weibull distribution by

considering lifetime as the integer part of the continuous Weibull distribution. The

survival function, probability mass function (pmf) and hrf are given by

S(x) = 1− qxα

, (1.2.41)

p(x) = qxα − q(x+1)α

, (1.2.42)

and
h(x) = 1− q(x+1)α−xα

, (1.2.43)

where x = 0, 1, 2, ... .; 0 < q < 1 and α > 0. The hrf increases when α > 1, decreases

when α < 1 and constant when α = 1.

Stein and Dattero (1984) proposed the type II discrete Weibull distribution. The

hrf of this distribution is given by

h(x) =

{
λαxα−1, for x = 1, 2, ...m,
0, for x = 0, (1.2.44)
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where h(x) ≤ 1 and m is a positive integer defined as,

h(x) =

{
int{λ−(α−1)−1}, if α > 1,
+∞, if α ≤ 1,

(1.2.45)

where int{.} denotes the integer value.

Padgett and Spurrier (1985) proposed type III discrete Weibull distribution and

its hrf is given by
h(x) = 1− e−λ(x+1)α

; x = 0, 1, 2, ... , (1.2.46)

where λ > 0 and −∞ < α <∞.

Jazi et al. (2010) introduced the discrete inverse Weibull distribution. The cdf,

pmf and hrf are respectively given by

F (x) = qx−α

; x = 1, 2, ... , (1.2.47)

p(x) =

{
q, if x = 1,
qx−α − q(x−1)−α

, if x = 2, 3, ... ,
(1.2.48)

and

h(x) =
qx−α − q(x−1)−α

1− qx−α ; x = 1, 2, ... . (1.2.49)

Noughabi et al. (2011) introduced the discrete modified Weibull distribution.

The cdf, pmf and hrf are given by

F (x) = 1− qxαcx

; x = 0, 1, 2, ... , (1.2.50)

p(x) = qxαcx − q(x+1)αcx+1

, (1.2.51)

and
h(x) = 1− q(x+1)αcx+1−xαcx

, (1.2.52)

where 0 < q < 1, α > 0 and c ≥ 0. The hrf shows increasing and bathtub shapes.
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Bebbington et al. (2012) studied the discrete additive Weibull distribution. The

cdf, pmf and hrf are respectively given by

F (x) = 1− qxα

1 qxδ

2 ; x = 0, 1, 2, ... , (1.2.53)

p(x) = qxα

1 qxδ

2 − q
(x+1)α

1 q
(x+1)δ

2 , (1.2.54)

and
h(x) = 1− q

(x+1)α−xα

1 q
(x+1)δ−xδ

2 , (1.2.55)

where 0 < q1, q2 < 1 and α, δ > 0. The hrf shows increasing, decreasing and bathtub

shapes.

1.3 Extended Classes of Distributions

Recently, several attempts have been made by various researchers to develop new

families of distributions to extend well-known distributions. As a result, several

classes of distributions were developed by adding one or more parameters. Some

popular generators are, Marshall-Olkin family by Marshall and Olkin (1997), beta-

G family by Eugene et al. (2002), gamma-G family by Zografos and Balakrishnan

(2009), Kumaraswamy-G family by Cordeiro and de Castro (2011), Weibull-G family

Bourguignon et al. (2014), and extended-G geometric family by Cordeiro et al.

(2016). One of the main objectives for developing extended families is to explain

how the lifetime phenomenon arises in various fields like public health, insurance,

industry, engineering, life-testing and many others. In order to model both monotonic
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and non-monotonic failure rate shaped data, these families are very flexible for model

fitting.

In the next section, we discuss some well known families which are used in this

thesis to develop new classes of distributions.

1.3.1 Transmuted family of distributions

According to the Quadratic Rank Transmutation Map (QRTM), approach by Shaw

and Buckley (2007), the cdf satisfies the relationship

F (x) = (1 + λ)G(x)− λ[G(x)]2 ; |λ| ≤ 1, (1.3.1)

where G(x) is the cdf of the base distribution. When λ = 0, we get the cdf of the

base random variable. Differentiating Eqn.(1.3.1) yields

f(x) = g(x)[1 + λ− 2λG(x)] ; |λ| ≤ 1, (1.3.2)

where f(x) and g(x) are the pdfs corresponding to F (x) and G(x) respectively. The

survival function of F (x) in Eqn.(1.3.1) is given by

F̄ (x) = 1− F (x) = 1−G(x)[1 + λḠ(x)] ; |λ| ≤ 1, (1.3.3)

where Ḡ(x) = 1−G(x).

Recently, various research papers have been appeared in the literature on trans-

muted generalization of distributions. Some of them are: transmuted extreme value

distribution by Aryal and Tsokos (2009), transmuted Weibull distribution by Aryal

and Tsokos (2011), transmuted modified Weibull distribution by Khan and King

(2013a), transmuted generalized inverse Weibull distribution by Khan and King
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(2013b), transmuted log-logistic distribution by Aryal (2013), transmuted additive

Weibull distribution by Elbatal and Aryal (2013) and transmuted Weibull Lomax by

Afify et al. (2015).

1.3.2 T-X family of distributions

Alzaatreh et al. (2013b) introduced the Transformed-Transformer (or T-X family)

method to derive families of distributions by using any pdf as a generator. Let r(t)

be the pdf of a random variable T ∈ [a, b], for −∞ ≤ a < b ≤ ∞. Let W (F (x)) be

a function of the cdf F (x) of any random variable X, so that, W (F (x)) satisfies the

conditions

W (F (x))ε[a, b],
W (F (x)) is absolutely continuous and monotonically non-decreasing,
W (F (x)) → a as x→ −∞ and W (F (x)) → b as x→∞.

}
(1.3.4)

Definition 1.3.1. Let X be a random variable with pdf f(x) and cdf F (x) respec-

tively. Let T be a continuous random variable with pdf r(t) defined on [a, b]. Then,

the cdf of T-X family of distributions is defined as

G(x) =

∫ W (F (x))

a

r(t)dt = R{W (F (x))}, (1.3.5)

where R{.} is the cdf of the random variable T . The corresponding pdf is given by

g(x) =
d

dx
[W (F (x))]r(W (F (x))). (1.3.6)

Different choices of W (F (x)) will give new family of distributions. The definition

of W (F (x)) depends on the support of the random variable T . T-X family is a

method for generating generalized distributions of X using T .
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Aljarrah et al. (2014) introduced a wider class of W (F (x)) functions defined in

Eqn.(1.3.4) as, W : (0, 1) → (a, b), where −∞ ≤ a < b ≤ ∞, is right continuous and

non decreasing function, such that, limx→0+W (x) = a and limx→1−W (x) = b. Then

F (x),−∞ < x <∞, is a distribution function.

Several research papers have appeared in the literature based on the T-X fam-

ily. Some of them are: the Weibull-Pareto distribution by Alzaatreh et al. (2013a),

gamma-half normal distribution by Alzaatreh and Knight (2013), Weibull-X fam-

ily by Alzaatreh and Ghosh (2015), beta Marshall-Olkin family by Alizadeh et al.

(2015), and so on.

1.3.3 Compounded-G classes of distributions

The compounded-G classes of distributions can be constructed as follows: Suppose

a system has N components and are assumed to be independent and identically

distributed (i.i.d.) at a given time. The lifetime of the ith component is denoted by

Yi, and each component is made of α parallel units, so that the system will fail only

if all the components fail. But for a series system, the failure of any component will

destroy the entire system. Suppose that the random variable N follows a discrete

distribution with pmf, P (N = n), n = 1, 2, ... . Let the failure times of the ith

components are Zi1, Zi2, ..., Ziα and are i.i.d. with a suitable cdf depending on the

parameter vector Θ.

Let Y = min(Y1, Y2, ..., YN), then the conditional cdf of Y given N is

F (y|N) = P (min(Y1, Y2, ..., YN) < y|N) = 1− [1−Gα(y; Θ)]N , (1.3.7)
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where G(y; Θ) is the baseline cdf. Also, define Z = max(Y1, Y2, ..., YN), then the

conditional (or complementary) cdf of Z given N is

F (z|N) = P (max(Y1, Y2, ..., YN) < y|N) = [Gα(y; Θ)]N . (1.3.8)

The unconditional cdf of Y follows from Eqn.(1.3.7) as

F (y) =
∞∑

n=1

F (y|N = n)P (N = n) = 1−
∞∑

n=1

[1−Gα(y; Θ)]nP (N = n). (1.3.9)

The unconditional cdf of Z follows from Eqn.(1.3.8) as

F (z) =
∞∑

n=1

F (z|N = n)P (N = n) =
∞∑

n=1

[Gα(y; Θ)]nP (N = n). (1.3.10)

By choosing a suitable discrete distribution forN , we can develop different compounding-

G classes. Marshall and Olkin (1997) proposed a method of introducing a parameter

in distributions. The Marshall-Olkin distribution is defined in terms of survival

function as

F̄ (x; θ) =
θḠ(x)

1− θ̄Ḡ(x)
=

θḠ(x)

G(x) + θḠ(x)
; −∞ < x <∞, θ > 0, (1.3.11)

where, θ̄ = 1 − θ and F̄ (x) = 1 − F (x), which is the survival function of the

random variable X. Many authors have studied the properties of various univariate

distributions belonging to the family of Marshall-Olkin distributions, see Alice and

Jose (2003,2005), Ghitany et al. (2005,2007) and Jayakumar and Thomas (2008).

Some well-known compound-G classes based on geometric distribution are, the

exponential-geometric (EG) by Adamidis and Loukas (1998), the modified Weibull-

geometric by Wang and Elbatal (2015), the generalized exponential-geometric by

Silva et al. (2010b), the Weibull-geometric (WG) by Barreto-Souza et al. (2011),
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the beta exponential-geometric by Bidram (2012), the beta Weibull-geometric by

Bidram et al. (2013), the exponentiated complementary exponential-geometric by

Yamachi et al. (2013), the exponentiated Weibull-geometric by Chung and Kang

(2014), the complementary Weibull-geometric (CWG) by Tojeiro et al. (2014), the

exponentiated G-geometric (EGG) by Nadarajah et al. (2015) and the additive

Weibull-geometric (AWG) by Elbatal et al. (2016).

The recent trends in developing compound classes of distributions can be classified

as, compounding a G-class with discrete model, combining continuous model with

compound power series class, combining compound G-class with the non-compound

G-class and combining transmuted G-class with well-known compound distribu-

tions. Some notable works in this direction are Weibull-Power series by Morais

and Barreto-Souza (2011), G-Poisson Lindley by Asgharzadeh et al. (2014), trans-

muted Weibull-geometric by Merovci and Elbatal (2014), transmuted complementary

Weibull-geometric by Afify et al. (2014), transmuted exponentiated-Weibull by Sa-

boor et al. (2015), exponentiated G-Poisson by Gomes et al. (2015), Poisson-X

by Tahir et al. (2016), complementary generalized modified Weibull by Bagheri et

al. (2016), Gompertz power series by Jafari and Tahmasebi (2016) and transmuted

exponentiated Weibull-geometric by Saboor et al. (2016). For a recent survey on

generalized compounded classes of distributions see Tahir and Cordeiro (2016).
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1.4 Some Basic Statistical Concepts

1.4.1 Hazard rate function

If X is a lifetime random variable with cdf F (x), pdf f(x) and survival function

S(x), then the hrf is defined as

h(x) =
f(x)

S(x)
,

and h(x)∆x represents the approximate probability of failure in the interval [x, x+

∆x]. The hrf plays an important role in lifetime data modelling. A lifetime dis-

tribution is said to have an increasing hrf if h(x) is monotonically increasing over

time and is a decreasing hrf if h(x) is monotonically decreasing. If h(x) initially

decreases, followed by an approximate constant shape and then increasing, then the

distribution is said to have a bathtub shape hrf. The distribution is said to have an

upside-down bathtub (or unimodal) shape hrf, if its h(x) has a unique mode. The

different shapes of h(x) can be investigated using the first order derivative h′(x). If

h′(x) > 0, for all x, then the shape of hrf is monotonically increasing; if h′(x) < 0,

for all x, then the shape of hrf is monotonically decreasing; if h′(x) = 0, for all x,

then hrf is constant; if h′(x) < 0, for all x ∈ (0, x0) and h′(x) > 0, for all x > x0

and the value x0 is unique and positive solution of h′(x) = 0, then the hrf shows a

bathtub shape; and if h′(x) > 0, for all x ∈ (0, x0) and h′(x) < 0, for all x > x0 and

the value x0 is unique and positive solution of h′(x) = 0, then the hrf shows upside

down-bathtub (or unimodal) shape.
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1.4.2 Order statistics

Order statistics deals with the properties and applications of ordered random vari-

ables and functions involving them. It has a great role in the statistical study of

extremes such as, floods and droughts, problems of breaking strength and fatigue

failure, etc. David and Nagaraja (2003) studied various properties and applications

of order statistics. Let X1, X2, ..., Xn are n independent random variables, each with

cdf F (x) and are arranged in the order of magnitude as X(1) ≤ X(2) ≤ ... ≤ X(n), we

call X(r) the rth order statistic (r = 1, 2, ..., n). The cdf of the largest order statistic

X(n) is given by

F(n)(x) = P (X(n) ≤ x) = F n(x), (1.4.1)

and the cdf of the smallest order statistics X(1) is given by

F(1)(x) = P (X(1) ≤ x) = 1− [1− F (x)]n. (1.4.2)

The cdf of the rth order statistics is

F(r)(x) = P (X(r) ≤ x) =
n∑

i=r

(
n

i

)
F i(x)[1− F (x)]n−i. (1.4.3)

The pdf of the rth order statistics is

f(r)(x) =
1

B(r, n− r − 1)
F r−1(x)[1− F (x)]n−rf(x). (1.4.4)

If X is a discrete random variable with pmf p(x), x = 0, 1, ..., n, then the pmf of the

rth order statistics is given by

p(r)(x) = F(r)(x)− F(r)(x− 1). (1.4.5)
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1.4.3 Entropy

It is well known that the entropy is a measure of uncertainty of probability distri-

bution. Or in other words, it is the expected value of the information about the

distribution. The popular entropy measures are the Rényi and Shannon entropies

(Rényi, 1961; Shannon, 1948). The Rényi entropy of a continuous random variable

X with pdf f(x) is defined as

IR(γ) =
1

1− γ
log

∫ ∞

0

fγ(x)dx ; γ > 0, γ 6= 1. (1.4.6)

The Shannon entropy is defined by E[− log(f(X))] and is a particular case of Rényi

entropy for γ ↑ 1.

1.4.4 Stress-strength parameter

Stress is defined as the load which tends to produce a failure of a component or a

material, whereas strength is the ability of a component or material to accomplish

its required function satisfactorily without failure when applying the external load.

In reliability study, the stress-strength parameter describes the life of a component

which has a random strength Y and is subjected to a random stress Z. If the stress

(Z) applied to a component exceeds the strength (Y ), then it fails. Thus the stress-

strength parameter R = P (Y > Z) measures the component reliability. This idea

was first introduced by Birnbaum (1956) and further developed in Birnbaum and

Mc Carty (1958). Estimation of R when Y and Z are i.i.d. random variables have

considered in the literature. For a review, see Kotz et al. (2003). In continuous case,
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R is defined as

R = P (Y > Z) =

∫ ∞

0

FZ(y)fY (y)dy, (1.4.7)

and in discrete case

R =
∞∑

y=0

FZ(y)pY (y). (1.4.8)

1.4.5 Minification processes

Models with minification structure have been introduced in the literature as an al-

ternative to the additive time series models. The study on minification processes

began with the work of Tavares (1980). One of the important nonlinear models used

to generate {Xn} of non negative random variables is defined by

Xn =

{
X0, n = 0,
k min(Xn−1, εn), n ≥ 1, (1.4.9)

where k > 1, is a constant and {εn} is an innovative process of i.i.d. random vari-

ables, such that {Xn} is a stationary Markov process. Sim (1986) developed a first

order autoregressive Weibull process. He showed that {Xn} are stationary Weibull

random variables with survival function e−
θxα

kα−1 if and only if {εn} is a sequence of

i.i.d. Weibull random variables with survival function e−θxα
. Lewis and McKenzie

(1991) showed that the stationary, autoregressive, Markovian minification processes

introduced by Tavares (1980) and Sim (1986) can be extended to give processes with

marginals other than the exponential and Weibull distributions. Jose et al. (2010)

developed different types of autoregressive processes with minification structure and

max-min structure. Jose (2011) considered various Marshall-Olkin distributions and
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developed autoregressive minification processes with stationary marginals as expo-

nential, Weibull, uniform, Pareto and Gumbel distributions.

1.5 Various Tests for Goodness-of-fit

Goodness-of-fit test is a method used to examine whether a random sample is taken

from a specific distribution. In this section, four methods of goodness-of-fit tests

applied in this thesis are discussed. They are, the likelihood ratio test, Kolmogorov-

Smirnov (K-S) test, Cramér-von Mises test and the Anderson Darling test.

1.5.1 Likelihood ratio test

The likelihood ratio test (LRT) is used to examine how well a model fits the given

data set. This test is used to compare two nested models. Suppose that a random

variable X has a pdf given by f(x; θ) with unknown parameter θ. The main objective

is to test the null and alternative hypotheses, H0 : θ ∈ θ0 and H1 : θ ∈ θ1, where θ0

and θ1 are the parameter space of the reduced and full model respectively. The test

statistic is given by

ω = −2 log

[
L0(θ̂)

L1(θ̂)

]
, (1.5.1)

where L0 and L1 are the likelihood functions of the reduced and the full model respec-

tively. Under H0, ω is asymptotically distributed as a chi-square random variable

with degrees of freedom equal to the difference between the number of parameters

of the two models. When the p value obtained is less than 0.05, we reject the null



Chapter 1: Introduction 37

hypothesis at the 5% level of significance and it implies that the full model provides

a better fit than the reduced model.

1.5.2 Kolmogorov-Smirnov (K-S) test

Let X1, X2, ..., Xn be a random sample taken from a population. The K-S test is

used to test whether this sample belongs to a population with a specific distribution.

The K-S test statistic measures the difference between the empirical distribution

function of the given sample and the estimated cdf of the candidate distribution.

The null and alternative hypotheses for the test are H0: The sample follows the

specific distribution and H1: The sample does not follow the specific distribution.

Let F (xi) is the values of the cdf of the candidate distribution at xi and F̂ (xi)

is the value of the empirical distribution at xi. The value of the K-S test statistic is

defined by

D = supxi
(|F (xi)− F̂ (xi)|) ; i = 1, 2, ..., n. (1.5.2)

The computed value of the test statistic is then compared with tabulated K-S value

at a given significance level. If there are more than one distributions to be compared,

the distribution with smaller K-S value is the most appropriate to fit the given data.
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1.5.3 Cramér-von Mises (W*) and Anderson Darling (A*)

Criteria

Let F (x; Θ) be the cdf and the form of F is known but Θ is unknown. Then the

statistics Cramér-von Mises (W*) and Anderson Darling (A*) are computed as fol-

lows:

(i). Compute ξi = F (xi; Θ̂) where the xi’s are in ascending order;

(ii). Compute xi = φ−1(ξi), where φ(.) is the cdf of standard normal distribution

and φ−1(.) is its inverse;

(iii). Compute yi = φ((xi− x̄)/sx), where x̄ = 1
n

∑n
i=1 xi and s2

x = 1
n−1

∑n
i=1(xi− x̄)2;

(iv). Calculate,

W 2 =
n∑

i=1

(
yi −

2i− 1

2n

)2

+
1

12n

and

A = −n− 1

n

n∑
1=1

[
(2i− 1) log(yi) + (2n+ 1− 2i) log(1− yi)

]
;

(v). W ∗ = W 2(1 + 0.5
n

) and A∗ = A2(1 + 0.75
n

+ 2.25
n2 ), see Chen and Balakrishnan

(1995). While comparing the models, the one with smallest W* and A* is the best

model.

1.5.4 Information criteria

The consequences of increasing the number of parameters, usually improves the fit

of a given model and of course the likelihood also increases irrespective of whether
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the additional parameter is important or not. When the models to be compared

are not nested, the likelihood ratio test is not the best option and therefore one has

to employ other methods to compare the models. The information criteria enable

us to do this comparison when the models are not nested. The most widely used

information criteria are; the Akaike Information Criterion (AIC), Corrected Akaike

Information Criterion (CAIC), Hannan-Quinn Information Criterion (HQIC) and

Bayesian Information Criterion (BIC). Here, AIC=−2 logL+ 2k, CAIC=−2 logL+

( 2kn
n−k−1

), HQIC=−2 logL+2k log(log(n)) and BIC=−2 logL+k log n, where, L is the

likelihood function evaluated at the maximum likelihood estimates, k is the number

of parameters and n is the sample size. The appropriate model is one with minimum

AIC, CAIC, HQIC and BIC values.

1.6 Discretization of Continuous Distributions

In lifetime modelling, the observed measurements may be discrete in nature. We

come across such type of situations where lifetime is measured on a discrete scale.

For instance, the convalescing period of a particular disease measured in days and the

survival time of cancer patients in months, see Krishna and Singh (2009). Here the

continuous lifetime is not measured on a continuous scale, but counted as a discrete

random variable.

Developing discrete version of continuous distributions have attracted the atten-

tion of researchers. In recent decades, a large number of research papers, dealing with
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discrete distribution, which are derived by discretizing continuous random variables

have appeared in the statistics literature. Lisman and van Zuylen (1972) proposed

and Kemp (1997) studied the discrete normal distribution. Salvia and Bollinger

(1982) introduced the basic results about discrete reliability and illustrated them

with discrete lifetime distributions with one parameter. Roy (2003) studied another

version of discrete normal distribution. A discrete analogue of Weibull distribution

was first proposed by Nakagawa and Osaki (1975). Stein and Dattero (1984) intro-

duced a second type discrete Weibull distribution and a third one were proposed

by Padgett and Spurrier (1985). Sato et al. (1999) proposed discrete exponential

distribution and applied this distribution to model defect count in semiconductor de-

position equipment and defect count distribution per chips. Inusah and Kozubowski

(2006) and Kozubowski and Inusah (2006) introduced discrete analogues of Laplace

and skew-Laplace distributions, respectively. Krishna and Pundir (2009) introduced

the discrete Burr distribution which led to the discrete Pareto distribution. A discrete

analogue of the generalized exponential distribution of Gupta and Kundu (1999) was

proposed by Nekoukhou et al. (2012). Chakraborty and Chakravarty (2012) intro-

duced the discrete gamma distribution. Jayakumar and Sankaran (2018) introduced

a generalization of discrete Weibull distribution and studied its properties.

The continuous random variable may be characterized either by its pdf, hrf,

moments, etc. Construction of a discrete analogue from a continuous distribution

is based on the principle of preserving one or more characteristic property of the

continuous one. Discretization of continuous distribution can be done using different
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methodologies. Some of them are: i) discretize the continuous cdf, ii) discretize

the continuous pdf, iii) discretize the continuous hrf and iv) obtain discrete lifetime

distributions from the alternative hazard rate. A detailed survey of the methods

and constructions of discrete analogues of continuous distributions are discussed in

Chakraborty (2015).

Let X, be a continuous random variable, then its discrete analogue Y, can be

derived by using the survival function as follows:

P (Y = y) = P (X ≥ y)−P (X ≥ y+1) = SX(y)−SX(y+1) ; y = 0, 1, 2, ... . (1.6.1)

where, Y = bXc = largest integer less than or equal to X and SX(.) is the survival

function of the random variable X. For a given continuous distribution, it is possible

to generate corresponding discrete distribution using the Eqn.(1.6.1). Suppose the

underlying distribution is exponential with survival function, SX(x) = P (X ≥ x) =

e−βx, then the pmf of its discrete version is given by

P (Y = y) = e−βy − e−β(y+1) = qy − qy+1 = (1− q)qy ; y = 0, 1, 2, ... , (1.6.2)

where, q = e−β. This is the geometric distribution with parameter q. By the similar

way, Nakagawa and Osaki (1975) proposed the discrete Weibull distribution.

1.7 Objectives of the Study

The main objectives of the present study are as follows:

• To study the recent developments in the construction of families of continuous

and discrete distributions.
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• To construct new families of Weibull and related distributions.

• To construct discrete analogues of well known continuous distributions related

to Weibull distribution.

• To study the statistical properties of the newly constructed distributions.

• To obtain the estimates of the parameters of the new models.

• To analyze the flexibility of the new models for real life data modelling.

• To develop various autoregressive minification process of the new models.

• To extend the new models to bivariate case.

1.8 Organization of the work

This thesis contains seven chapters, including this one. The other chapters are

organized as follows:

In Chapter 2, we introduce a new class of continuous distribution called ”T-

transmuted - X family”. Some members of this family are also proposed and stud-

ied. Being a special case of the exponential transmuted Weibull (ETW) distribu-

tion, the exponential transmuted exponential (ETE) distribution is studied in detail.

Shapes of density function and hazard rate function of this distribution are discussed.

Characterizations of ETE distribution based on truncated moments and hazard rate
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function are also derived. Applications of the distribution to model real life data are

presented.

A new generalization of Weibull distributions called ”Weibull truncated negative

binomial (WTNB) distribution” has been developed in the Chapter 3 and its vari-

ous properties are derived. Characterizations of the WTNB distribution are studied

based on truncated moments and hazard rate function. Minification process with

WTNB distribution marginals are obtained. Bivariate extension of WTNB distribu-

tion is also developed. Real data applications of WTNB distribution are discussed

with two data sets.

In Chapter 4, we introduced a new bivariate distribution with modified Weibull

distribution as marginals. The marginal and conditional probability distributions,

mathematical expectations and moment generating function of the new bivariate

model are derived. The bivariate copula function of the new model is proposed and

a real data application is presented.

Some new discrete analogues of Weibull geometric and additive Weibull geometric

distributions are introduced in Chapter 5. Their properties and applications are also

discussed in this Chapter.

Chapter 6 presents discrete analogue of the complementary Weibull geometric

distribution. Its mathematical properties are studied and obtained the derivations

for the quantile function, probability generating function and distributions of order

statistics. The flexibility of this distribution for data modelling are illustrated with
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two real-life data sets.

Finally, Chapter 7 gives the concluding remarks of the thesis and presents the

possible future works in this direction.



CHAPTER

TWO

T-TRANSMUTED X FAMILY OF DISTRIBUTIONS

2.1 Introduction

1 Lifetime distributions are used to explain the life of a system, a device, and

in general, time-to-event data. Modelling and analyzing lifetime data becomes a

crucial problem in many applied fields such as medicine, engineering, insurance,

finance and so on. The distributions such as exponential, gamma and Weibull have

been frequently used in statistics literature to analyze lifetime data. The quality

of the statistical analysis procedures heavily depend on the assumed probability

distributions. Because of this, extensive efforts have been made by many researchers

to develop new classes of distributions. Jayakumar and Babu (2015) introduced a

1Some results included in this chapter have appeared in the paper Jayakumar and Babu (2017).

45
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class of distributions containing Marshall-Olkin extended Weibull distribution and

studied the role of this distribution in the study of minification process.

In Section 2, we introduce a broad class of lifetime distributions, which are de-

veloped by combining the T-X family of Alzaatreh et al. (2013b) and the trans-

muted family of distributions by Shaw and Buckley (2007). Section 3 proposes some

members of the T-transmuted X family, such as exponential-transmuted uniform dis-

tribution, exponential-transmuted Fréchet distribution and exponential-transmuted

Raleigh distribution. In Section 4, we study the exponential-transmuted Weibull

distribution and an extensive study of one of its special case, called exponential-

transmuted exponential distribution. In this section, we study the shape properties

of its pdf and hrf, expressions for quantile function, moments and moment generat-

ing function. Characterizations based on truncated moments and hrf are also study

in this section. Maximum likelihood estimation of its parameters, simulation study,

expressions for entropy and two real life data applications are also obtain in this

section.

2.2 A new extended family of continuous distri-

butions

In the composite function W (F (x)) given in the Eqn.(1.3.5), we assume that F (x)

follows the transmuted family given in the Eqn.(1.3.1) and obtain some more gener-
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alized family of distributions. As a special case, we take W (F (x)) = −ln[1− F (x)],

the cumulative hazard function of F (x), where F (x) is a transmuted family. That

is,

W (F (x)) = −ln
[
1−G(x)[1 + λḠ(x)]

]
, |λ| ≤ 1, (2.2.1)

where G(x) is the base distribution and Ḡ(x) = 1−G(x). Then, the cdf of the new

family is

J(x) =

∫ −ln[1−G(x)[1+λḠ(x)]]

0

dR(t) = R
{
−ln

[
1−G(x)[1 + λḠ(x)]

]}
, (2.2.2)

where R(t) is the cdf of the random variable T with pdf r(t). We call J(x) as the

”T-transmuted X family” of distributions. The pdf of J(x) is

j(x) =
d

dx
[J(x)] =

g(x)[1 + λ− 2λG(x)]

1−G(x)[1 + λḠ(x)]
r
{
−ln

[
1−G(x)[1 + λḠ(x)]

]}
. (2.2.3)

The hrf is given by

h(x) =
j(x)

1− J(x)
=
g(x)[1 + λ− 2λG(x)]

1−G(x)[1 + λḠ(x)]

r
{
−ln[1−G(x)(1 + λḠ(x))]

}
1−R

{
−ln[1−G(x)(1 + λḠ(x))]

} .
(2.2.4)

The shapes of the pdf and hrf of T-transmuted X family can be described analytically.

The critical points of the density function are the roots of the equation:

∂ ln[j(x)]

∂x
=

g′(x)

g(x)
− 2λg(x)

1 + λ− 2λG(x)
− g(x)[1 + λ− 2λG(x)]

1−G(x)[1 + λḠ(x)][
1

r
{
−ln[1−G(x)(1 + λḠ(x))]

} + 1

]
= 0. (2.2.5)

Here, the Eqn.(2.2.5) may have more than one root. If x = x0 is a root, then it

corresponds to a local maximum if ∂2ln[j(x)]
∂x2 < 0, a local minimum if ∂2ln[j(x)]

∂x2 > 0,
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and a point of inflection if ∂2ln(j(x))
∂x2 = 0.

Similarly, the critical points of h(x) are the roots of the equation:

∂ ln[h(x)]

∂x
=
g′(x)

g(x)
− 2λg(x)

1 + λ− 2λG(x)

− g(x)[1 + λ− 2λG(x)]

1−G(x)[1 + λḠ(x)]

[
1

r
{
−ln[1−G(x)(1 + λḠ(x))]

} +

r
{
−ln[1−G(x)(1 + λḠ(x))]

}
1−R

{
−ln[1−G(x)(1 + λḠ(x))]

} + 1

]
= 0.

(2.2.6)

There may be more than one root to the Eqn.(2.2.6). If x = x0 is a root, then it

corresponds to a local maximum if ∂2ln[h(x)]
∂x2 < 0, a local minimum if ∂2ln[h(x)]

∂x2 > 0,

and a point of inflection if ∂2ln[h(x)]
∂x2 = 0.

Several families of distributions can be derived from T-transmuted X family for

different choices of r(t).

2.3 Some Members of T-transmuted X Family of

Distributions and their Properties

In this section we discuss some members of the T-transmuted X family. Here we

consider the case where T follows an exponential distribution with parameter θ > 0

with cdf R(t) = 1− e−θt, t > 0.

2.3.1 Exponential-transmuted uniform (ETU) distribution

We consider the base distribution as the uniform distribution with cdf and pdf are

respectively given by, G(x) = x
α

and g(x) = 1
α
; 0 < x < α. Then the cdf and pdf of
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the ETU distribution are respectively given by

J(x) = 1−
[
1− x

α

[
1 + λ(1− x

α
)
]]θ

, (2.3.1)

and

j(x) =
θ

α

[
1− x

α

[
1 + λ(1− x

α
)
]]θ−1(

1 + λ
(
1− 2x

α

))
, (2.3.2)

where, α > 0, θ > 0, |λ| ≤ 1 and 0 < x < α.

2.3.2 Exponential-transmuted Fréchet (ETF) distribution

Here we consider the base distribution as a Fréchet distribution with cdf and pdf

are respectively given by, G(x) = e−(β
x
)α

and g(x) = αβαx−(α+1)e−(β
x
)α

; x > 0, α >

0, β > 0. Then W (F (x)) = −ln
(
1− e−(β

x
)α[

1+λ(1− e−(β
x
)α

)
])
. Now, the cdf and pdf

of the ETF distribution are given by

J(x) = R

[
−ln

(
1− e−(β

x
)α[

1 + λ(1− e−(β
x
)α

)
])]

= 1−
[
1− e−(β

x
)α[

1 + λ(1− e−(β
x
)α

)
]]θ

, (2.3.3)

and

j(x) = θαβαx−(α+1)e−(β
x
)α (1 + λ− 2λe−(β

x
)α

)

(1− e−(β
x
)α

[1 + λ(1− e−(β
x
)α

)])1−θ
, (2.3.4)

where, α > 0, β > 0, θ > 0, |λ| ≤ 1 and x > 0. Some properties and applications of

the ETF distribution are studied in Jayakumar and Babu (2018a).
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2.3.3 Exponential-transmuted Rayleigh (ETR) distribution

We consider the base distribution as a Rayleigh distribution with cdf and pdf are

respectively given by, G(x) = 1 − e−
x2

2σ2 and g(x) = x
σ2 e

− x2

2σ2 . Then the cdf and pdf

of the ETR distribution are respectively given by

J(x) = 1− e−
θx2

2σ2
[
1− λ+ λe−

x2

2σ2
]θ
, (2.3.5)

and

j(x) =
θxe−

θx2

2σ2

σ2

[
1− λ+ 2λe−

x2

2σ2
][

1− λ+ λe−
x2

2σ2
]1−θ

, (2.3.6)

where, σ > 0, θ > 0, |λ| ≤ 1 and x > 0.

2.4 Exponential-transmuted Weibull (ETW) dis-

tribution

Here we consider the base distribution as the Weibull distribution with cdf and pdf

are respectively given by, G(x) = 1 − e−(βx)α
and g(x) = αβαxα−1e−(βx)α

. Then the

cdf and pdf of the ETW distribution are respectively given by

J(x) = 1− e−θ(βx)α[
1− λ+ λe−(βx)α]θ

, (2.4.1)

and

j(x) = θαβαxα−1e−θ(βx)α (1− λ+ 2λe−(βx)α
)

(1− λ+ λe−(βx)α)1−θ
, (2.4.2)

where, α > 0, β > 0, θ > 0, |λ| ≤ 1 and x > 0. When θ = 1 and λ = 0, the ETW

distribution becomes the well known two parameter Weibull distribution. Various

shapes of the pdf of the ETW distribution are shown in Figure 2.1.
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Figure 2.1: The pdf of ETW distribution for various choices of α, θ and λ.

2.4.1 Exponential-transmuted exponential (ETE) distribu-

tion

Let W (F (x)) = −ln
(
1− F (x)

)
= −ln

[
1−G(x)(1 + λḠ(x))

]
, where the base distri-

bution is exponential with cdf, G(x) = 1 − e−βx; x > 0, β > 0. Then the cdf of the

corresponding family is given by

J(x) = 1− e−θβx(1− λ+ λe−βx)θ; x > 0, θ > 0, β > 0, |λ| ≤ 1. (2.4.3)

We call this new family of distributions as Exponential-transmuted Exponential

(ETE) distribution with parameters θ, β and λ. The pdf of this distribution is

j(x) = θβe−θβx

(
1− λ+ 2λe−βx

)(
1− λ+ λe−βx

)1−θ
; x > 0, θ > 0, β > 0, |λ| ≤ 1. (2.4.4)

When λ = 0, the ETE distribution becomes exponential distribution. The ETE

distribution is a special case of the ETW distribution when the shape parameter
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α = 1 in the Eqn.(2.4.1).

2.4.2 Properties of the ETE distribution

Using the binomial expansion, the cdf of the ETE distribution given in the Eqn.(2.4.3)

can be expressed as

J(x) = 1− e−θβx
(
1− λ(1− e−βx)

)θ
= 1− e−θβx

∞∑
i=0

(−1)i

(
θ

i

)
λi(1− e−βx)i

= 1− e−θβx

∞∑
k=0

∞∑
i=k

(−1)i+kλi

(
θ

i

)(
i

k

)
e−kβx

= 1−
∞∑

k=0

Sk(θ, λ)e−(k+θ)βx,

where

Sk(θ, λ) =
∞∑

i=k

(−1)i+k
(
θ
i

)(
i
k

)
λi. (2.4.5)

That is

J(x) = 1−
∞∑

k=0

Sk(θ, λ)e−(k+θ)βx. (2.4.6)

Then the pdf can be expressed as

j(x) =
∞∑

k=0

Sk(θ, λ)(k + θ)βe−(k+θ)βx. (2.4.7)
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2.4.3 Shapes of the density function

The shapes of the density function can describe analytically. The critical points of

the ETE density function are the roots of the equation, ∂ ln(j(x))
∂x

= 0. That is,

∂ ln(j(x))

∂x
= −θβ − λβ(θ − 1)e−βx

1− λ+ λe−βx
− 2λβe−βx

1− λ+ 2λe−βx
= 0. (2.4.8)

This implies
u2[4θλ2] + u[λ(λ− 1)(4θ + 1)] + θ(1− λ)2 = 0, (2.4.9)

where u = e−βx. Here the Eqn.(2.4.9) is a quadratic equation in u and since, 0 <

u < 1, the possible root is

u =
1− λ

λ

[
(8θ + 1)

1
2 − (4θ + 1)

8θ

]
.

Therefore, the solution of the Eqn.(2.4.9) is x0 = −ln(u)
β

. Since, θ > 0 and 0 < u < 1,

the root x0 exists only if −1 < λ < (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< 0. Thus the shape of the

density function of the ETE distribution is unimodal for x > 0, θ > 0, β > 0 and

−1 < λ < (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< 0. Also note that

∂2ln(j(x))

∂x2
= λβ2(1− λ)e−βx

[
θ − 1

(1− λ+ λe−βx)2
+

2

(1− λ+ 2λe−βx)2

]
. (2.4.10)

Since, λ < 0, θ > 0, β > 0 and 0 < e−βx < 1, the Eqn.(2.4.10) is always negative.

That is ∂2ln(j(x))
∂x2 < 0. The third derivative ∂3ln(j(x))

∂x3 also exists. The mode of the

ETE distribution is given by

x0 =
−1

β
ln

[
1− λ

λ

(
(8θ + 1)

1
2 − (4θ + 1)

8θ

)]
, (2.4.11)

where θ > 0 and −1 < λ < (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< 0. Thus, the shape of the pdf of

the ETE distribution is decreasing for (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< λ < 1 and is unimodal for
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−1 < λ < (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< 0. Various shapes of the pdf of the ETE distribution are

shown in Figure 2.2.

Figure 2.2: The pdf of ETE distribution for various choices of α, θ and λ.

2.4.4 Hazard rate function

The hrf of the ETE distribution is given by

h(x) =
j(x)

1− J(x)
= θβ

1− λ+ 2λe−βx

1− λ+ λe−βx
; x > 0, θ > 0, β > 0, |λ| ≤ 1. (2.4.12)

Here note that, limx→0 h(x) = θβ(λ + 1), and limx→∞ h(x) = θβ. We have the

following cases :

Case i. When −1 ≤ λ < 0, h(x) is an increasing function, increases from (1 + λ)θβ

to θβ.

Case ii. When λ = 0, h(x) = θβ, a constant function.
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Figure 2.3: The hrf of ETE distribution for various parameter values.

Case iii. When 0 < λ < 1, h(x) is a decreasing function decreases from (1 + λ)θβ to

θβ.

Case iv. When λ = 1, h(x) = 2θβ, a constant function.

The shapes of the hazard rate function for various parameter values are presented in

the Figure 2.3.

2.4.5 Quantile function

The pthquantile xp of the ETE distribution is the real solution of the equation J(xp) =

p. That is, 1− e−θβxp(1− λ+ λe−βxp)θ = p.

⇒ e−βxp(1− λ+ λe−βxp) = (1− p)
1
θ . (2.4.13)
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Let u = e−βxp . Then xp = − ln(u)
β
. Hence from the Eqn.(2.4.13), λu2 + (1 − λ)u −

(1− p)
1
θ = 0 ⇒ u =

−(1−λ)±
√

(1−λ)2+4λ(1−p)
1
θ

2λ
.

Since 0 < u < 1, the possible root of u is

u =
−(1− λ) +

√
(1− λ)2 + 4λ(1− p)

1
θ

2λ
.

Therefore,

xp = − 1

β
ln


[

1

λ
(1− p)

1
θ +

1

4

(
1− λ

λ

)2
] 1

2

− 1

2

(
1− λ

λ

) . (2.4.14)

In particular, the median is given by

Median = x0.5 = − 1

β
ln


[

1

λ

(
1

2

) 1
θ

+
1

4

(
1− λ

λ

)2
] 1

2

− 1

2

(
1− λ

λ

) . (2.4.15)

2.4.6 Moments and moment generating function

Here we derive the expression for raw moments of the ETE distribution as

µ
′

r = E(Xr) =

∫ ∞

0

xr

∞∑
k=0

Sk(θ, λ)(k + θ)βe−(k+θ)βxdx

=
∞∑

k=0

Sk(θ, λ)
Γ(r + 1)

[(k + θ)β]r
, (2.4.16)

where Sk(θ, λ) is as in Eqn.(2.4.5). The first four raw moments are respectively

µ
′

1 =
∞∑

k=0

Sk(θ, λ)
1

[(k + θ)β]
,

µ
′

2 =
∞∑

k=0

Sk(θ, λ)
2

[(k + θ)β]2
,

µ
′

3 =
∞∑

k=0

Sk(θ, λ)
6

[(k + θ)β]3
,
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µ
′

4 =
∞∑

k=0

Sk(θ, λ)
24

[(k + θ)β]4
.

Then, the skewness = µ3
2

µ2
3 and the kurtosis = µ4

µ2
2 , where µ2 = µ

′
2 − µ

′
1

2
, µ3 =

µ
′
3 − 3µ

′
2µ

′
1 + 2µ

′
1

3
and µ4 = µ

′
4 − 4µ

′
3µ

′
1 + 6µ

′
2µ

′
1

2 − 3µ
′
1

4
. Since the pdf of the ETE

distribution is decreasing for (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< λ < 1, it may be skewed to the right.

Also for −1 < λ < (8θ+1)
1
2−(4θ+1)

(8θ+1)
1
2 +(4θ−1)

< 0, the pdf is unimodal and the mode value

is always less than the mean value, it shows the right skewness. In Table 2.1, we

present the raw moments, central moments, mode, skewness and kurtosis of the ETE

distribution for different choices of parameter values. In all the cases, the distribution

shows a positively skewed behavior. The moment generating function (mgf) of the

ETE distribution is obtained as

MX(t) = E(etX)

=

∫ ∞

0

etx

∞∑
k=0

Sk(θ, λ)(k + θ)βe−(k+θ)βxdx

=
∞∑

k=0

Sk(θ, λ)(k + θ)β

∫ ∞

0

e−[(k+θ)β−t]xdx

=
∞∑

k=0

Sk(θ, λ)(k + θ)β
1

(k + θ)β − t
, (2.4.17)

where Sk(θ, λ) is as in Eqn.(2.4.5).

2.4.7 Characterization based on truncated moments

Characterization of a probability distribution plays an important role in statistics

and mathematical sciences. In recent years, there has been a great interest in charac-
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Table 2.1: Moments, Mode, Skewness and Kurtosis for various choices of parameters.
Parameter Raw moments Central moments Mode Skewness Kurtosis

θ = 1.0
β = 5.0
λ = −0.5

µ
′
1 = 0.25
µ
′
2 = 0.11
µ
′
3 = 0.07
µ
′
4 = 0.06

µ2 = 0.048
µ3 = 0.019
µ4 = 0.020

0.058 3.28 8.66

θ = 0.5
β = 0.5
λ = −0.5

µ
′
1 = 4.61

µ
′
2 = 38.44

µ
′
3 = 467.34

µ
′
4 = 7509.17

µ2 = 17.19
µ3 = 131.66
µ4 = 2438.05

1.114 3.414 8.25

θ = 0.5
β = 10
λ = −0.5

µ
′
1 = 0.231
µ
′
2 = 0.096
µ
′
3 = 0.058
µ
′
4 = 0.047

µ2 = 0.043
µ3 = 0.016
µ4 = 0.015

0.055 3.35 8.58

θ = 2.5
β = 0.5
λ = −0.5

µ
′
1 = 1.14
µ
′
2 = 2.25
µ
′
3 = 6.19

µ
′
4 = 21.74

µ2 = 0.95
µ3 = 1.46
µ4 = 5.99

0.076 2.477 6.63

θ = 0.5
β = 1.0
λ = −0.5

µ
′
1 = 2.31
µ
′
2 = 9.61

µ
′
3 = 58.42

µ
′
4 = 469.32

µ2 = 4.27
µ3 = 16.48
µ4 = 151.78

0.557 3.48 8.31

θ = 0.5
β = 1.0
λ = 0.5

µ
′
1 = 1.62
µ
′
2 = 5.95

µ
′
3 = 34.54

µ
′
4 = 273.16

µ2 = 3.33
µ3 = 14.13
µ4 = 122.37

0 5.43 11.06

θ = 3.0
β = 2.0
λ = 0.5

µ
′
1 = 0.116
µ
′
2 = 0.028
µ
′
3 = 0.011
µ
′
4 = 0.006

µ2 = 0.015
µ3 = 0.004
µ4 = 0.003

0 6.23 12.35

terizations of probability distributions by truncated moments. The development of

the general theory of the characterizations of probability distributions by truncated

moments began with the work of Galambos and Kotz (1978). Further development

on the characterizations of probability distributions by truncated moments contin-

ued with the contributions of many authors and researchers, among them Kotz and

Shanbhag (1980) and Glanzel (1987, 1990), are notable.

A probability distribution can be characterized through various methods, see, for
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example, Su and Huang (2000), Gupta and Ahsanullah (2006), Nair and Sudheesh

(2010), Nanda (2010), Hamedani (2010), Huang and Su (2012), Ahsanullah et al.

(2014), among others. Several characterizations of Weibull distribution are available

in the literature (see, Janardan (1978), Janardan and Schaeffer (1978), Janardan

and Taneja (1979a, 1979b), Shimizu and Davies (1981), Khan and Beg (1987)).

Scholz (1990) characterizes a three parameter Weibull distribution using a quantile

relationship. We present a characterization of the ETE distribution in terms of a

simple relationship between truncated moments. This result is developed using the

Theorem 1 of Glanzel (1987), which stated as follows:

Theorem 2.4.1. Let (Ω,A,P) be a given probability space, and let H = [a, b] be an

interval for some a < b (a = ∞, b = −∞ might as well be allowed). Let X : Ω → H

be a continuous random variable with distribution function G(x) and let q1 and q2 be

two real functions defined on H such that

E[q1(X)|X ≥ x] = E[q2(X)|X ≥ x]η(x), x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1(H), η ∈ C2(H), and

G(x) is a twice continuously differentiable and strictly monotone function on the set

H. Finally assume that the equation q2η = q1 has no real solution in the interior of

H. Then G is uniquely determined by the functions q1, q2 and η. In particular,

G(x) =

∫ x

a

C

∣∣∣∣ η′(u)

η(u)q2(u)− q1(u)

∣∣∣∣e−s(u)du,

where the function s is a solution of the differential equation s′ = η′q2

ηq2−q1
and C is a

constant chosen to make
∫

H
dG = 1.
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The above theorem has the advantage that the cdf G is not required to have

a closed form and is given in terms of an integral whose integrand depends on the

solution of a first order differential equation, which can serve as a bridge between

probability and differential equation. The following theorem gives the characteri-

zation of the ETE distribution in terms of a simple relationship between truncated

moments.

Theorem 2.4.2. Let X : Ω → (0,∞) be a continuous random variable, and let

q2(x) = (1−λ+λe−βx)1−θ(1−λ+ 2λe−βx)−1 and q1(x) = q2(x)e
−θβx for x > 0. The

pdf of X is Eqn.(2.4.4) if and only if the function η defined in Theorem 2.4.1 has

the form

η(x) =
1

2
e−θβx, x > 0. (2.4.18)

Proof. Let X has the pdf given in Eqn.(2.4.4). Then

(1− J(x))E[q2(X)|X ≥ x] = e−θβx, x > 0,

(1− J(x))E[q1(X)|X ≥ x] =
1

2
e−2θβx, x > 0,

and

η(x)q2(x)− q1(x) = −1

2

e−θβx(1− λ+ λe−βx)1−θ

1− λ+ 2λe−βx
< 0, for x > 0. (2.4.19)

Conversely, if η is given as Eqn.(2.4.18), then

s′(x) =
η′(x)q2(x)

η(x)q2(x)− q1(x)
= θβ, x > 0 (2.4.20)

and hence s(x) = θβx, x > 0, or e−s(x) = e−θβx, x > 0. Now, using Theorem 2.4.1,

X has the pdf given in Eqn.(2.4.4).
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Corollary 2.4.1. Let X : Ω → (0,∞) be a continuous random variable, and let

q2(x) = (1 − λ + λe−βx)1−θ(1 − λ + 2λe−(βx))−1. The pdf of X is as Eqn.(2.4.4) if

and only if there exist functions q1 and η defined in Theorem 2.4.1 satisfying the

differential equation
η′(x)q2(x)

η(x)q2(x)− q1(x)
= θβ, x > 0. (2.4.21)

Remark 2.4.1. The general solution of the differential equation in Corollary 2.4.1

is obtained as follows:

η′(x)− θβη(x) = [q2(x)]
−1q1(x)θβ,

or
d

dx
[η(x)e−θβx] = [q2(x)]

−1q1(x)θβe
−θβx.

Thus we obtain

η(x) = eθβx

[
−
∫
θβe−θβx[q2(x)]

−1q1(x)dx+D

]
, (2.4.22)

where D is a constant.

2.4.8 Characterization based on hazard rate function

The hrf h(x) of a twice differentiable distribution function J(x) and pdf j(x) satisfies

the first order differential equation

j′(x)

j(x)
=
h′(x)

h(x)
− h(x). (2.4.23)

For many univariate continuous distributions, this is the only characterization avail-

able in terms of the hrf. Hamedani and Ahsanullah (2005) characterized certain well

known distributions in terms of the hrf. The hrf, h(x) of the ETE distribution has a
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twice differentiable cdf J(x) and pdf j(x) satisfies the first order differential equation

Eqn.(2.4.23). The following characterization establishes a non-trivial characteriza-

tion of the ETE distribution, when θ = 1.

Theorem 2.4.3. Let X : Ω → (0,∞) be a continuous random variable. The pdf of

X is given in Eqn.(2.4.4) if and only if its hrf h(x) satisfies the differential equation

1

β
h′(x) =

d

dx

[
1− λ+ 2λe−βx

1− λ+ λe−βx

]
. (2.4.24)

Proof. When θ = 1, the pdf j(x) and hrf h(x) are respectively

j(x) = βe−βx(1− λ+ 2λe−βx), (2.4.25)

and

h(x) =
β(1− λ+ 2λe−βx)

1− λ+ λe−βx
. (2.4.26)

Then we have
j′(x)

j(x)
=

−2λβe−βx

1− λ+ 2λe−βx
− β. (2.4.27)

Using the Eqn.(2.4.23) we get the first order differential equation

1

β
h′(x) = − λ(1− λ)βe−βx

(1− λ+ λe−βx)2
, (2.4.28)

which implies
1

β
h′(x) =

d

dx

[
1− λ+ 2λe−βx

1− λ+ λe−βx

]
.

Now, if the differential equation Eqn.(2.4.24) holds, then

d

dx

[
1

β
h(x)

]
=

d

dx

[
1− λ+ 2λe−βx

1− λ+ λe−βx

]
, x > 0,

from which, we obtain

h(x) =
β(1− λ+ 2λe−βx)

1− λ+ λe−βx
, x > 0, (2.4.29)

which is the hrf of the ETE distribution, when θ = 1.
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2.4.9 Maximum likelihood estimation of the parameters of

ETE distribution

The likelihood function of the ETE distribution is given by

L = (θβ)ne−θβ
∑n

1=1 xi

n∏
i=1

(
1− λ+ 2λe−βxi

) n∏
i=1

(
1− λ+ λe−βxi

)θ−1
. (2.4.30)

The log likelihood function is

logL = n log(θ) + n log(β)− θβ
n∑

i=1

xi +
n∑

i=1

log(1− λ+ 2λe−βxi)

+(θ − 1)
n∑

i=1

log(1− λ+ λe−βxi). (2.4.31)

The Eqn.(2.4.31) can be maximized either directly or by solving the nonlinear like-

lihood equations obtained by differentiating this with respect to θ, β and λ. The

components of the score vector V (Θ) =

(
∂ log L

∂θ
, ∂ log L

∂β
, ∂ log L

∂λ

)
, are given by

∂ logL

∂θ
=

n

θ
− β

n∑
i=1

xi +
n∑

i=1

log(1− λ+ λe−βxi),

∂ logL

∂β
=

n

β
− θ

n∑
i=1

xi −
n∑

i=1

2λβe−βxi

1− λ+ 2λe−βxi
−

n∑
i=1

λβ(θ − 1)e−βxi

1− λ+ λe−βxi
,

∂ logL

∂λ
=

n∑
i=1

2e−βxi

1− λ+ 2λe−βxi
+ (θ − 1)

n∑
i=1

e−βxi − 1

1− λ+ λe−βxi
.

That is, the normal equations takes the following form

n

θ
− β

n∑
i=1

xi +
n∑

i=1

log(1− λ+ λe−βxi) = 0, (2.4.32)

n

β
−θ

n∑
i=1

xi−2λβ
n∑

i=1

e−βxi

1− λ+ 2λe−βxi
−λβ(θ−1)

n∑
i=1

e−βxi

1− λ+ λe−βxi
= 0, (2.4.33)
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n∑
i=1

2e−βxi

1− λ+ 2λe−βxi
+ (θ − 1)

n∑
i=1

e−βxi − 1

1− λ+ λe−βxi
= 0. (2.4.34)

These equations do not have explicit solutions and they have to be obtained numer-

ically. From the Eqn.(2.4.32), the MLE of the parameter θ can be obtained as

θ̂ =
n

β
∑n

i=1 xi −
∑n

i=1 log(1− λ+ λe−βxi)
. (2.4.35)

Substituting the Eqn.(2.4.35) in the Eqn.(2.4.32) and the Eqn.(2.4.33), we get the

MLEs of β and λ. Statistical softwares like nlm or optim packages in R programming

can be used to solve these equations numerically.

2.4.10 Simulation study

In order to check the performance of the maximum likelihood estimates, we con-

duct a simulation study. We take the sample sizes as n = 50, 100, 200, 500, 800 and

1000. The process is replicated 1000 times and the average estimates along with the

standard errors are presented in Table 2.2. Here we can see that as the sample size

increases the MLE estimates of the ETE distribution converge to the true value and

the corresponding standard errors are decreasing.
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Table 2.2: Average of MLEs of the ETE distribution with standard error for various
choices of parameter values.

Parameters n θ̂(ŜE(θ̂)) β̂(ŜE(β̂)) λ̂(ŜE(λ̂))

θ = 1
β = 5

λ = −0.5

50
100
200
500
800
1000

0.990(1.108)
1.112(1.081)
1.049(0.717)
1.047(0.667)
1.023(0.651)
1.006(0.560)

5.717(1.891)
5.228(1.840)
5.114(1.948)
5.007(1.901)
5.001(1.281)
4.996(1.029)

-0.598(0.275)
-0.595(0.299)
-0.579(0.138)
-0.554(0.101)
-0.516(0.097)
-0.508(0.073)

θ = 5
β = 10
λ = 0.5

50
100
200
500
800
1000

4.416(1.231)
4.695(0.843)
4.831(1.207)
4.919(0.943)
5.099(0.886)
5.062(0.778)

9.639(2.054)
9.747(1.479)
9.839(1.582)
10.098(1.809)
9.982(1.171)
9.997(1.066)

0.622(0.342)
0.581(0.189)
0.513(0.221)
0.507(0.226)
0.483(0.118)
0.499(0.033)

θ = 0.5
β = 0.5
λ = −0.9

50
100
200
500
800
1000

0.418(0.299)
0.432(0.257)
0.456(0.248)
0.499(0.201)
5.133(0.177)
5.065(0.132)

0.431(0.238)
0.452(0.370)
0.475(0.248)
0.507(0.164)
0.495(0.113)
0.498(0.091)

-0.807(0.167)
-0.814(0.121)
-0.851(0.093)
-0.883(0.071)
-0.899(0.062)
-0.903(0.008)

θ = 10
β = 2.5
λ = 0.8

50
100
200
500
800
1000

9.120(1.155)
9.435(0.827)
9.971(0.729)
10.094(0.226)
9.991(0.217)
10.004(0.116)

2.249(0.792)
2.496(0.755)
2.507(0.479)
2.503(0.223)
2.512(0.182)
2.499(0.177)

0.869(0.149)
0.837(0.153)
0.825(0.071)
0.818(0.039)
0.811(0.026)
0.809(0.022)

2.4.11 Entropy

For the ETE distribution, the Rényi entropy is obtained as

IR(γ) =
γ

1− γ

(
log(θ) + log(β)

)
+

γ

1− γ
log

(∫ ∞

0

e−γθβx
(
1− λ+ λe−βx

)γ(θ−1)

(
1− λ+ 2λe−βx

)γ
dx

)
. (2.4.36)

For given values of θ, β, λ and γ, the Rényi entropy can be numerically computed

using R programming. Table 2.3 shows the values of entropy for given parameter
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values and γ. The Shannon entropy of T-transmuted X family of distributions is

Table 2.3: Rényi entropy for given values of θ, β, λ and γ.
θ β λ γ = 0.5 γ = 2.0 γ = 3.0 γ = 5.0
1 1 -1 1.5963 1.0986 1.0075 0.9183

-0.5 1.5216 0.9808 0.8836 0.7907
0.5 1.1732 0.3449 0.1813 0.0189
1 0.6931 0.0000 -0.1438 -0.2908

2 1 -1 1.0383 0.5935 0.5106 0.4284
-0.5 0.9081 0.6768 0.2939 0.1999
0.5 0.4029 -0.3769 -0.5306 -0.6852
1 0.0001 -0.6931 -0.8369 -0.9835

2 2 -1 0.3452 -0.0996 1.4407 -0.1826
-0.5 0.2149 -0.3028 -0.3993 -0.4933
0.5 -0.2903 -1.0700 -1.2237 -1.3783
1 -0.6932 -1.3863 -1.5301 -1.6771

0.5 0.5 -1 2.8918 2.3375 2.2357 2.1371
-0.5 2.8510 2.2723 2.1683 2.0696
0.5 1.9387 1.7819 1.6028 1.4261
1 2.0794 1.3863 1.2427 1.0955

given by

E

(
− log

(
j(X)

))
= −E

(
log
(
g(X)

))
− E

(
logL

[
1 + λ− 2λG(X)

])
+E

(
log
[
1−G(x)

(
1 + λḠ(x)

)])
+E

[
log
[
γ
(
− log

[
1−G(X)

(
1 + λḠ(X)

)])]]
.(2.4.37)

For the ETE distribution, the Shannon entropy obtained as

E

(
− log

(
j(X)

))
= θβE(X)− E

[
log

(
1− λ+ λe−βX

)]
−(θ − 1)E

[
log

(
1− λ+ λe−βX

)]
. (2.4.38)
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2.4.12 Data applications of the ETE distribution

In this section, to show how the ETE distribution works in practice, we consider two

real data sets. We compare the fit of the ETE distribution with the Kumaraswamy

exponential (KuE) distribution, exponentiated Weibull (EW) distribution, Weibull

(W) distribution and the exponential (E) distribution. The values of the − logL,

AIC, CAIC, BIC and K-S are calculated for the five distributions in order to verify

which distribution fits better to these data.

The first data set is the life of fatigue of Kelvar 373 epoxy that are subject to

constant pressure at the 90% stress level until all had failed. The data sets contains

76 observations, which are taken from Andrews and Herzberg (1985). The data are

as follows:

0.0251, 0.6751, 1.0483, 1.4880, 1.8808, 2.2460, 3.4846, 0.0886, 0.6753, 1.0596, 1.5728,

1.8878, 2.2878, 3.7433, 0.0891, 0.7696, 1.0773, 1.5733, 1.8881, 2.3203, 3.7455, 0.2501,

0.8375, 1.1733 1.7083, 1.9316, 2.3470, 3.9143, 0.3113, 0.8391, 1.2570, 1.7263, 1.9558,

2.3513, 4.8073, 0.3451, 0.8425, 1.2766, 1.7460, 2.0048, 2.4951, 5.4005, 0.4763, 0.8645,

1.2985, 1.7630, 2.0408, 2.5260, 5.4435, 0.5650, 0.8851, 1.3211, 1.7746, 2.0903, 2.9941,

5.5295, 0.5671, 0.9113, 1.3503, 1.8275, 2.1093, 3.0256, 6.5541, 0.6566, 0.9120, 1.3551,

1.8375, 2.1330, 3.2678, 9.0960, 0.6748, 0.9836, 1.4595, 1.8503, 2.2100, 3.4045.

The second data set represents the survival times of 121 patients with breast

cancer obtained from a large hospital in a period from 1929 to 1938 taken from Lee

and Wang (1992). The data are as follows:



68 Chapter 2: T-transmuted X family of distributions

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3,

13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8,

20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,

31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0,

41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0,

51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0,

65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0,

105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

The descriptive statistics of the two data sets are given in Table 2.4. The es-

Table 2.4: Descriptive statistics of the two data sets
Data n Min. Max. Mean SD Skewness Kurtosis

First data set 76 0.0251 9.096 1.959 1.57 2.019 5.60
Second data set 121 0.30 154 46.33 35.28 1.056 0.471

timates of the parameters are obtained using method of maximum likelihood esti-

mation. From the values in Table 2.5, even though the CAIC and BIC values of

ETE distribution is observed as little higher than with Weibull distribution, all the

other tests revealed that the ETE distribution gives a better fit for the first data set.

Figure 2.4 shows the fitted density curves for the first data set. Also the values in

Table 2.6 show that the BIC value of Weibull distribution is little lower than ETE

distribution, but comparing with all other test values we can conclude that the ETE

distribution is a better model for the second data set. Figure 2.5 shows the fitted

density curves for the second data set.
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Figure 2.4: Fitted pdf plots of first data set

Figure 2.5: Fitted pdf plots of second data set
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Table 2.5: Parameter estimates and goodness of fit statistics for various models fitted
to the first data set.
Model ML estimates − log(L) AIC CAIC BIC K-S p value

ETE
θ̂ = 1.346
β̂ = 0.579
λ̂ = −0.848

121.461 248.922 249.255 255.914 0.0984 0.4266

KuE
α̂ = 2.448
β̂ = 0.328
θ̂ = 1.556

122.094 250.188 250.521 257.180 0.0990 0.4191

EW
α̂ = 1.101
β̂ = 0.609
θ̂ = 1.443

122.166 250.332 250.665 257.324 0.0992 0.416

W
α̂ = 1.326
β̂ = 0.469

122.526 249.052 249.216 253.714 0.1098 0.2968

E β̂ = 0.510 127.114 256.228 256.282 258.559 0.512 0.0266

Table 2.6: Parameter estimates and goodness of fit statistics for various models fitted
to the second data set.

Model ML estimates −ln(L) AIC CAIC BIC K-S p value

ETE
θ̂ = 1.876
β̂ = 0.018
λ̂ = −0.765

578.878 1163.76 1163.96 1172.14 0.0569 0.8284

KuE
β̂ = 0.098
α̂ = 0.231
θ̂ = 1.651

583.314 1172.63 1172.83 1181.02 0.1152 0.0803

EW
α̂ = 1.393
β̂ = 0.017
θ̂ = 0.798

579.879 1165.76 1165.96 1174.15 0.0664 0.6606

W
α̂ = 1.3056
β̂ = 0.0199

580.024 1164.05 1164.15 1169.64 0.0588 0.7967

E β̂ = 0.022 585.128 1172.26 1172.29 1175.05 0.1206 0.0594

2.5 Summary

In this chapter, we introduced a new family of continuous distributions called ”T-

transmuted X family”. Many of the existing distributions are sub models of this

family. The ETE, ETU, ETR, ETF and ETW models are derived from this family.

Properties of ETE distribution are studied. This distribution is a generalization of

exponential distribution. The hrf of the ETE distribution is increasing, decreasing
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or constant depending upon the various choices of parameter values. Expressions for

moments, moment generating function, Rényi and Shannon entropies are derived.

The method of maximum likelihood estimation is used to estimate the parameter

values and a simulation study shows that the method is performed well. Two real

data sets were analyzed to show the flexibility of this model for data modelling. The

fit of the ETE distribution is compared with the Kumaraswamy exponential distri-

bution, exponentiated Weibull distribution, Weibull distribution and the exponential

distribution. The ETE distribution is found to be the best fitted model for these

data sets compared with the other four models.
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CHAPTER

THREE

A NEW GENERALIZATION OF WEIBULL

DISTRIBUTION

3.1 Introduction

1 The need for extended forms of the Weibull distribution arises in many applied

areas. A number of extended families of Weibull distribution are available in the

literature. Compounding Weibull distribution with well know discrete distributions

is one among them. Rodrigues et al. (2011) introduced the Weibull binomial distri-

bution using an idea due to Adamidis and Loukas (1998). Babu (2016) introduced

the Weibull truncated negative binomial (WTNB) distribution using the method

1Some results included in this chapter have appeared in the papers Babu (2016) and Babu and
Jayakumar (2018a).

73
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suggested by Nadarajah et al. (2013). The WTNB distribution is a generalization of

the Weibull distribution. This distribution is constructed by compounding Weibull

distribution with truncated negative binomial distribution.

In a sequence of independent Bernoulli trials, let the random variable X denote

the trial at which the rth success occurs, where r is a fixed positive integer. Then X

is said to follow a negative binomial distribution with parameters r and p, if its pmf

is given by

P (X = x) =

(
x− 1

r − 1

)
pr(1− p)x−r ; x = r, r + 1, ... , (3.1.1)

and is denoted by NB(r, p). This distribution is sometimes defined in terms of the

number of failures before rth success, say Y and Y = X − r. Then the alternative

form of the distribution is

P (Y = y) =

(
r + y − 1

y

)
pr(1− p)y ; y = 0, 1, ... . (3.1.2)

The geometric distribution with P (X = x) = p(1− p)x−1 ; x = 1, 2, ...; 0 < p < 1

is a special case of NB(r, p) when r = 1.

Let N be the total number of failures happened in a random experiment with the

probability of success of an event in a single trial is δ. Let θ denotes the number of

successes in the trial. Here the distribution of N follows a negative binomial (NB)

distribution with pmf

P (N = n) =

(
θ + n− 1

θ − 1

)
δθ(1− δ)n ; n = 0, 1, 2, ... , (3.1.3)

and P (0) = P (N = 0) = δθ. To obtain the corresponding pmf for the truncated

negative binomial (TNB) distribution, the pmf given in Eqn.(3.1.3) must be divided
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by 1−P (0). Thus the pmf of the TNB random variables with parameters 0 < δ < 1

and θ > 0 is given by

P (N = n) =
δθ

1− δθ

(
θ + n− 1

θ − 1

)
(1− δ)n, n = 1, 2, ... . (3.1.4)

Let Xi, i = 1, 2, ..., be a sequence of i.i.d. random variables with survival function

F̄ (x) and N be a truncated negative binomial random variable independent of Xi’s.

Now, consider UN = min(X1, X2, ..., XN). Then

P (UN > x) = Ḡ(x)

=
δθ

1− δθ

∞∑
n=1

(
θ + n− 1

θ − 1

)
[(1− δ)F̄ (x)]n

=
δθ

1− δθ

[(
F (x) + δF̄ (x)

)−θ − 1

]
. (3.1.5)

Similarly, if δ > 1 and N is a truncated negative binomial random variable with

parameters δ−1 and θ > 0, then VN = max(X1, X2, ..., XN) also has the survival

function given in Eqn.(3.1.5). Here note that in the Eqn.(3.1.5), if δ → 1, then

Ḡ(x) → F̄ (x). If θ = 1, then this family reduces to the family of Marshall-Olkin

distributions. Thus the family of distributions described in the Eqn.(3.1.5) is a

generalization of Marshall-Olkin distributions, see Nadarajah et al. (2013).

This family can be interpreted as follows: Suppose the failure times of a device

are observed and at every time a failure occurs, the device is repaired to resume

function. Suppose also that the device is deemed no usable when a failure occurs

that exceeds a certain level of severity. Let X1, X2, ..., denotes the failure times and

N denote the number of failures. Then UN will represent the time to the first failure
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of the device and VN will represent the life time of the device. Thus, this family

can be used to model both the time of the first failure and the life time. The pdf

corresponding to Eqn.(3.1.5) is

g(x) =
θδθ(1− δ)f(x)

(1− δθ)[F (x) + δF̄ (x)]θ+1
. (3.1.6)

The hrf is given by

h(x) =
θ(1− δ)F̄ (x)hF (x)

[F (x) + δF̄ (x)]
[
1− (F (x) + δF̄ (x))θ

] , (3.1.7)

where hF (x) = f(x)

F̄ (x)
is the hrf corresponding to F (x). Nadarajah et al. (2013) intro-

duced and studied the exponential-truncated negative binomial (ETNB) distribution

with parameters δ, θ and β by substituting F̄ (x) = e−βx;x > 0, β > 0, in the survival

function given in the Eqn.(3.1.5). That is,

Ḡ(x) =
δθ

1− δθ

[
(1− e−βx + δe−βx)−θ − 1

]
;x > 0, (3.1.8)

where δ > 0, θ > 0 and β > 0. By applying the above concept, Kamel et al. (2016)

studied the uniform truncated negative binomial (UTNB) distribution, Jayakumar

and Sankaran (2016) studied the generalized uniform distribution and Jayakumar

and Sankaran (2017) studied the generalized exponential truncated negative binomial

distribution.

In Section 2, we introduce the Weibull-truncated negative binomial distribution

and study its sub models and shape properties of pdf and hrf. In this section, we

derive the expressions for its moment, order statistics and entropy. Section 3 gives

the characterizations based on truncated moments and hrf. Maximum likelihood

estimation of the parameters of WTNB distribution and a simulation study are given
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in Section 4. Minification process with WTNB marginals are presents in Section 5.

Bivariate extensions of WTNB distribution are proposes in Section 6 and two real-life

data applications are illustrates in Section 7.

3.2 The Weibull-Truncated Negative Binomial Dis-

tribution

Babu (2016) studied a new family of distributions named as WTNB distribution

with parameters δ > 0, θ > 0, α > 0 and β > 0. Here F (x) follows two parameters

Weibull distribution with cdf, F (x) = 1−e−(βx)α
, α > 0, β > 0. Then the Eqn.(3.1.5)

becomes

Ḡ(x) =
δθ

1− δθ

[
(1− e−(βx)α

+ δe−(βx)α

)−θ − 1

]
; x > 0, δ > 0, θ > 0. (3.2.1)

The cdf is given by

G(x) =
1− δθ[1− (1− δ)e−(βx)α

]−θ

1− δθ
. (3.2.2)

The corresponding pdf is

g(x) =
(1− δ)δθθαβαxα−1e−(βx)α

(1− δθ)[1− (1− δ)e−(βx)α ]θ+1
, (3.2.3)

where x > 0, δ > 0, θ > 0, α > 0 and β > 0.

The following distributions are special cases of the WTNB distribution.

Case I: When θ = 1,

g(x) =
δαβαxα−1e−(βx)α

[1− (1− δ)e−(βx)α ]2
. (3.2.4)

This is the Marshall-Olkin extended Weibull (MOEW) distribution studied in Ghi-

tany et al. (2005).
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Case II: When θ = 1 and α = 1,

g(x) =
δβe−βx

[1− (1− δ)e−βx]2
. (3.2.5)

This is the Marshall-Olkin extended exponential (MOEE) distribution studied in

Singh et al. (2016).

Case III: When α = 1,

g(x) =
(1− δ)δθβe−βx

(1− δθ)[1− (1− δ)e−βx]θ+1
. (3.2.6)

This is the ETNB distribution studied in Nadarajah et al. (2013).

Case IV: When θ = 1, α = 1 and δ = 2,

g(x) =
2βe−βx

[1 + e−βx]2
, (3.2.7)

which is the half-logistic distribution with scale parameter β.

Case V: When θ = 1 and δ → 1,

g(x) = αβαxα−1e−(βx)α

. (3.2.8)

Here the WTNB distribution reduces to two parameter Weibull distribution. Also,

the Eqn.(3.2.3) can be expressed as infinite mixtures of the pdf of some other distri-

butions. Suppose 0 < δ < 2. Then

g(x) =
θ(1− δ)δθ

1− δθ

∞∑
k=0

(
θ + k

θ

)
(1− δ)k

k + 1
fWE(x;α, β(k + 1)

1
α ) (3.2.9)

where fWE(x;α, β(k+1)
1
α ) = α(β(k+1)

1
α )αxα−1e−(β(k+1)

1
α x)α

is the pdf of a Weibull

random variable.
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Random numbers from the WTNB distribution can be simulated using

X =
1

β

[
− ln

(
1− δ[δθ + Y (1− δθ)]−

1
θ

1− δ

)] 1
α

, where Y ∼ U(0, 1). (3.2.10)

3.2.1 Shapes of the pdf of the WTNB distribution

In order to derive the shape properties of the pdf of WTNB distribution, we consider

the first derivative of the logarithmic function of g(x). That is

d

dx
[ln(g(x))] =

−
[
(1− α)[1− (1− δ)e−(βx)α

] + αβαxα[1 + θ(1− δ)e−(βx)α
]
]

x[1− (1− δ)e−(βx)α ]

=
−S(x)

x[1− (1− δ)e−(βx)α ]
, (3.2.11)

where S(x) = (1 − α)[1 − (1 − δ)e−(βx)α
] + αβαxα[1 + θ(1 − δ)e−(βx)α

]. Here the

function S(x) is positive and this implies that g(x) is a decreasing function with

limx→0+ g(x) →∞ and limx→∞ g(x) → 0, when

(i). 0 < δ ≤ 1, θ > 0 and 0 < α ≤ 1 , and

(ii). δ > 1, 0 < θ < 1
δ−1

and 0 < α ≤ 1.

The pdf is unimodal, when

(i). 0 < δ ≤ 1, θ > 0 and α > 1, and

(ii). δ > 1, 0 < θ < 1
δ−1

and α > 1.

The mode is obtained as the solution of the nonlinear equation d
dx

(ln(g(x))) = 0.
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Figure 3.1: Shape of pdf of the WTNB for various choices of parameter values

Some possible shapes of the pdf of the WTNB distribution are presented in Figure

3.1.

3.2.2 Hazard rate function of the WTNB distribution

The hrf of the WTNB distribution is given by

h(x) =
(1− δ)θαβαxα−1e−(βx)α

[1− (1− δ)e−(βx)α ][1− (1− (1− δ)e−(βx)α)θ]
. (3.2.12)

The hrf is decreasing from ∞ to 0, when,

(i). 0 < δ ≤ 1, θ > 0 and 0 < α ≤ 1 , and

(ii). δ > 1, 0 < θ < 1
δ−1

and 0 < α ≤ 1,

and is increasing from 0 to ∞ when,

(i). 0 < δ ≤ 1, θ > 0 and α > 1, and
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Figure 3.2: Shape of hrf of the WTNB distribution for various choices of parameter
values

(ii). δ > 1, 0 < θ < 1
δ−1

and α > 1.

Some possible shapes of the hrf of the WTNB distribution are presented in Figure 3.2.

3.2.3 Moments of the WTNB distribution

The rth raw moment can be written as

E(Xr) =
(1− δ)δθθαβα

1− δθ

∫ ∞

0

xr+α−1e−(βx)α

[1− (1− δ)e−(βx)α ]θ+1
dx. (3.2.13)

Taking u = e−(βx)α
, Eqn.(3.2.13) becomes

E(Xr) =
(1− δ)δθθ

βr(1− δθ)

∫ 1

0

(− log(u))
r
α

[1− (1− δ)u]θ+1
du. (3.2.14)
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Case I. If |1 − δ| < 1, that is, 0 < δ < 2, then by the binomial series expansion,

(1 − x)−n =
∑∞

k=0

(
n+k−1

n−1

)
xk, the Eqn.(3.2.14) can be rewritten as sum of infinite

series as

E(Xr) =
(1− δ)δθθ

βr(1− δθ)

n∑
k=0

(
θ + k

θ

)
(1− δ)k

∫ 1

0

uk(− log u)
r
αdu. (3.2.15)

where
∫ 1

0
uk(− log(u))

r
αdu = (k + 1)−

r
α
−1Γ[ r

α
+ 1,−(k + 1) log(u)].

Therefore,

E(Xr) =
(1− δ)δθθ

βr(1− δθ)

n∑
k=0

(
θ + k

θ

)
(1− δ)k(k + 1)−

r
α
−1Γ[

r

α
+ 1,−(k + 1) log(u)].

(3.2.16)

Case II. If |1 − δ| < δ, that is, δ > 1
2

and letting u = 1 − e−(βx)α
, the Eqn.(3.2.13)

can be written as

E(Xr) =
(1− δ)θ

βr(1− δθ)δ

∫ ∞

0

(− log(1− u))
r
α

[1 + (1−δ
δ

)u]θ+1
du (3.2.17)

Now using the series expansion by setting u = 1−ν, the Eqn.(3.2.17) can be written

as

E(Xr) =
(1− δ)θ

βr(1− δ)δ

∫ 1

0

(− log(ν))
r
α

[1 + (1−δ
δ

)(1− ν)]θ+1
dν

=
θβ−r

(1− δθ)

∞∑
k=0

(
θ + k

θ

)
(−1)k

(1− δ

δ

)k+1
∫ 1

0

(1− ν)k

(− log(ν))
−r
α

dν.(3.2.18)

Now using the Eqn.(2.6.5.3) of Prudnikov et al. (1986),

∫ a

0

xα−1

(aµ − xµ)−m
(log(

a

x
))σdx = aα+µmΓ(σ + 1)

m∑
j=0

(−1)j(1 +m− j)j

j!(α+ µk)σ+1
, (3.2.19)
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we can express the Eqn.(3.2.18) as

E(Xr) =
θβ−r

(1− δθ)

∞∑
k=0

(
θ + k

θ

)
(−1)k

(1− δ

δ

)k+1
Γ

(
r

α
+ 1

) k∑
j=0

(−1)j(1 + k − j)j

j!(1 + j)
r
α

+1
.

(3.2.20)

3.2.4 Order statistics of the WTNB distribution

Let X1, X2, ..., Xn are independent random variables following the WTNB distribu-

tion. Let Xi:n denote the ith order statistics. Then, the pdf of Xi:n is

gi:n(x) =
n!

(n− i)!(i− 1)!
g(x)Gi−1(x)Ḡn−i(x)

=
(−1)n−1n!

(n− i)!(i− 1)!

(1− δ)θαβαδθ(n+1−i)xα−1e−(βx)α

(1− δθ)n(1− (1− δ)e−(βx)α)θ+1[
1− δθ

(1− (1− δ)e−(βx)α)θ

]i−1

[
1− 1

(1− (1− δ)e−(βx)α)θ

]n−i

. (3.2.21)

In particular the pdf of the largest order statistic, X(n) is

gX(n)
(x) =

(−1)n−1n(1− δ)θαβαδθxα−1e−(βx)α

(1− δθ)n(1− (1− δ)e−(βx)α)θ+1[
1− δθ

(1− (1− δ)e−(βx)α)θ

]n−1

. (3.2.22)
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The pdf of the smallest order statistic, X(1) is

gX(1)
(x) =

(−1)n−1n(1− δ)θαβαδnθxα−1e−(βx)α

(1− δθ)n(1− (1− δ)e−(βx)α)θ+1[
1− 1

(1− (1− δ)e−(βx)α)θ

]n−1

. (3.2.23)

Using binomial series expansion, gi:n(x) can be expressed as

gi:n(x) =
(−1)n−1n!

(n− i)!(i− 1)!

(1− δ)θαβαδθ(n+1−i)xα−1e−(βx)α

(1− δθ)n(1− (1− δ)e−(βx)α)θ+1

i−1∑
k=0

n−i∑
l=0

(−1)k+l

(
i− 1

k

)(
n− i

l

)
δθk

[1− (1− δ)e−(βx)α ]θ(k+l)

=
(−1)n−1n!δθ(n−i)

(n− i)!(i− 1)!(1− δθ)n

i−1∑
k=0

n−i∑
l=0

(−1)k+l

(
i− 1

k

)(
n− i

l

)
1− δθ(k+l+1)

δθl(k + l + 1)
g(x; δ, θ(k + l + 1), α, β), (3.2.24)

where g(x; δ, θ(k + l + 1), α, β) = (1−δ)δθ(k+l+1)θ(k+l+1)αβαxα−1e−(βx)α

(1−δθ(k+l+1))[1−(1−δ)e−(βx)α ]θ(k+l+1)+1 . Thus Xi:n is a

finite mixture of WTNB random variables.

3.2.5 Rényi and Shannon entropies of the WTNB distribu-

tion

The Rényi entropy of the WTNB distribution is given by

IR(γ) =
1

1− γ
log

(∫ ∞

0

[
(1− δ)δθθαβαxα−1e−(βx)α

(1− δθ)[1− (1− δ)e−(βx)α ]θ+1

]γ

dx

)
. (3.2.25)
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Letting u = e−(βx)α
, we get

IR(γ) =
1

1− γ
log

[(
(1− δ)δθθ

1− δθ

)γ
(αβγ)γ−1

β(γ−1)(α−1)

∫ 1

0

(− log u)(γ−1)(1− 1
α

)uγ−1

[1− (1− δ)u]γ(θ+1)
du

]
.

(3.2.26)

The Shannon entropy is given by

E[− log(g(X))] = log

(
1− δθ

(1− δ)δθθαβα

)
− (α− 1)E(log(X)) + βαE(Xα)

+(θ + 1)E
(
log(1− (1− δ)e−(βX)α

)
)
. (3.2.27)

3.3 Characterization Based on Truncated Moments

We present a characterization of the WTNB distribution in terms of a simple rela-

tionship between truncated moments. This results are developed using the Theorem

1 of Glanzel (1987).

Theorem 3.3.1. Let X : Ω → (0,∞) be a continuous random variable, and let

q2(x) = [1 − (1 − δ)e−(βx)α
]θ+1 and q1(x) = q2(x)e

−(βx)α
for x > 0. The pdf of X is

Eqn.(3.2.3) if and only if the function η defined in Theorem 2.4.1 has the form

η(x) =
1

2
e−(βx)α

, x > 0. (3.3.1)

Proof. Let X have pdf given in Eqn.(3.2.3). Then

(1−G(x))E[q2(X)|X ≥ x] =
(1− δ)δθθ

1− δθ
e−(βx)α

, x > 0,

(1−G(x))E[q1(X)|X ≥ x] =
(1− δ)δθθ

2(1− δθ)
e−2(βx)α

, x > 0,
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and hence

η(x)q2(x)− q1(x) = −1

2
e−(βx)α

[1− (1− δ)e−(βx)α

]θ+1 < 0, for x > 0. (3.3.2)

Conversely, if η is given as Eqn.(3.3.1), then

s′(x) =
η′(x)q2(x)

η(x)q2(x)− q1(x)
= αβαxα−1, x > 0, (3.3.3)

and hence s(x) = (βx)α, x > 0, or e−s(x) = e−(βx)α
, x > 0. Now, using Theorem

2.4.1, X has the pdf given in Eqn.(3.2.3).

Corollary 3.3.1. Let X : Ω → (0,∞) be a continuous random variable, and let

q2(x) = [1− (1− δ)e−(βx)α
]θ+1. The pdf of X is Eqn.(3.2.3) if and only if there exist

functions q1 and η defined in Theorem 2.4.1 satisfying the differential equation

η′(x)q2(x)

η(x)q2(x)− q1(x)
= αβαxα−1, x > 0. (3.3.4)

Remark 3.3.1. The general solution of the differential equation in Corollary 3.3.1

is obtained as follows:

η′(x)− αβαxα−1η(x) = [q2(x)]
−1αβαxα−1q1(x),

or
d

dx
[η(x)e−(βx)α

] = [q2(x)]
−1αβαxα−1e−(βx)α

q1(x).

Thus we obtain

η(x) = e(βx)α

[
−
∫

[q2(x)]
−1αβαxα−1e−(βx)α

q1(x)dx+D

]
, (3.3.5)

where D is a constant.
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3.3.1 Characterization based on hazard rate function

The following Theorem is a non-trivial characterization of the WTNB distribution,

when θ = 1.

Theorem 3.3.2. Let X : Ω → (0,∞) be a continuous random variable. The pdf of

X is given in Eqn.(3.2.3) if and only if its hrf, h(x) satisfies the differential equation

x−(α−1)h′(x)− (α− 1)x−αh(x) =
d

dx

[
αβα

1− (1− δ)e−(βx)α

]
. (3.3.6)

Proof. When θ = 1, the pdf g(x) and hrf h(x) of X are respectively

g(x) =
δαβαxα−1e−(βx)α

[1− (1− δ)e−(βx)α ]2
, (3.3.7)

and

h(x) =
αβαxα−1

1− (1− δ)e−(βx)α . (3.3.8)

Then we have

g′(x)

g(x)
=
α− 1

x
− αβαxα−1 − 2(1− δ)αβαxα−1e−(βx)α

1− (1− δ)e−(βx)α . (3.3.9)

We get the first order differential equation as

h′(x)− α− 1

x
h(x) = −α

2β2α(1− δ)x2(α−1)e−(βx)α

[1− (1− δ)e−(βx)α ]2
, (3.3.10)

which implies,

x−(α−1)h′(x)− (α− 1)x−αh(x) =
d

dx

[
αβα

1− (1− δ)e−(βx)α

]
.

Now, the differential equation Eqn.(3.3.6) holds, then

d

dx
[x−(α−1)h(x)] =

d

dx

[
αβα

1− (1− δ)e−(βx)α

]
, x > 0,

from which, we obtain

h(x) =
αβαxα−1

1− (1− δ)e−(βx)α , x > 0, (3.3.11)

which is the hrf of WTNB distribution when θ = 1.
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3.4 Estimation of Parameters of the WTNB Dis-

tribution

The moments of the WTNB distribution is not in a closed form. Therefore, we con-

sider the method of maximum likelihood for the estimation of unknown parameters.

For a given sample (x1, x2, ..., xn), the log-likelihood function is given by

log(L) = n log(1− δ) + nθ log(δ) + n log(θ) + n log(α) + nα log(β)

−n log(1− δθ) + (α− 1)
n∑

i=1

(log(xi))− βα

n∑
i=1

(xα
i )

−(θ + 1)
n∑

i=1

log[1− (1− δ)e−(βxi)
α

]. (3.4.1)

The partial derivatives of the log-likelihood function with respect to the parameters

are

∂ logL

∂δ
= − n

1− δ
+
nθ

δ
+
nθδθ−1

1− δθ
− (θ + 1)

n∑
i=1

e−(βx)α

1− (1− δ)e−(βx)α , (3.4.2)

∂ logL

∂θ
= n log(δ) +

n

θ
− nδθ log(δ)

1− δθ
−

n∑
i=1

log[1− (1− δ)e−(βxi)
α

], (3.4.3)

∂ logL

∂α
=

n

α
+ n log(β) +

n∑
i=1

log(xi)− βα

[ n∑
i=1

[log(β) + log(xi)]x
α
i

]
−(θ + 1)

n∑
i=1

(1− δ)βαxα
i log(βxi)e

−(βxi)
α

[1− (1− δ)e−(βxi)α ]
, (3.4.4)

∂ logL

∂β
=

nα

β
− αβα−1

n∑
i=1

xα
i − (θ + 1)

n∑
i=1

(1− δ)βα−1αxα
i e

−(βxi)
α

[1− (1− δ)e−(βxi)α ]
. (3.4.5)
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The MLEs of ψ = (δ, θ, α, β)T say ψ̂ = (δ̂, θ̂, α̂, β̂)T are the solutions of the simul-

taneous equations ∂ log L
∂δ

= 0, ∂ log L
∂θ

= 0, ∂ log L
∂α

= 0 and ∂ log L
∂β

= 0. The solution of

these nonlinear equations does not have closed forms and have to solve numerically

by the Newton Raphson method. optim or nlm packages in R software can be used

for the solution of these equations. For interval estimation and hypothesis testing on

the parameters of the WTNB distribution, we require the information matrix. The

information matrix is as follows:

In(ψ̂) =



∂2 log L
∂δ2

∂2 log L
∂δ∂θ

∂2 log L
∂δ∂α

∂2 log L
∂δ∂β

∂2 log L
∂θ∂δ

∂2 log L
∂θ2

∂2 log L
∂θ∂α

∂2 log L
∂θ∂β

∂2 log L
∂α∂δ

∂2 log L
∂α∂θ

∂2 log L
∂α2

∂2 log L
∂α∂β

∂2 log L
∂β∂δ

∂2 log L
∂β∂θ

∂2 log L
∂β∂α

∂2 log L
∂β2


(3.4.6)

The elements of the Eqn.(3.4.6) are obtained by partial differentiation of the first

order partial derivatives of the likelihood function with respect to the parameters

δ, θ, α and β. Here the WTNB distribution satisfies the regularity conditions, which

are fulfilled for the parameters in the interior parameter space but not on the bound-

ary. Hence, ψ̂ is consistent and asymptotically normal. That is,

√
(In(ψ̂))(ψ̂ − ψ)

converges in distribution to multivariate normal with zero mean vector and identity

covariance matrix.

We can use the normal distribution of ψ̂ to construct approximate confidence

region for a particular parameter. The asymptotic 100(1 − η)% confidence interval

for the parameters δ, θ, α and β can be determined as δ̂±Z η
2

√
(V (δ̂)), θ̂±Z η

2

√
(V (θ̂)),

α̂±Z η
2

√
(V (α̂)) and β̂±Z η

2

√
(V (β̂)) respectively, where V (δ̂), V (θ̂), V (α̂) and V (β̂)
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are the variances of δ̂, θ̂, α̂ and β̂, obtained by the diagonal elements of I−1
n (ψ̂), and

Z η
2

is the (1− η
2
)th quantile of the standard normal distribution.

3.4.1 Simulation study of the WTNB distribution

We conduct a Monte Carlo simulation study to assess the performance of the MLEs

of the unknown parameters for the WTNB distribution. The performance of the

estimates is evaluated in terms of their average values and mean squared errors

(MSEs). The R programming software is used to generate 1000 samples of the

WTNB distribution for different sample sizes, where n = (50,100,200,500), and for

different parameters combinations, where δ = (0.5, 2.5), θ = (0.5, 1.5), α = (0.5, 1.0)

and β = (1.0, 1.5). The average values of estimates, average biases, MSEs and

coverage probabilities (CP) are provided in Table 3.1. It is observed from Table 3.1,

that the MSE decreases as the sample size increases. Thus, the MLE method works

very well to estimate the model parameters of the WTNB distribution.

3.5 Minification Process of the WTNB Distribu-

tion

Here we develop an autoregressive (AR(1)) minification process of order one with

WTNB distribution as marginals. Consider an AR(1) minification process,

Xn =

{
εn w.p. ρ

min(Xn−1, εn) w.p. 1− ρ (3.5.1)
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Table 3.1: The parameter estimates, average biases, MSEs and CPs of WTNB dis-
tribution.

Parameter Samples(n) Average Values Average Biases MSEs CP

δ = 0.5

50
100
200
500

0.4492
0.4736
0.4843
0.5114

-0.1362
-0.0110
-0.1037
0.0093

0.0192
0.0135
0.0092
0.0038

0.925
0.936
0.939
0.941

θ = 0.5

50
100
200
500

0.3182
0.3601
0.4027
0.4223

-0.1634
-0.1521
-0.0933
-0.0892

0.0826
0.0631
0.0447
0.0401

0.881
0.903
0.917
0.919

α = 0.5

50
100
200
500

0.4043
0.5624
0.5559
0.5354

-0.1122
0.0644
0.0426
0.0115

0.0193
0.0038
0.0027
0.0019

0.895
0.906
0.918
0.928

β = 1.0

50
100
200
500

0.7120
0.8214
0.8435
0.9117

-0.2982
-0.1732
-0.1513
-0.0922

0.0252
0.0216
0.0189
0.0147

0.879
0.893
0.907
0.916

δ = 2.5

50
100
200
500

1.9864
2.1308
2.2234
2.4138

-0.3130
-0.2869
-0.2411
-0.1036

0.0165
0.0134
0.0021
0.0019

0.904
0.918
0.920
0.936

θ = 1.5

50
100
200
500

1.4112
1.5276
1.5117
1.4968

-0.1271
0.1133
0.0926
-0.0014

0.0631
0.0447
0.0312
0.0019

0.911
0.917
0.926
0.935

α = 1.0

50
100
200
500

0.7836
0.8109
1.1937
1.0821

-0.2113
-0.1906
0.0028
0.0016

0.0291
0.0182
0.0133
0.0068

0.921
0.935
0.939
0.944

β = 1.5

50
100
200
500

0.9824
0.9932
1.1384
1.3709

-0.3227
-0.3190
-0.2081
-0.1271

0.0917
0.0893
0.0722
0.0315

0.885
0.896
0.901
0.919

where 0 < ρ < 1, n ≥ 1 and {εn} is a sequence of i.i.d random variables.

Theorem 3.5.1. The minification process given in Eqn.(3.5.1), defines a stationary

AR(1) minification process with WTNB(δ, θ, α, β) as marginal distribution if and

only if εn’s are i.i.d. WTNB(ρ, δ, θ, α, β) distribution with X0 d WTNB(δ, θ, α, β).

Proof. Let X ∼ WTNB(δ, θ, α, β). The survival function given in Eqn.(3.2.1) can

be expressed as

ḠX(x) =
1

1 +

[
[1−(1−δ)e−(βx)α ]θ−δθ

δθ
(
1−[1−(1−δ)e−(βx)α ]θ

)] . (3.5.2)
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The model given in Eqn.(3.5.1) in terms of survival function is,

P (Xn > x) = P (εn > x)[ρ+ (1− ρ)P (Xn−1 > x)]. (3.5.3)

That is,
ḠXn(x) = Ḡεn(x)[ρ+ (1− ρ)ḠXn−1(x)]. (3.5.4)

If {Xn} is stationary with WTNB(δ, θ, α, β) distribution marginal, then

Ḡεn(x) =
ḠX(x)

ρ+ (1− ρ)ḠX(x)

=
1

1 + ρ

[
[1−(1−δ)e−(βx)α ]θ−δθ

δθ
(
1−[1−(1−δ)e−(βx)α ]θ

)] . (3.5.5)

That is, εn’s are WTNB(ρ, δ, θ, α, β) distribution.

Conversely, if εn’s are WTNB(ρ, δ, θ, α, β) distribution with X0 d WTNB(δ, θ, α, β)

distribution, then {Xn} defines a stationary process, with WTNB(δ, θ, α, β) distri-

bution as the stationary marginal. From the Eqn.(3.5.4),

ḠX1(x) = Ḡε1(x)[ρ+ (1− ρ)ḠX0(x)]

=
1

1 + ρ

[
[1−(1−δ)e−(βx)α ]θ−δθ

δθ
(
1−[1−(1−δ)e−(βx)α ]θ

)][
ρ+ (1− ρ)

1

1 +

[
[1−(1−δ)e−(βx)α ]θ−δθ

δθ
(
1−[1−(1−δ)e−(βx)α ]θ

)]
]

=
1

1 +

[
[1−(1−δ)e−(βx)α ]θ−δθ

δθ
(
1−[1−(1−δ)e−(βx)α ]θ

)] (3.5.6)

That is, X1 d WTNB(δ, θ, α, β) distribution.

If we assume that Xn−1 d WTNB(δ, θ, α, β) distribution, then by induction we
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get Xn d WTNB(δ, θ, α, β) distribution. Hence the process {Xn} is stationary with

WTNB(δ, θ, α, β) distribution marginals.

3.6 Bivariate WTNB Distribution

Let Ḡ(x, y) be the survival function of a bivariate random vector (X, Y ). Now by

applying the bivariate set up suggested in Marshall and Olkin (1997), we can develop

bivariate truncated negative binomial distribution with survival function

F̄ (x, y) =
δθ

1− δθ

[[
1− (1− δ)Ḡ(x, y)

]−θ − 1

]
; 0 < x, y <∞, δ > 0, θ > 0. (3.6.1)

Clearly when θ = 1, we get the bivariate Marshall and Olkin distribution studied

in Marshall and Olkin (1997). When θ = 1 and δ → 1, we get the original survival

function.

Definition 3.6.1. A bivariate random vector (X, Y ) has bivariate WTNB distribu-

tion with parameters δ > 0, θ > 0, λ1 > 0, λ2 > 0, λ12 > 0, α1 > 0 and α2 > 0 if its

survival function is of the form,

F̄ (x, y) =
δθ

1− δθ

[[
1− (1− δ)e−λ1xα1−λ2yα2−λ12max(xα1 ,yα2 )

]−θ − 1

]
. (3.6.2)

Remark 3.6.1. If α1 = α2 = 1, then bivariate WTNB becomes a bivariate ETNB.

Remark 3.6.2. If δ = 1 and θ = 1, then bivariate WTNB becomes a type I Marshall-

Olkin bivariate distribution studied in Jose (2011).

Remark 3.6.3. If δ = 1, θ = 1 and α1 = α2 = 1 then bivariate WTNB becomes a

Marshall-Olkin bivariate exponential distribution (see Marshall and Olkin (1967)).
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Remark 3.6.4. If δ = 1, θ = 1 and α1 = α2 = α then bivariate WTNB becomes a

Marshall-Olkin bivariate Weibull distribution studied in Hanagal (1996).

3.7 Data Applications of the WTNB Distribution

In order to check how the WTNB distribution works in practice, we use two real data

sets. The first data set is taken from Lee and Krutchkoff (1980), which represents

the actual mercury concentrations found in 115 swordfish and the data are follows:

0.05, 0.07, 0.07, 0.13, 0.13, 0.19, 0.24, 0.25, 0.28, 0.32, 0.39, 0.45, 0.46, 0.53, 0.54,

0.56, 0.60, 0.60, 0.61, 0.62, 0.65, 0.71, 0.72, 0.75, 0.76, 0.79, 0.81, 0.81, 0.82, 0.82,

0.82, 0.83, 0.83, 0.83, 0.84, 0.85, 0.89, 0.90, 0.91, 0.92, 0.92, 0.93, 0.95, 0.95, 0.97,

0.97, 0.98, 1.00, 1.00, 1.01, 1.02, 1.04, 1.05, 1.05, 1.08, 1.10, 1.12, 1.12, 1.14, 1.14,

1.15, 1.16, 1.20, 1.20, 1.20, 1.20, 1.20, 1.21, 1.22, 1.25, 1.25, 1.26, 1.27, 1.27, 1.29,

1.29, 1.29, 1.29, 1.30, 1.31, 1.32, 1.32, 1.37, 1.37, 1.39, 1.39, 1.40, 1.40, 1.41, 1.42,

1.43, 1.44, 1.45, 1.54, 1.54, 1.58, 1.58, 1.60, 1.60, 1.62, 1.62, 1.66, 1.66, 1.68, 1.69,

1.72, 1.74, 1.85, 1.89, 1.96, 2.06, 2.10, 2.23, 2.25, 2.72.

The second data set is taken from Murthy et al. (2004, p.245) and the data are as

follows:

1, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 10, 11, 12, 14.

The descriptive statistics of the two data sets are presented in Table 3.2. The pa-

rameters are estimated by using the MLE method. We compare the fit of the data

sets with the sub models of the WTNB distribution. The parameter estimates of



Chapter 3: A new generalization of Weibull distribution 95

Table 3.2: Descriptive statistics of the two data sets
Data Sample size (n) Mean SD Min. Max. Skewness Kurtosis

Data set I 115 1.102 0.499 0.05 2.72 0.173 0.441
Data set II 16 6.188 3.674 1.00 14.00 0.908 -0.076

the first data set are presented in Table 3.3. The goodness of fit statistics are pre-

Table 3.3: The parameter estimates of the first data set
Model ML estimates -log L

WTNB δ̂ = 1.9383,θ̂ = 1.8831,α̂ = 1.8388,β̂ = 1.0703 82.327
MOEW δ̂ = 1.3213,α̂ = 1.9064,β̂ = 0.8941 85.624

W α̂ = 1.9328,β̂ = 0.8362 87.610
ETNB δ̂ = 1.9252,θ̂ = 1.5481,β̂ = 1.5009 108.578
MOEE δ̂ = 1.9877,β̂ = 1.2847 111.638

sented in Table 3.4. Results from Table 3.3 and Table 3.4 shows that the -logL, AIC,

Table 3.4: Goodness of fit statistics for the first data set
Model AIC CAIC BIC HQIC A* W* K-S p - value
WTNB 172.655 173.018 183.634 177.111 0.8688 0.1344 0.0814 0.4306
MOEW 177.248 177.464 185.483 180.591 1.4848 0.2364 0.1257 0.0529

W 179.220 179.328 184.710 181.449 1.7766 0.2855 0.1495 0.0117
ETNB 223.157 223.373 231.392 226.499 2.1952 0.3539 0.2829 <0.001
MOEE 227.275 227.382 232.765 229.503 2.3913 0.3875 0.2234 <0.001

CAIC, BIC, HQIC, A∗, W ∗ and K-S distance are lowest and p value is highest for

the WTNB distribution. This is a clear evidence that the WTNB distribution is a

better model to fit the given data set compared to the other four sub models used

for comparison. From Table 3.5, we have rejected the null hypothesis based on the

LR test in all the four hypotheses and it shows the relevance of the four parameter

WTNB distribution for data modelling. The plots of the fitted cdfs with the empiri-

cal distribution of the first data set is shown in Figure 3.3. The parameter estimates

of the second data set are presented in Table 3.6. The goodness of fit statistics for

the second data set are given in Table 3.7. Results from Table 3.6 and Table 3.7,
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Table 3.5: Likelihood ratio test results for the first data set
Distribution Hypotheses LR statistic p - value

WTNB vs ETNB H0 : α = 1 vs H1 : H0 is false 52.502 <0.001
WTNB vs MOEW H0 : θ = 1 vs H1 : H0 is false 6.594 0.0102
WTNB vs MOEE H0 : θ = 1, α = 1 vs H1 : H0 is false 58.622 <0.001

WTNB vs W H0 : δ = 1 vs H1 : H0 is false 10.566 0.0051

Figure 3.3: Fitted cdfs for the first data set

Table 3.6: The parameter estimates of the second data set
Model ML estimates -log L

WTNB δ̂ = 1.5187,θ̂ = 0.6924,α̂ = 1.7379,β̂ = 0.1709 41.686
ETNB δ̂ = 1.9903,θ̂ = 1.8713,β̂ = 0.2508 43.966
MOEW δ̂ = 1.4826,α̂ = 1.6352,β̂ = 0.1623 43.652
MOEE δ̂ = 1.9245,β̂ = 0.2224 45.198

W α̂ = 1.4523,β̂ = 0.1789 45.600
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Table 3.7: Goodness of fit statistics for the second data set
Model AIC CAIC BIC HQIC A* W* K-S p - value
WTNB 91.372 95.008 94.462 91.530 0.556 0.101 0.143 0.8988
MOEW 93.304 95.304 95.621 93.422 0.557 0.116 0.167 0.7584
ETNB 93.932 95.932 96.249 94.051 0.578 0.114 0.231 0.3604
MOEE 94.396 95.319 95.941 94.475 0.561 0.119 0.268 0.2016

W 95.200 96.123 96.745 95.279 0.575 0.183 0.272 0.1875

shows that the -logL, AIC, CAIC, BIC, HQIC, A∗, W ∗ and K-S distance are lowest

and p value is highest for the WTNB distribution. Thus, the WTNB distribution

is a better model to fit the second data set compared to the other four sub models.

From Table 3.8, we have rejected the null hypothesis based on the LR test in all the

Table 3.8: Likelihood Ratio test results for the second data set
Distribution Hypotheses LR statistic p - value

WTNB vs ETNB H0 : α = 1 vs H1 : H0 is false 4.560 0.0327
WTNB vs MOEW H0 : θ = 1 vs H1 : H0 is false 3.932 0.0474
WTNB vs MOEE H0 : θ = 1, α = 1 vs H1 : H0 is false 7.024 0.0298

WTNB vs W H0 : δ = 1 vs H1 : H0 is false 7.828 0.0199

four hypotheses. The plots of the fitted cdfs with the empirical distribution of the

second data set is presented in Figure 3.4 .

3.8 Summary

In this chapter, the Weibull truncated negative binomial distribution is introduced.

The sub models of this distribution are identified as ETNB, MOEW, MOEE, half-

logistic and Weibull distributions. The shape properties of pdf and hrf are stud-

ied. Some statistical properties, such as quantiles, moments, Shannon and Rényi

entropies, distribution of order statistics are derived. Estimation of the unknown pa-

rameters are done using MLE method and a simulation study is conducted to study
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Figure 3.4: Fitted cdfs for the second data set

the performance of the estimates. Also, minification process with WTNB marginals

are obtained. Finally, real data applications of the WTNB distribution is discussed

with two data sets.



CHAPTER

FOUR

A NEW BIVARIATE DISTRIBUTION WITH MODIFIED

WEIBULL DISTRIBUTION AS MARGINALS

4.1 Introduction

1 Construction of bivariate and multivariate distribution functions attracted the

attention of researchers over a long period of time. These distributions are im-

portant in modelling dependent random variables in many areas such as reliability,

survival analysis, queuing models, insurance risk analysis and so on. The problem

of constructing bivariate distributions with specified marginals have been discussed

by many authors (see Plackett (1965), Mardia (1967) and Farlie (1960)). Marshall

and Olkin (1967) introduced the Marshall-Olkin bivariate exponential (MOBE) dis-

1Some results included in this chapter have appeared in the paper Babu and Jayakumar (2018b).
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tribution, in which both the marginals have exponential distribution. If the bivariate

data shows non-constant hazard rate function then MOBE distribution may not be

an appropriate choice. Because of that, Marshall and Olkin (1967) suggested the

Marshall-Olkin bivariate Weibull (MOBW) distribution, where the marginals are

Weibull distributions. Sarhan and Balakrishnan (2007) studied a new class of bivari-

ate distribution using a latent random variable with exponential distribution. For

more details on bivariate distributions, see Balakrishnan and Lai (2009).

Kundu and Dey (2009) have considered the maximum likelihood estimation of

the model parameters of the MOBW distribution via expectation maximization

(EM) algorithm. Using the maximum instead of the minimum in the Marshall

and Olkin scheme, Kundu and Gupta (2009, 2010) introduced the bivariate gen-

eralized exponential and singular bivariate generalized exponential distribution, re-

spectively. Some developments on the construction of bivariate distributions with

fixed marginals are discussed in Lin et al. (2014). Sarhan et al. (2011) introduced

the bivariate generalized linear failure rate distribution. Kundu and Gupta (2014)

introduced a five parameter bivariate Weibull-geometric distribution. Muhammed

(2016) introduced bivariate inverse Weibull distribution with marginals as inverse

Weibull distribution.

The objective of this Chapter is to propose a new bivariate distribution with

modified Weibull distribution as marginals. Since this distribution has a singular

component, it is suitable for modelling the situation where ties present in the data set.

This model can be applied in shock modelling situation. Consider three independent
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shock sources, say, S1, S2 and S3. These sources are affecting a system with two

components, say, C1 and C2. Here assume that, if the shock from S1 hits the system,

it destroys C1 and if the shock is from S2 it destroys C2, while the shock is from

S3 it destroys both the components suddenly. Let Ui denote the inter-interval times

between the shocks Si, i = 1, 2, 3. Assume that U1 and U2 follow Weibull distribution

and U3 follows exponential distribution. Define the random variables X1 and X2 as

Xi = min(Ui, U3), i = 1, 2. (4.1.1)

Here the random variables X1 and X2 are dependent because of the common (latent)

random variable U3 and the distribution of (X1, X2) follows the bivariate modified

Weibull distribution. Similar applications may occur in modelling competing risk,

stress of the components of a system and the maintenance time of the component of

a system, see Muhammed (2016).

In Section 2, we introduce a new bivariate distribution with modified Weibull

distribution as marginals. We develop the marginal and conditional distributions of

the new bivariate distribution in Section 3. The expressions for its mathematical

expectation are derives in Section 4 and the bivariate reliability function, hrf, mean

waiting time and reverse hazard rate function are discuss in Section 5. Maximum

likelihood estimation of the parameters of the new bivariate distribution and a sim-

ulation study are discuss in Section 6. An application of data modelling with the

new bivariate distribution is illustrates in Section 7. Bivariate copula function for

the new bivariate distribution is propose in Section 8.
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4.2 The New Bivariate Distribution

Here we introduce a new bivariate modified Weibull (NBMW) distribution. We

consider the situation where the overall lifetime of the system follows exponential

distribution and the components follow Weibull distribution. Such cases may occur

in reliability and survival analysis. An example of such situation is the modelling

of lifetime distribution of human beings or any other species with pairs of organs

like kidneys. The cdf of modified Weibull distribution of Sarhan and Zaindin (2009)

represents the lifetime of a series system consists of two independent units, where

the lifetime of one unit follows exponential distribution and that of the other follows

Weibull distribution. This distribution has several desirable properties and the dis-

tributions such as, exponential, Rayleigh, linear failure rate and Weibull distributions

are special cases of this distribution.

We consider three mutually independent random variables U1, U2 and U3 with the

following distributions: Ui ∼ W (αi, βi), i = 1, 2 and U3 ∼ E(β0), where W (αi, βi)

denotes the two parameter Weibull distribution with parameters (αi, βi), and E(β0)

denotes the exponential distribution with parameter β0. That is, the random variable

Ui(i = 1, 2) has Weibull distribution with distribution functionGi(t) = 1−e−αit
βi , t >

0, αi > 0, βi > 0(i = 1, 2), and the variable U3 has exponential distribution with a

constant failure rate β0 > 0 with distribution functionG3(t) = 1−e−β0t, t > 0, β0 > 0.

The survival functions of Ui(i = 1, 2, 3), are given by

Ḡi(t) = e−αit
βi , t > 0, αi > 0, βi > 0 (i = 1, 2), (4.2.1)
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and

Ḡ3(t) = e−β0t, t > 0, β0 > 0. (4.2.2)

Next we study the joint distribution of the random variables X1 and X2. The fol-

lowing lemma gives the joint survival function of X1 and X2 , which is the survival

function of the NBMW distribution.

Lemma 4.2.1. The joint survival function of the dependent random variables X1

and X2 is

F̄X1,X2(x1, x2) = e−(α1x
β1
1 +α2x

β2
2 +β0z), (4.2.3)

where z = max(x1, x2).

Proof. We have

F̄X1,X2(x1, x2) = P (X1 > x1, X2 > x2)

= P (min(U1, U3) > x1,min(U2, U3) > x2)

= P (U1 > x1, U2 > x2, U3 > max(x1, x2)) .

Since Ui(i = 1, 2, 3) are mutually independent, we have

F̄X1,X2(x1, x2) = P (U1 > x1)P (U2 > x2)P (U3 > max(x1, x2))

= Ḡ1(x1)Ḡ2(x2)Ḡ3(z)

= e−(α1x
β1
1 +α2x

β2
2 +β0z).

where z = max(x1, x2).
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Now we have the following theorem which gives the joint pdf of the NBMW

distribution.

Theorem 4.2.1. If the joint survival function of (X1, X2) is

F̄X1,X2(x1, x2) = e−(α1x
β1
1 +α2x

β2
2 +β0z),

where z = max(x1, x2), then the joint probability density function of (X1, X2) is given

by

fX1,X2(x1, x2) =

{
f1(x1, x2) if x1 > x2 > 0,
f2(x1, x2) if x2 > x1 > 0,
f0(x1, x1) if x1 = x2 > 0,

(4.2.4)

where
f1(x1, x2) = α2β2x

β2−1
2 (α1β1x

β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x1),

f2(x1, x2) = α1β1x
β1−1
1 (α2β2x

β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x2),

and
f0(x1, x1) = β0e

−(α1x
β1
1 +α2x

β2
1 +β0x1).

Proof. First we assume that x1 > x2. Then from Eqn.(4.2.3) we have

F̄X1,X2(x1, x2) = e−(α1x
β1
1 +α2x

β2
2 +β0x1).

Then

f1(x1, x2) =
∂2F̄X1,X2(x1, x2)

∂x1∂x2

= α2β2x
β2−1
2 (α1β1x

β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x1)

Similarly for x2 > x1,

f2(x1, x2) = α1β1x
β1−1
1 (α2β2x

β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x2).

But, f0(x1, x1) cannot be obtained in a similar way. For this reason, we use the

identity∫ ∞

0

f0(x1, x1)dx1 +

∫ ∞

0

∫ x1

0

f1(x1, x2)dx2dx1 +

∫ ∞

0

∫ x2

0

f2(x1, x2)dx1dx2 = 1.

(4.2.5)
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where,∫ ∞

0

∫ x1

0

f1(x1, x2)dx2dx1 = 1−
∫ ∞

0

(α1β1x
β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
1 +β0x1)dx1,

and∫ ∞

0

∫ x2

0

f2(x1, x2)dx1dx2 = 1−
∫ ∞

0

(α2β2x
β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
1 +β0x1)dx1.

Then from Eqn.(4.2.5)

∫ ∞

0

f0(x1, x1)dx1 =

∫ ∞

0

(α1β1x
β1−1
1 + α2β2x

β2−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
1 +β0x1)dx1

+

∫ ∞

0

β0e
−(α1x

β1
1 +α2x

β2
1 +β0x1)dx1 − 1

=

∫ ∞

0

β0e
−(α1x

β1
1 +α2x

β2
1 +β0x1)dx1

This implies that

f0(x1, x1) = β0e
−(α1x

β1
1 +α2x

β2
1 +β0x1).

This completes the proof of the theorem.

Now setting β1 = β2 = 1, we get the joint probability density function of the

bivariate exponential distribution as

fX1,X2(x1, x2) =

{
α2(α1 + β0)e

−(α1x1+α2x2+β0x1) if x1 > x2 > 0,
α1(α2 + β0)e

−(α1x1+α2x2+β0x2) if x2 > x1 > 0,
β0e

−(α1+α2+β0)x1 if x1 = x2 > 0,
(4.2.6)

The shape of the joint probability density function of the NBMW distribution for

various choices of parameters are shown in Figure 4.1.
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Figure 4.1: Scatter plots of the absolute continuous part of the joint pdf of
the NBMW distribution for different parameter values of (α1, α2, β1, β2, β0): (a).
(1,1,0.5,0.5,1); (b). (1,1,1,1,1); (c). (1,1,1.5,1.5,1); (d). (1,1,2,2,1); (e). (1,1,5,5,1);
(f). (1,1,10,10,1).

4.3 Marginal and Conditional Probability Density

Functions

Now we derive the marginal density function of Xi and the conditional density func-

tions of Xi/Xj, i 6= j = 1, 2.

Theorem 4.3.1. The marginal probability density function of Xi(i = 1, 2) is given

by

fXi
(xi) = (αiβix

βi−1
i + β0)e

−(αix
βi
i +β0xi), xi > 0, i = 1, 2. (4.3.1)

Proof. First we shall derive fX1(x1). We have

fX1(x1) =

∫ ∞

0

fX1,X2(x1, x2)dx2.

We can express
fX1(x1) = λ(x1) + µ(x1) + f0(x1, x1), (4.3.2)
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where

λ(x1) =

∫ x1

0

f1(x1, x2)dx2

and

µ(x1) =

∫ ∞

x1

f2(x1, x2)dx2. (4.3.3)

Then using the Eqn.(4.2.4) we have

λ(x1) =

∫ x1

0

α2β2x
β2−1
2 (α1β1x

β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x1)dx2

= (α1β1x
β1−1
1 + β0)(1− e−α2x

β2
1 )e−(α1x

β1
1 +β0x1) (4.3.4)

and

µ(x1) =

∫ ∞

x1

α1β1x
β1−1
1 (α2β2x

β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x2)dx2

= α1β1x
β1−1
1 e−(α1x

β1
1 +α2x

β2
1 +β0x1) (4.3.5)

Substituting the Eqn.(4.3.4) and the Eqn.(4.3.5) in the Eqn.(4.3.2) and using the

expression of f0(x1, x1) from Theorem 4.2.1, we obtain

fX1(x1) = (α1β1x
β1−1
1 + β0)e

−(α1x
β1
1 +β0x1).

Proceeding similarly we can derive fX2(x2) as

fX2(x2) = (α2β2x
β2−1
2 + β0)e

−(α2x
β2
2 +β0x2).

This completes the proof of the theorem.

Here note that the marginal distribution function of the NBMW distribution

follows the modified Weibull distribution, see Sarhan and Zaindin (2009). The cdf
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is given by

FXi
(xi) = 1− e−(αix

βi
i +β0xi), i = 1, 2. (4.3.6)

The marginal pdf of Xi in the case of the bivariate exponential distribution with

joint pdf as given in the Eqn.(4.2.6), is

fXi
(xi) = (αi + β0)e

−(αi+β0)xi ;xi > 0, i = 1, 2. (4.3.7)

Now we derive the conditional probability density function as presented in the fol-

lowing theorem.

Theorem 4.3.2. The conditional pdf of Xi, given Xj = xj, denoted by fi/j(xi/xj)(i 6=

j = 1, 2), is given by

fi/j(xi/xj) =


f

(1)
i/j (xi/xj) if xi > xj > 0,

f
(2)
i/j (xi/xj) if xi < xj > 0,

f
(0)
i/j (xi/xj) if xi = xj > 0,

(4.3.8)

where

f
(1)
i/j (xi/xj) =

αjβjx
βj−1
j (αiβix

βi−1
i + β0)e

−(αix
βi
i +β0(xi−xj))

αjβjx
βj−1
j + β0

,

f
(2)
i/j (xi/xj) = αiβix

βi−1
i e−αix

βi
i ,

and

f
(0)
i/j (xi/xj) =

β0e
−αjx

βj
i

αiβix
βi−1
i + β0

.

Proof. The theorem follows readily upon substituting for the joint pdf of (X1, X2)

given in the Eqn.(4.2.4) and the marginal pdf of Xi(i = 1, 2) given in the Eqn.(4.3.1),

which completes the proof of the theorem.
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For the case of the bivariate exponential distribution, we obtain upon setting

β1 = β2 = 1 given in Eqn.(4.3.8)

fi/j(xi/xj) =


αj(αi+β0)e−(αi+β0)xi+β0xj

αj+β0
if xi > xj > 0,

αie
−αixi if xi < xj > 0,

β0e−αjxi

αi+β0
if xi = xj > 0.

(4.3.9)

4.4 Mathematical Expectations

In this section, we derive the mathematical expectation, second order moments and

the marginal moment generating function of Xi(i = 1, 2).

Theorem 4.4.1. The mathematical expectation of Xi(i = 1, 2) is given by

E(Xi) =
∞∑

k=0

(−1)kαk
i βi

k!

[
αiβi(k + 1)Γ(βi(k + 1))

β
βi(k+1)+1
0

+
k(kβi + 1)Γ(kβi)

βkβi+1
0

]
(4.4.1)

Proof. We have E(Xi) =
∫∞

0
xifXi

(xi)dxi and substituting for fXi
(xi) from the

Eqn.(4.3.1), we get

E(Xi) =

∫ ∞

0

xi(αiβix
βi−1
i + β0)e

−(αix
βi
i +β0xi)dxi

= αiβi

∫ ∞

0

xβi

i e
−(αix

βi
i +β0xi)dxi + β0

∫ ∞

0

xie
−(αix

βi
i +β0xi)dxi

Now, using

e−αix
βi
i =

∞∑
k=0

(−1)kαk
i x

kβi

i

k!
, i = 1, 2;
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we have

E(Xi) =

∫ ∞

0

αiβi

∞∑
k=0

(−1)kαk
i x

(k+1)βi

i

k!
e−β0xidxi

+β0

∫ ∞

0

∞∑
k=0

(−1)kαk
i x

kβi+1
i

k!
e−β0xidxi

= αiβi

∞∑
k=0

(−1)kαk
i

k!

Γ(βi(k + 1) + 1)

β
βi(k+1)+1
0

+ β0

∞∑
k=0

(−1)kαk
i

k!

Γ(kβi + 2)

βkβi+2
0

=
∞∑

k=0

(−1)kαk
i βi

k!

[
αiβi(k + 1)Γ(βi(k + 1))

β
βi(k+1)+1
0

+
k(kβi + 1)Γ(kβi)

βkβi+1
0

]

This completes the proof.

Theorem 4.4.2. The second order moment of Xi(i = 1, 2) is given by

E(X2
i ) =

∞∑
k=0

(−1)kαk
i βi

k!

[
αi(βi(k + 1) + 1)(k + 1)Γ(βi(k + 1))

β
βi(k+1)+2
0

+
k(kβi + 1)(kβi + 2)Γ(kβi)

βkβi+2
0

]

Proof. We have E(X2
i ) =

∫∞
0
x2

i fXi
(xi)dxi and substituting for fXi

(xi) from the

Eqn.(4.3.1), we get

E(X2
i ) =

∫ ∞

0

x2
i (αiβix

βi−1
i + β0)e

−(αix
βi
i +β0xi)dxi

= αiβi

∫ ∞

0

xβi+1
i e−(αix

βi
i +β0xi)dxi + β0

∫ ∞

0

x2
i e
−(αix

βi
i +β0xi)dxi

=

∫ ∞

0

αiβi

∞∑
k=0

(−1)kαk
i x

(k+1)βi+1
i

k!
e−β0xidxi

+β0

∫ ∞

0

∞∑
k=0

(−1)kαk
i x

kβi+2
i

k!
e−β0xidxi
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=
∞∑

k=0

(−1)kαk
i βi

k!

[
αi(βi(k + 1) + 1)(k + 1)Γ(βi(k + 1))

β
βi(k+1)+2
0

+
k(kβi + 1)(kβi + 2)Γ(kβi)

βkβi+2
0

]

This completes the proof.

Theorem 4.4.3. The moment generating function of Xi(i = 1, 2) is given by

MXi
(ti) =

∞∑
k=0

(−1)kαk
i

k!

[
αiβiΓ(βi(k + 1))

(β0 + ti)βi(k+1)
+
β0Γ(kβi + 1)

(β0 + ti)kβi+1

]
(4.4.2)

Proof. We have MXi
(ti) = E

[
e−tiXi

]
=
∫∞

0
e−tixifXi

(xi)dxi and substituting for

fXi
(xi) from the Eqn.(4.3.1), we get

MXi
(ti) =

∫ ∞

0

e−tiXi(αiβix
βi−1
i + β0)e

−(αix
βi
i +β0xi)dxi

= αiβi

∫ ∞

0

xβi−1
i e−αix

βi
i e−(β0+ti)xidxi + β0

∫ ∞

0

e−αix
βi
i e−(β0+ti)xidxi

= αiβi

∫ ∞

0

∞∑
k=0

(−1)kαk
i x

(k+1)βi−1
i

k!
e−(β0+ti)xidxi

+β0

∫ ∞

0

∞∑
k=0

(−1)kαk
i x

kβi

i

k!
e−(β0+ti)xidxi

=
∞∑

k=0

(−1)kαk
i

k!

[
αiβiΓ(βi(k + 1))

(β0 + ti)βi(k+1)
+
β0Γ(kβi + 1)

(β0 + ti)kβi+1

]

This completes the proof.
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Theorem 4.4.4. The joint moment generating function of (X1, X2) is given by

M(t1, t2) =
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)kαk+1
2 tl2α

m
1

k!l!m!

Γ[l + β2(k + 1) + β1(m+ 1)]

(β0 + t1)l+β2(k+1)+β1(m+1)

+
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)k+l+mαk+1
1 tl1α

m
2

k!l!m!

Γ[l + β1(k + 1) + β2(m+ 1)]

(β0 + t2)l+β1(k+1)+β2(m+1)

+
∞∑

k=0

∞∑
l=0

(−1)k+jαk
1α

l
2

k!l!

Γ[kβ1 + lβ2 − 1]

(β0 + t1 + t2)kβ1+lβ2−1
(4.4.3)

Proof. The joint moment generating function of (X1, X2) is given by

M(t1, t2) = E[e−t1X1−t2X2 ] =

∫ ∞

0

∫ ∞

0

e−t1x1−t2x2fX1,X2(x1, x2)dx1dx2

= I1 + I2 + I3 (4.4.4)

where

I1 =

∫ ∞

0

∫ x1

0

e−t1x1−t2x2f1(x1, x2)dx2dx1

=

∫ ∞

0

∫ x1

0

e−t1x1−t2x2α2β2x
β2−1
2 (α1β1x

β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x1)dx2dx1

=

∫ ∞

0

e−t1x1(α1β1x
β1−1
1 + β0)e

−(α1x
β1
1 +β0x1)

∫ x1

0

α2β2x
β2−1
2 e−t2x2e−α2x

β2
2 dx2dx1

=
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)kαk+1
2 tl2α

m
1

k!l!m!

Γ[l + β2(k + 1) + β1(m+ 1)]

(β0 + t1)l+β2(k+1)+β1(m+1)
(4.4.5)
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Similarly,

I2 =

∫ ∞

0

∫ x2

0

e−t1x1−t2x2f2(x1, x2)dx1dx2

=

∫ ∞

0

∫ x2

0

e−t1x1−t2x2α1β1x
β1−1
1 (α2β2x

β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x2)dx1dx2

=
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)k+l+mαk+1
1 tl1α

m
2

k!l!m!

Γ[l + β1(k + 1) + β2(m+ 1)]

(β0 + t2)l+β1(k+1)+β2(m+1)
(4.4.6)

Also

I3 =

∫ ∞

0

e−(t1+t2)x1f0(x1, x1)dx1

=

∫ ∞

0

e−(t1+t2)x1β0e
−(α1x

β1
1 +α2x

β2
1 +β0x1)dx1

=
∞∑

k=0

∞∑
l=0

(−1)k+jαk
1α

l
2

k!l!

Γ[kβ1 + lβ2 − 1]

(β0 + t1 + t2)kβ1+lβ2−1
(4.4.7)

Using I1, I2 and I3 in the Eqn.(4.4.4) we get

M(t1, t2) =
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)kαk+1
2 tl2α

m
1

k!l!m!

Γ[l + β2(k + 1) + β1(m+ 1)]

(β0 + t1)l+β2(k+1)+β1(m+1)

+
∞∑

k=0

∞∑
l=0

∞∑
m=0

(−1)k+l+mαk+1
1 tl1α

m
2

k!l!m!

Γ[l + β1(k + 1) + β2(m+ 1)]

(β0 + t2)l+β1(k+1)+β2(m+1)

+
∞∑

k=0

∞∑
l=0

(−1)k+jαk
1α

l
2

k!l!

Γ[kβ1 + lβ2 − 1]

(β0 + t1 + t2)kβ1+lβ2−1
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4.5 Bivariate Reliability Function

In this section we introduce the joint reliability function, joint hazard rate function,

joint mean waiting time and the joint reverse hazard rate function of the NBMW

distribution. The joint reliability function of the random variables X1 and X2 is

defined by

RX1,X2(x1, x2) = 1−
[
FX1(x1) + FX2(x2)− FX1,X2(x1, x2)

]
= F̄X1(x1) + F̄X2(x2)− F̄X1,X2(x1, x2). (4.5.1)

Theorem 4.5.1. The joint reliability function of the random variables X1 and X2

from the NBMW distribution is given by

RX1,X2(x1, x2) =

{
R1(x1, x2) if x1 > x2,
R2(x1, x2) if x1 < x2,
R3(x1, x1) if x1 = x2,

(4.5.2)

where

R1(x1, x2) = e−(α1x
β1
1 +α2x

β2
2 +β0x1)

[
eα2x

β2
2 + eα1x

β1
1 +β0(x1−x2) − 1

]
,

R2(x1, x2) = e−(α1x
β1
1 +α2x

β2
2 +β0x2)

[
eα1x

β1
1 + eα2x

β2
2 +β0(x2−x1) − 1

]
,

and

R3(x1, x1) = e−(α1x
β1
1 +α2x

β2
1 +β0x1)

[
eα2x

β2
1 + eα1x

β1
1 − 1

]
.

Proof. Applying the Eqn.(4.2.3) and the Eqn.(4.3.6) in the Eqn.(4.5.1), we get the

joint reliability function of NBMW distribution as

RX1,X2(x1, x2) = e−(α1x
β1
1 +β0x1) + e−(α2x

β2
2 +β0x2) − e−(α1x

β1
1 +α2x

β2
2 β0z),
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where z = max(x1, x2), αi > 0, i = 1, 2 and β0 > 0. This completes the proof.

4.5.1 Hazard rate function

The bivariate hazard rate function of NBMW distribution, h(x1, x2) (see Basu, 1971)

is defined as

h(x1, x2) =
fX1,X2(x1, x2)

F̄X1,X2(x1, x2)
=

{
h1(x1, x2) if x1 > x2,
h2(x1, x2) if x1 < x2,
h0(x1, x1) if x1 = x2,

(4.5.3)

where

h1(x1, x2) =
f1(x1, x2)

F̄1(x1, x2)
=

α2β2x
β2−1
2

(
α1β1x

β1−1
1 + β0

)
[
eα2x

β2
2 + eα1x

β1
1 +β0(x1−x2) − 1

] ,

h2(x1, x2) =
f2(x1, x2)

F̄2(x1, x2)
=

α1β1x
β1−1
1

(
α2β2x

β2−1
2 + β0

)
[
eα1x

β1
1 + eα2x

β2
2 +β0(x2−x1) − 1

] ,

and

h0(x1, x1) =
f3(x1, x2)

F̄3(x1, x2)
=

β0[
eα2x

β2
1 + eα1x

β1
1 − 1

] .
The shape of the bivariate hazard rate function of the NBMW distribution for various

choices of parameters are shown in Figure 4.2.

4.5.2 Mean waiting time

The mean waiting time function µw(t) for the marginal distributions of Xi’s, i = 1, 2

can be defined by

µwi
(t) =

1

FXi
(t)

∫ t

0

FXi
(xi)dxi. (4.5.4)
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Figure 4.2: Scatter plots of the absolute continuous part of the joint hazard rate func-
tion of the NBMW distribution for different parameter values of (α1, α2, β1, β2, β0):
(a). (2,2,0.5,0.5,1); (b). (1,1,1,1,1); (c). (1,1,1.5,1.5,1); (d). (1,1,2,2,1).

Then the mean waiting time of (X1, X2) is defined as

µw(t1, t2) =
1

F (t1, t2)

∫ t1

0

∫ t2

0

FX1,X2(x1, x2)dx1dx2. (4.5.5)

The following Lemma gives the mean waiting time of (X1, X2).

Lemma 4.5.1. The joint mean waiting time µw(t1, t2) to the random variables X1

and X2 is

µw(t1, t2) =

{
µw1(t1, t2) if t1 > t2,
µw2(t1, t2) if t1 < t2,
µw0(t1, t1) if t1 = t2,

(4.5.6)
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where

µw1(t1, t2) =
1

F (t1, t2)

[
t2t1 −

∞∑
j=0

(−1)jαj
1t2γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t2)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t

kβ2+1
2 γ(jβ1 + 1, β0t1)

j!k!(kβ2 + 1)βjβ1+1
0

]
,

µw2(t1, t2) =
1

F (t1, t2)

[
t1t2 −

∞∑
j=0

(−1)jαj
1t2γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t2)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t

kβ1+1
1 γ(jβ2 + 1, β0t2)

j!k!(kβ1 + 1)βjβ2+1
0

]
,

and

µw0(t1, t1) =
1

F (t1, t1)

[
t21 −

∞∑
j=0

(−1)jαj
1t1γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t1)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t1γ(jβ1 + kβ2 + 1, β0t1)

j!k!βjβ1+kβ2+1
0

]
.

Here γ(.) is the incomplete gamma function.
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Proof. From the Eqn.(4.5.1) we have

FX1,X2(x1, x2) = 1− F̄X1(x1)− F̄X2(x2) + F̄X1,X2(x1, x2)

= 1− e−(α1x
β1
1 +β0x1) − e−(α2x

β2
2 +β0x2) + e−(α1x

β1
1 +α2x

β2
2 +β0z),

where z = max(x1, x2).

First we consider the case when x1 > x2. From the Eqn.(4.2.4), Eqn.(4.3.6) and the

Eqn.(4.5.5) we get

µw1(t1, t2) =
1

F (t1, t2)

∫ t1

0

∫ t2

0

[
1 − e−(α1x

β1
1 +β0x1) − e−(α2x

β2
2 +β0x2)

+ e−(α1x
β1
1 +α2x

β2
2 +β0x1)

]
dx2dx1.

Now, using

e−αix
βi
i =

∞∑
k=0

(−1)kαk
i x

kβi

i

k!
, i = 1, 2,

we have

µw1(t1, t2) =
1

F (t1, t2)

[
t2t1 −

∞∑
j=0

(−1)jαj
1t2γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t2)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t

kβ2+1
2 γ(jβ1 + 1, β0t1)

j!k!(kβ2 + 1)βjβ1+1
0

]
.
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Proceeding in the similar way, for x1 < x2, we get

µw2(t1, t2) =
1

F (t1, t2)

[
t1t2 −

∞∑
j=0

(−1)jαj
1t2γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t2)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t

kβ1+1
1 γ(jβ2 + 1, β0t2)

j!k!(kβ1 + 1)βjβ2+1
0

]
,

and for x1 = x2

µw0(t1, t1) =
1

F (t1, t1)

[
t21 −

∞∑
j=0

(−1)jαj
1t1γ(jβ1 + 1, β0t1)

j!βjβ1+1
0

−
∞∑

j=0

(−1)kαk
2t1γ(kβ2 + 1, β0t1)

k!βkβ2+1
0

+
∞∑

k=0

∞∑
j=0

(−1)j+kαj
1α

k
2t1γ(jβ1 + kβ2 + 1, β0t1)

j!k!βjβ1+kβ2+1
0

]
.

This completes the proof.

4.5.3 Reverse hazard rate function

Reversed hazard rates are important in the study of systems. Hazard rates have an

affinity to series systems where as reversed hazard rates are more appropriate for

studying parallel systems, see Block et al. (1998). The bivariate reverse hazard rate

function is defined by

rX1,X2(x1, x2) =
fX1,X2(x1, x2)

FX1,X2(x1, x2)
=

{
r1(x1, x2) if x1 > x2,
r2(x1, x2) if x1 < x2,
r0(x1, x1) if x1 = x2,

(4.5.7)
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where

r1(x1, x2) =
α2β2x

β2−1
2 (α1β1x

β1−1
1 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x1)

1− e−(α2x
β2
2 +β0x2) − e−(α1x

β1
1 +β0x1)(1− e−α2x

β2
2 )
, (4.5.8)

r2(x1, x2) =
α1β1x

β1−1
1 (α2β2x

β2−1
2 + β0)e

−(α1x
β1
1 +α2x

β2
2 +β0x2)

1− e−(α1x
β1
1 +β0x1) − e−(α2x

β2
2 +β0x2)(1− e−α1x

β1
1 )
, (4.5.9)

r0(x1, x1) =
β0e

−(α1x
β1
1 +α2x

β2
1 +β0x1)

1− e−(α2x
β2
1 +β0x1) − e−(α1x

β1
1 +β0x1)(1− e−α2x

β2
1 )
. (4.5.10)

4.6 Maximum Likelihood Estimation of Parame-

ters

Here we discuss the method of computing maximum likelihood estimates of the un-

known parameters of the NBMW distribution. Suppose {(x1, y1), (x2, y2), ... , (xn, yn)}

be a random sample drawn from the NBMW(α1, α2, β1, β2, β0) distribution. We use

the following notations:

I1 = {i; xi < yi}, I2 = {i; xi > yi}, I3 = {i; xi = yi}, I = I1 ∪ I2 ∪ I3,

|I1| = n1, |I2| = n2, |I3| = n3, and n1 + n2 + n3 = n.

The likelihood function is

L =

( n1∏
i=1

f1(xi, yi)

) ( n2∏
i=1

f2(xi, yi)

) ( n3∏
i=1

f3(xi, xi)

)
, (4.6.1)
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where

f1(xi, yi) = α2β2y
β2−1
i

(
α1β1x

β1−1
i + β0

)
e−(α1x

β1
i +α2y

β2
i +β0xi), for 0 < yi < xi,

f2(xi, yi) = α1β1x
β1−1
i

(
α2β2y

β2−1
i + β0

)
e−(α1x

β1
i +α2y

β2
i +β0yi), for 0 < xi < yi,

f3(xi, xi) = β0e
−(α1x

β1
i +α2x

β2
i +β0xi), for 0 < xi = yi.

The log-likelihood function is

ln(L) = n1 ln(α2) + n2 ln(α1) + n1 ln(β2) + n2 ln(β1) + n3 ln(β0)

+

n1∑
i=1

ln(α1β1x
β1−1
i + β0) +

n2∑
i=1

ln(α2β2y
β2−1
i + β0)

−
n1∑
i=1

(α1x
β1

i + α2y
β2

i + β0xi)−
n2∑
i=1

(α1x
β1

i + α2y
β2

i + β0yi)

−
n3∑
i=1

(α1x
β1

i + α2x
β2

i + β0xi)

+(β2 − 1)

n1∑
i=1

ln(yi) + (β1 − 1)

n2∑
i=1

ln(xi). (4.6.2)

On differentiating the Eqn.(4.6.2) with respect to α1, α2, β1, β2, and β0 and equating

to zero, we get the following likelihood equations:

∂ ln(L)

∂α1

= 0 ⇒ n2

α1

+

n1∑
i=1

β1x
β1−1
i

α1β1x
β1−1
i + β0

−

n1∑
i=1

xβ1

i −
n2∑
i=1

xβ1

i −
n3∑
i=1

xβ1

i = 0. (4.6.3)
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∂ ln(L)

∂α2

= 0 ⇒ n1

α2

+

n2∑
i=1

β2y
β2−1
i

α2β2y
β2−1
i + β0

−
n1∑
i=1

yβ2

i −
n2∑
i=1

yβ2

i −
n3∑
i=1

xβ2

i = 0. (4.6.4)

∂ ln(L)

∂β1

= 0 ⇒ n2

β1

+

n1∑
i=1

α1x
β1−1
i (β1 ln(xi) + 1)

α1β1x
β1−1
i + β0

−
n1∑
i=1

α1x
β1

i ln(xi)

−
n2∑
i=1

α1x
β1

i ln(xi)−
n3∑
i=1

α1x
β1

i ln(xi) +

n2∑
i=1

ln(xi) = 0.(4.6.5)

∂ ln(L)

∂β2

= 0 ⇒ n1

β2

+

n2∑
i=1

α2y
β2−1
i (β2 ln(yi) + 1)

α2β2y
β2−1
i + β0

−
n1∑
i=1

α2y
β2

i ln(yi)

−
n2∑
i=1

α2y
β2

i ln(yi)−
n3∑
i=1

α2x
β2

i ln(yi) +

n1∑
i=1

ln(yi) = 0. (4.6.6)

∂ ln(L)

∂β0

= 0 ⇒ n3

β0

+

n1∑
i=1

1

α1β1x
β1−1
i + β0

+

n2∑
i=1

1

α2β2y
β2−1
i + β0

−
n1∑
i=1

xi −
n2∑
i=1

yi −
n3∑
i=1

xi = 0. (4.6.7)

The Eqns.(4.6.3) to (4.6.7) have no explicit form and their solutions (α̂1, α̂2, β̂1, β̂2, β̂0)

are numerically obtained using the Newton-Raphson method. The asymptotic vari-

ance covariance matrix of (α̂1, α̂2, β̂1, β̂2, β̂0) is obtained by inverting the following
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Fisher information matrix

I = −


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∂α1∂β2

∂2 ln(L)
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∂2 ln(L)
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∂2 ln(L)
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∂2 ln(L)
∂α2∂β1

∂2 ln(L)
∂α2∂β2

∂2 ln(L)
∂α2∂β0

∂2 ln(L)
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∂2 ln(L)
∂β1∂α2

∂2 ln(L)
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∂2 ln(L)
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∂2 ln(L)
∂β1∂α2

∂2 ln(L)
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∂2 ln(L)
∂2β2

∂2 ln(L)
∂β2∂β0

∂2 ln(L)
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∂2 ln(L)
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∂2 ln(L)
∂β0∂β1

∂2 ln(L)
∂β0∂β2

∂2 ln(L)
∂2β0

 (4.6.8)

The second order partial derivatives of the log-likelihood function are given by:

∂2 ln(L)

∂α2
1

= −n2

α2
1

−
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(β1x
β1−1
i )2

(α1β1x
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,
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2
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2
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i )2
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,
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β2
1
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α1x
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(α2β2y
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,
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β0x
β1−1
i (β1 ln(xi) + 1)

(α1β1x
β1−1
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−
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xβ1
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xβ1
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n3∑
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xβ1
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∂2 ln(L)

∂α1∂β2
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∂2 ln(L)

∂α1∂β0

= −
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β1x
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i
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= −
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.

where θ̂ = (α̂1, α̂2, β̂1, β̂2, β̂0) is the maximum likelihood estimator of the parameter

θ = (α1, α2, β1, β2, β0).

4.6.1 Simulation study

The sample observations from the NBMW distribution can be generated based on

the following algorithm:

Step 1. Generate U1, U2 and U3 from U(0, 1).

Step 2. Input α1, α2, β1, β2 and β0
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Step 3. Compute

Z1 =

[
− ln(1− U1)

α1

] 1
β1

, Z2 =

[
− ln(1− U2)

α2

] 1
β2

and Z3 =

[
− ln(1− U3)

β0

]
.

Step 4. Obtain X1 = max(Z1, Z3) and X2 = max(Z2, Z3).

Step 5. For a given sample size (n), compute the sizes n1, n2, and n3.

Step 8. Maximize the Eqn.(4.6.2) to obtain the estimates (α̂1, α̂2, β̂1, β̂2, β̂0).

We have performed a simulation to study the behavior of the MLEs. We have

considered two different sets of model parameters; (1). α1 = 0.5, α2 = 0.5, β1 =

0.5, β2 = 0.5 and β0 = 0.5 , and (2). α1 = 1, α2 = 1, β1 = 1, β2 = 1 and β0 = 1.

We have used the sample sizes as n=25, 50, 100 and 500. The process is repeated

1000 times and the average estimates and the square root of the mean squared errors

are computed and presented in Table 4.1. The results show that as the sample size

increases, the bias and the mean square errors decrease, which gives the consistency

property of MLEs.

4.7 Data Application

In this section we present an analysis of a bivariate real data set to illustrate that

the NBMW distribution can be used as a good lifetime model. We have taken the

American football league data reported in Csorgo and Welsh (1989). We compare

the fit of the NBMW distribution with the following distributions:

(i). Bivariate generalized Gompertz (BGG) distribution of El-Sherpieny et al. (2013)
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Table 4.1: Parameter estimates (the mean square errors) for different sample sizes.
Parameters n=25 n=50 n=100 n=500

α1 = 0.5 0.195
(0.0630)

0.266
(0.0030)

0.330
(0.0019)

0.445
(0.0002)

α2 = 0.5 0.107
(0.0031)

0.199
(0.0015)

0.205
(0.0007)

0.413
(0.0001)

β1 = 0.5
1.199

(0.0790)
1.052

(0.0356)
0.824

(0.0218)
0.667

(0.0042)

β2 = 0.5
0.683

(0.0768)
0.589

(0.0478)
0.542

(0.0245)
0.533

(0.0045)

β0 = 0.5
0.130

(0.0024)
0.247

(0.0013)
0.392

(0.0002)
0.494

(0.0001)

α1 = 1 0.692
(0.0064)

0.847
(0.0037)

0.899
(0.0017)

0.942
(0.0004)

α2 = 1 0.812
(0.0066)

0.903
(0.0064)

0.932
(0.0015)

0.945
(0.0002)

β1 = 1
1.649

(0.1285)
1.608

(0.0467)
1.520

(0.0239)
1.318

(0.0046)

β2 = 1
0.672

(0.0464)
0.846

(0.0255)
0.950

(0.0129)
0.962

(0.0029)

β0 = 1
0.558

(0.0037)
0.635

(0.0008)
0.722

(0.0007)
0.803

(0.0003)

with cdf

FX1,X2(x1, x2) =

[
1− e

−λ
α

(eαx1−1)

]β1
[
1− e

−λ
α

(eαx2−1)

]β2
[
1− e

−λ
α

(eαz−1)

]β3

,

where z = min(x1, x2) , λ > 0, α > 0 and βi > 0, i = 1, 2, 3.

(ii). Bivariate exponentiated generalized Weibull-Gompertz (BEGWG) distribution

of El-Damcese et al. (2015) with cdf

FX1,X2(x1, x2) =

[
1− e−x1(ex1−1)

]α1
[
1− e−x2(ex2−1)

]α2
[
1− e−z(ez−1)

]α3

,

where z = min(x1, x2) and αi > 0, i = 1, 2, 3.

(iii). Bivariate exponentiated modified Weibull extension (BEMWE) distribution of

El-Gohary et al. (2016) with cdf

FX1,X2(x1, x2) =

[
1− e−λα(e(

x1
α )γ−1)

]β1
[
1− e−λα(e(

x2
α )γ−1)

]β2
[
1− e−λα(e( z

α )γ−1)

]β3

,

where z = min(x1, x2) , λ > 0, α > 0, γ > 0 and βi > 0, i = 1, 2, 3.

(iv). Bivariate exponentiated Pareto (BEP) distribution of Ashwag et al. (2017)
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with survival function

F̄X1,X2(x1, x2) = 1− θ1λ1

[
1− (1 + x1)

−λ1
]θ1−1[

1 + x1

]−(λ1+1)

−θ2λ2

[
1− (1 + x2)

−λ2
]θ2−1[

1 + x2

]−(λ2+1)
+ CG(u1, u2; ρ)

where CG(u1, u2; ρ) is the Gaussian copula function, θi > 0, λi > 0, i = 1, 2 and

ρ ∈ (−1, 1).

We use the -log L, AIC, CAIC, BIC for the comparison of the models. Here the

variables X1 and X2 are respectively the game time to the first points scored by

kicking the ball between goal posts and by moving the ball into the end zone. The

data represents the the time in minutes and are given by:

(X1, X2) : (2.05, 3.98), (9.05, 9.05), (0.85, 0.85), (3.43, 3.43), (7.78, 7.78), (10.57, 14.28),

(7.05, 7.05), (2.58, 2.58), (7.23, 9.68), (6.85, 34.58), (32.45, 42.35), (8.53, 14.57),

(31.13, 49.88), (14.58, 20.57), (5.78, 25.98), (13.80, 49.75), (7.25, 7.25), (4.25, 4.25),

(1.65, 1.65), (6.42, 15.08), (4.22, 9.48), (15.53, 15.53), (2.90, 2.90), (7.02, 7.02),

(6.42, 6.42), (8.98, 8.98), (10.15, 10.15), (8.87, 8.87), (10.40, 10.25), (2.98, 2.98),

(3.88, 6.43), (0.75, 0.75), (11.63, 17.37), (1.38, 1.38), (10.53, 10.53), (12.13, 12.13),

(14.58, 14.58), (11.82, 11.82), (5.52, 11.27), (19.65, 10.70), (17.83, 17.83), (10.85, 38.07).

Table 4.2 shows the descriptive statistics of the variables X1 and X2. Here X1 < X2

Table 4.2: Descriptive statistics of the variables X1 and X2.
Variables Size(n) Min. Max. Mean Median Skewness

X1 42 0.75 32.45 9.079 7.515 1.726
X2 42 0.75 49.88 13.349 9.915 1.756
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means the first score is a field goal, X1 > X2 means the first score is an unconverted

touch down and X1 = X2 means the first score is converted touch down. Table 4.3

presents the MLEs of unknown parameters and the values of -log(L), AIC, CAIC

and BIC. From Table 4.3 it is evident that the NBMW model fits the data better

than the other four models.

Table 4.3: The MLEs of parameters and the goodness of fit test statistics.
Model ML estimates -log L AIC CAIC BIC

BGG β̂1 = 0.024, β̂2 = 0.150, β̂3 = 0.310,
λ̂ = 0.004, α̂ = 0.100

260.50 531.00 532.67 539.69

BEMWE β̂1 = 0.212, β̂2 = 1.315, β̂3 = 2.645,
λ̂ = 0.096, α̂ = 0.100, γ̂ = 0.420

239.86 491.72 494.12 502.15

BEGWG α̂1 = 0.032, α̂2 = 0.186, α̂3 = 0.406 354.03 714.06 714.69 719.27

BEP θ̂1 = 9.948, θ̂2 = 8.013, λ̂1 = 1.375,
λ̂2 = 1.142, ρ̂ = 0.927

252.27 514.56 516.22 523.25

NBMW α̂1 = 0.022, α̂2 = 0.001, β̂1 = 0.545,
β̂2 = 1.947, β̂0 = 0.010

208.37 426.74 428.41 435.43

4.8 Copula Function

Copula is a function that joins two or more marginal distribution functions to con-

struct bivariate or multivariate distributions, see Sklar (1959). This function can

link any type of marginal distribution and construct unknown bivariate distributions

from known marginals.

A bivariate copula is defined as follows: Let X1 and X2 be continuous random

variables with distribution functions, FX1(x1) = P (X1 ≤ x1) and FX2(x2) = P (X2 ≤

x2). If FX1(x1) and FX2(x2) are continuous and differentiable and C is unique, then
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the joint density can be written as

fX(x1, x2) =
2∏

i=1

fXi
(xi)C

′
(FX1(x1), FX2(x2)), (4.8.1)

where fX1(x1) and fX2(x2) are the probability density function corresponding to

FX1(x1) and FX2(x2). Also C
′
(FX1(x1), FX2(x2)) =

∂2C(FX1
(x1),FX2

(x2))

∂FX1
(x1).∂FX2

(x2)
, is the copula

density. Many copula functions have been introduced in the literature and some of

them are by Trivedi and Zimmer (2007), Nelson (2007) and Balakrishnan and Lai

(2009).

For the NBMW distribution, the marginal survival functions are F̄X1(x1) =

e−α1x
β1
1 +β0x1 and F̄X2(x2) = e−α2x

β2
2 +β0x2 . In order to find the survival copula Ĉ(u, v)

for this distribution, we may express H̄(x1, x2) = Ĉ(F̄X1(x1), F̄X2(x2)). That is,

H̄(x1, x2) = e−(α1x
β1
1 +β0x1).e−(α2x

β2
2 +β0x2).min(eβ0x1 , eβ0x2)

= F̄X1(x1)F̄X2(x2).min(eβ0x1 , eβ0x2). (4.8.2)

The Gaussian copula with correlation parameter ρ of the bivariate modified Weibull

distribution takes the form

CG(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v); ρ)

=

∫ Φ−1(v)

−∞

∫ Φ−1(u)

−∞

exp { −1
2(1−ρ2)

(y2
1 − 2ρy1y2 + y2

2)}

2π
√

1− ρ2
dy1dy2,(4.8.3)

where Φρ denotes the bivariate standard normal distribution function with correla-

tion parameter ρ ∈ (−1, 1) and Φ−1 denotes the inverse of the univariate standard
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normal distribution function. The density of the bivariate Gaussian copula is given

by

C
′

G(u, v; ρ) =
e

−1

2(1−ρ2)
(y2

1−2ρy1y2+y2
2)

2π
√

1− ρ2
, (4.8.4)

where y1 = Φ−1(u), y2 = Φ−1(v), u = FX1(x1) and v = FX2(x2) are the marginal

distributions for the random variables X1 and X2, respectively.

4.9 Summary

This chapter discussed the construction of a new bivariate distribution with mod-

ified Weibull distribution as marginals. The marginal and conditional probability

distributions, mathematical expectations and moment generating function of the

new bivariate distribution are derived. Expressions for bivariate reliability function,

joint hazard rate function, mean waiting time and the reverse hazard rate function

are obtained. The maximum likelihood estimators of the unknown parameters are

derived. A simulation study is carried out to show the performance of the MLEs.

Bivariate copula function for the new model is proposed and a real data application

is illustrated.



CHAPTER

FIVE

DISCRETE ANALOGUES OF WEIBULL DISTRIBUTION

AND ITS PROPERTIES

5.1 Introduction

1 Developing the discrete analogues of continuous distributions have drawn much

attention among the researchers and number of papers in this area are appeared in

various journals. In reliability analysis and lifetime modelling, there are situations

where the data shows discrete behavior like: the number of rounds fired a weapon

till the first failure, the number of cancer deaths reported from a place over a given

time period and the number of cycles successfully completed prior to the first failure

1Some results included in this chapter have appeared in the papers Jayakumar and Babu (2018)
and Jayakumar and Babu (2019a).

131
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when a particular device work in cycles. In some situations, if the data is huge or

the individual observations are unknown then the data are grouped as discrete.

It is well known that the geometric distribution and the negative binomial dis-

tribution are the discrete analogues of the exponential distribution and gamma dis-

tribution respectively. A discrete version of the normal distribution was introduced

in Lisman and van Zuylen (1972) and studied in Kemp (1997). Another version of

discrete normal distribution was studied in Roy (2003). Nakagawa and Osaki (1975),

Stein and Dattero (1984) and Padgett and Spurrier (1985) were proposed three dif-

ferent analogues of the discrete Weibull distribution and are further studied in Khan

et al. (1989) and Kulasekera (1994).

Recently, several forms of discrete lifetime distributions derived from continuous

distributions are proposed by many authors. Some of them are: discrete half-normal

distribution in Kemp (2008); discrete Burr and Pareto distributions in Krishna and

Pundir (2009); discrete modified Weibull distribution in Noughabi et al. (2011);

discrete generalized exponential distribution in Gómez-Déniz (2010) and Nekoukhou

et al. (2012); discrete gamma distribution in Chakraborty and Chakravarty (2012);

discrete additive Weibull distribution in Bebbington et al. (2012); discrete inverse

Weibull distribution in Jazi et al. (2010); discrete reduced modified Weibull distri-

bution in Almalki and Nadarajah (2014); discrete Lindley distribution in Bakouch

et al. (2014); discrete logistic distribution in Chakraborty and Chakravarty (2016),

discrete Weibull geometric distribution in Jayakumar and Babu (2018), discrete ad-

ditive Weibull geometric distribution in Jayakumar and Babu (2019a) and discrete
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type I half logistic Weibull distribution in Jayakumar and Babu (2019b).

In Section 2, we introduce the discrete Weibull geometric distribution and study

its various properties such as, shape of pmf and hrf, quantile function and random

number generation, moments, maximum likelihood estimation of parameters, simu-

lation study and stress-strength parameter. Also, two real-life data applications are

illustrates in this section to show the flexibility of this distribution in data modelling.

We introduce the discrete additive Weibull geometric distribution in Section 3 and

presents its various sub models. Its various properties are study in this section and

illustrates a real-life data modelling.

5.2 Discrete Weibull Geometric Distribution

Suppose that X1, X2, ..., Xn are i.i.d. random variables having Weibull distribution

W (β, α), with scale parameter β > 0, shape parameter α > 0 and pdf

g(x; β, α) = αβαxα−1e−(βx)α

, x > 0. (5.2.1)

Also let N be a discrete random variable having geometric distribution with pmf,

P (n; p) = (1− p)pn−1 for n ε N and p ε (0, 1).

Let, X(1) = min{Xi}N
i=1. The conditional cumulative distribution of X(1) | N = n, is

given by

G{X(1)|N=n} = 1− [1− F (x)]n = 1− e−n(βx)α

. (5.2.2)
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The cdf of X(1) is given by

F (x; p, β, α) = (1− p)
∞∑

n=1

pn−1[1− e−n(βx)α

]

=
1− e−(βx)α

1− pe−(βx)α ; x > 0, 0 < p < 1, β > 0, α > 0. (5.2.3)

The marginal pdf of X(1) is

f(x; p, β, α) = αβα(1− p)xα−1e−(βx)α

(1− pe−(βx)α

)−2; x > 0. (5.2.4)

The distribution of X(1) is called Weibull geometric and is denoted by WG(p, β, α).

This distribution is studied by Barreto-Souza et al. (2011). The survival and hrf are

S(x; p, β, α) =
(1− p)e−(βx)α

1− pe−(βx)α ; x > 0, (5.2.5)

and

h(x; p, β, α) =
αβαxα−1

1− pe−(βx)α ; x > 0, (5.2.6)

respectively.

Using the discretization method of difference in survival functions as shown in

Eqn.(1.6.1) and after the re-parametrization ρ = e−βα
, the pmf of the discrete version,

say Y of the Weibull geometric distribution is derived as

pY (y; p, ρ, α) = P (Y = y) =
(1− p)(ρyα − ρ(y+1)α

)

(1− pρyα)(1− pρ(y+1)α)
, (5.2.7)

where y = 0, 1, 2, ...; α > 0, 0 < p < 1 and 0 < ρ < 1. We call this distribution as

discrete Weibull geometric distribution with parameters p, ρ and α, and is denoted

as DWG(p, ρ, α).

Here note that,
∑∞

y=0 P (Y = y) = SX(0)−SX(1)+SX(1)−SX(2)+ .... = SX(0) = 1.
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In particular, when α = 1, the pmf becomes, pY (y; p, ρ) = (1−p)(ρy−ρ(y+1))

(1−pρy)(1−pρ(y+1))
, which is

the pmf of the discrete exponential geometric distribution.

When p → 0, we get, pY (y; ρ, α) = ρyα − ρ(y+1)α
, which is the discrete Weibull

distribution of Nakagawa and Osaki (1975) with parameters ρ and α.

When p→ 0 and α→ 2, then, pY (y; ρ) = ρy2−ρ(y+1)2 , which is the discrete Rayleigh

distribution of Roy (2004).

When p→ 0 and α→ 1, then, pY (y; ρ) = ρy−ρ(y+1), which is geometric distribution

with parameter ρ.

5.2.1 Structural properties of the DWG distribution

The pmf plots of DWG(p, ρ, α) for various choices of the values of the parameters

have been presented in Figure 5.1. The probabilities can be calculated recursively

using the following relation :

pY (y + 1) =
(1− pρyα

)(ρ(y+1)α − ρ(y+2)α
)

(1− pρ(y+2)α)(ρyα − ρ(y+1)α)
pY (y). (5.2.8)

Gupta et al. (1997) proposed analogous statements for discrete distributions with

unbounded support as :

a). The distribution is log-concave if and only if {pY (y+1)
pY (y)

}y≥0 is decreasing. Then

the hazard rate is increasing (IFR).

b). The distribution is log-convex if and only if {pY (y+1)
pY (y)

}y≥0 is increasing. Then the

hazard rate is decreasing (DFR).

c). If the sequence {pY (y+1)
pY (y)

}y≥0 is constant, the hazard rate is constant and the
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Figure 5.1: Plots of the pmf of DWG distribution for p = 0.5, ρ = 0.9 and α =
(0.5, 1.0, 1.5, 2.0, 2.5, 3.0).

distribution is geometric.

For the DWG(p, ρ, α)

p(y + 1)

p(y)
=

(1− pρyα
)(ρ(y+1)α − ρ(y+2)α

)

(1− pρ(y+2)α)(ρyα − ρ(y+1)α)
.

Let, δ(y) = 1− p(y+1)
p(y)

and ∆δ(y) = δ(y + 1)− δ(y). Then

a). If ∆δ(y) > 0 (log concavity), then the hrf h(y) is increasing.

b). If ∆δ(y) < 0 (log convexity), then h(y) is decreasing.

c). If ∆δ(y) = 0, h(y) is constant hazard rate.

All the above three cases are justified to the DWG distribution based on the values
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of the parameters as shown by the plots of pmf.

The cdf of DWG(p, ρ, α) distribution is obtained as

F (y) = P (Y ≤ y) = 1− SX(y) + P (Y = y) =
1− ρ(y+1)α

1− pρ(y+1)α , (5.2.9)

where y = 0, 1, 2, ...; 0 < p < 1, 0 < ρ < 1 and α > 0.

Here note that, F (0) = 1−ρ
1−pρ

. The proportion of positive values, 1− F (0) = ρ(1−p)
1−pρ

.

Also,

P (a < Y ≤ b) =
1− ρ(b+1)α

1− pρ(b+1)α −
1− ρ(a+1)α

1− pρ(a+1)α .

The survival function of DWG(p, ρ, α) distribution is given by

S(y) = P (Y > y) = 1− P (Y ≤ y) =
(1− p)ρ(y+1)α

1− pρ(y+1)α . (5.2.10)

Discrete hazard rates may applicable in several common situations in reliability

theory and survival analysis where clock time is not the best scale on which to

describe lifetime. For example, in weapons like tanks, the number of rounds fired

until failure is more important than lifetime in failure. In other situations, a device

is monitored only once per time period and the observation then is the number of

time periods successfully completed prior to the failure of the device. Similarly, in

survival analysis, one may be interested in the length of stay (usually measured as

number of days) in an observation ward or survival time (measured in number of

weeks) of leukemia patients. In all these cases, the lifetimes are not measured on

continuous scale but are simply counted and hence are discrete random variables. For

the application of the hazard rate functions to characterizations of aging properties

of discrete lifetimes distributions, one can see Shaked et al. (1995).
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The hrf of DWG(p, ρ, α) is given by

h(y) = P (Y = y/Y ≥ y) =
P (Y = y)

P (Y ≥ y)
=

1− ρ(y+1)α−yα

1− pρ(y+1)α (5.2.11)

provided, P (Y ≥ y) > 0. It indicates the conditional probability of the system at

time y, given that it did not fail before time y.

When y → 0, from the Eqn.(5.2.11), h(y) → 1−ρ
1−pρ

= pY (0).

For α = 1, h(y) = 1−ρ
1−pρ(y+1) . Also note that, as y →∞, h(y) → 1− ρ.

We have

h(0) =
1− ρ

1− pρ
, h(1) =

1− ρ

1− pρ2
, h(2) =

1− ρ

1− pρ3
, ... .

That is, h(0) > h(1) > h(2) > ... . Therefore, h(y) is decreasing from 1−ρ
1−pρ

to 1− ρ.

Also let, h(y) = 1−ρ
1−pρy+1 = m, where, m is a constant, such that, 1− ρ < m < 1−ρ

1−pρ
.

Then the value of y corresponds to m is obtained as

y =
ln(m+ ρ− 1)− ln(p)− ln(m)

ln(ρ)
− 1.

Since, y is discrete, we may take the floor value of y.

Now, for 0 < α < 1, as y → ∞, h(y) → 0. In this case h(y) is decreasing from 1−ρ
1−pρ

to 0.

For α > 1, h(y) is an increasing failure rate function (IFR).

The accumulated hazard function, H(y) is given by

H(y) =

y∑
t=0

h(t) =

y∑
t=0

1− ρ(t+1)α−tα

1− pρ(t+1)α . (5.2.12)

The mean residual life function (MRL) is given by
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L(y) = E[(Y − y)|Y ≥ y] =

∑
j≥y jp(j)∑
j≥y p(j)

− y =

∑
j>y S(j)

S(y)
=
∑
j≥y

j∏
i=y

(1− h(i))

=
∑
j≥y

j∏
i=y

ρ(i+1)α
(1− pρiα)

ρiα(1− pρ(i+1)α)
; y ≥ 0.

Also, from Roy and Gupta (1999)

µ(y) = E[(Y − y)|Y > y] = L(y + 1) + 1 =
∑

j≥y+1

j∏
i=y+1

ρ(i+1)α
(1− pρiα)

ρiα(1− pρ(i+1)α)
+ 1; y > 0.

Assume that, the MRL function at time y = 0, is equal to the mean of the lifetime

distribution, that is, L(0) = µ.

Then,

µ(0) =
µ

1− p(0)
=
µ(1− pρ)

ρ(1− p)
.

Figure 5.2, shows the shape of hazard rate function for different choice of parameter

values.

The reverse hazard rate function is given by

h∗(y) = P (Y = y/Y ≤ y) =
P (Y = y)

P (Y ≤ y)
=

(1− p)(ρyα − ρ(y+1)α
)

(1− pρyα)(1− ρ(y+1)α)
. (5.2.13)

The second rate of failure is given by

h∗∗(y) = log

{
S(y)

S(y + 1)

}
= log

{
(1

ρ
)(y+2)α − p

(1
ρ
)(y+1)α − p

}
. (5.2.14)
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Figure 5.2: Shapes of hrf for p = 0.5, ρ = 0.5 and various values of α.

5.2.2 Quantile function and random number generation

From Rohatgi and Saleh (2001), the point yu is known as the uth quantile of a discrete

random variable Y , if it satisfies, P (Y ≤ yu) ≥ u and P (Y ≥ yu) ≥ 1 − u. Using

this result, we have the following theorem.

Theorem 5.2.1. The uth quantile φ(u) of DWG(p, ρ, α) is given by

φ(u) = dyue =

⌈(
ln

(
u− 1

up− 1

)
/ ln(ρ)

) 1
α

− 1

⌉
, (5.2.15)

where, dyue denotes the smallest integer greater than or equal to yu.
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Proof. First suppose that, P (Y ≤ yu) ≥ u. Then

1− ρ(yu+1)α

1− pρ(yu+1)α ≥ u⇒ yu ≥
[
ln

(
1− u

1− up

)
/ ln(ρ)

] 1
α

− 1, since ln(ρ) < 0. (5.2.16)

Similarly, P (Y ≥ yu) ≥ 1− u gives,

yu ≤
[
ln

(
1− u

1− up

)
/ ln(ρ)

] 1
α

. (5.2.17)

Combining the Eqns.(5.2.16) and (5.2.17) we get

[
ln

(
1− u

1− up

)
/ ln(ρ)

] 1
α

− 1 < yu ≤
[
ln

(
1− u

1− up

)
/ ln(ρ)

] 1
α

.

Hence, φ(u) is an integer given by

φ(u) = dyue =

⌈(
ln

(
1− u

1− up

)
/ ln(ρ)

) 1
α

− 1

⌉
.

This completes the proof.

Using the usual inverse transformation method, a random number (integer) can

be sampled from the proposed model. Let, U be a random number drawn from a

uniform distribution on (0, 1), then a random number Y following DWG(p, ρ, α)

distribution is obtained by the Eqn.(5.2.15).

In particular, the median is given by

φ(0.5) = dy0.5e =

⌈(
ln

(
1

2− p

)
/ ln(ρ)

) 1
α

− 1

⌉
. (5.2.18)

5.2.3 Simulation study

Table 5.1, presents the MLEs of DWG(p, ρ, α) distribution and their standard errors

for different values of n, of various simulated samples. Standard errors are attained
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by means of the asymptotic covariance matrix of the MLEs of parameters when the

Newton-Raphson procedure converges.

Table 5.1: MLEs of DWG(p, ρ, α) for various samples(n).

Parameters n p̂(ŜE(p̂)) ρ̂(ŜE(ρ̂)) α̂(ŜE(α̂))

p = 0.5
ρ = 0.5
α = 0.5

50
100
500
1000

0.539(2.781)
0.581(0.901)
0.599(0.794)
0.491(0.824)

0.553(1.498)
0.554(0.696)
0.534(0.415)
0.535(0.404)

0.557(0.915)
0.485(0.391)
0.501(0.272)
0.533(0.234)

p = 0.75
ρ = 0.5
α = 1.0

50
100
500
1000

0.735(0.933)
0.734(0.779)
0.805(0.363)
0.751(0.294)

0.458(0.869)
0.503(0.730)
0.553(0.459)
0.531(0.349)

1.017(1.072)
1.269(1.062)
1.104(0.553)
1.026(0.392)

p = 0.6
ρ = 0.9
α = 1.5

50
100
500
1000

0.543(1.709)
0.709(0.531)
0.638(0.343)
0.623(0.259)

0.887(0.411)
0.913(0.156)
0.907(0.087)
0.908(0.063)

1.359(1.065)
1.556(0.564)
1.549(0.294)
1.527(0.211)

p = 0.9
ρ = 0.5
α = 2.0

50
100
500
1000

0.906(0.383)
0.936(0.249)
0.938(0.103)
0.902(0.069)

0.481(1.010)
0.634(0.899)
0.614(0.393)
0.637(0.276)

1.455(1.746)
2.197(2.230)
2.094(0.925)
2.012(0.691)

p = 0.8
ρ = 0.6
α = 2.5

50
100
500
1000

0.862(0.895)
0.858(0.687)
0.753(0.565)
0.808(0.145)

0.673(1.434)
0.701(1.012)
0.541(0.568)
0.633(0.278)

2.413(3.940)
2.580(3.038)
2.607(1.621)
2.562(0.965)

5.2.4 Moments

The rth moment about origin is given by

µ
′

r = E(Y r) =
∞∑

y=0

yr (1− p)(ρyα − ρ(y+1)α
)

(1− pρyα)(1− pρ(y+1)α)
. (5.2.19)

For given values of p, ρ and α, the moments can be numerically computed using

R programming. Table 5.2 shows the moments, skewness and kurtosis for DWG

distribution for given values of p, ρ and α.
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Table 5.2: Moments, skewness and kurtosis for p = 0.9, ρ = 0.9 and various values
of α.

Parameter Raw moments Central moments Skewness Kurtosis

α = 0.5

µ
′
1 = 0.96
µ
′
2 = 5.22

µ
′
3 = 35.98

µ
′
4 = 279.68

µ2 = 4.29
µ3 = 22.71
µ4 = 167.61

6.53 9.11

α = 1.0

µ
′
1 = 1.20
µ
′
2 = 5.60

µ
′
3 = 34.97

µ
′
4 = 257.59

µ2 = 4.16
µ3 = 18.27
µ4 = 257.59

4.63 7.62

α = 1.5

µ
′
1 = 0.97
µ
′
2 = 3.23

µ
′
3 = 15.84
µ
′
4 = 98.35

µ2 = 2.29
µ3 = 8.27
µ4 = 52.47

5.69 10.01

α = 2.0

µ
′
1 = 0.73
µ
′
2 = 1.51
µ
′
3 = 4.32

µ
′
4 = 15.90

µ2 = 0.98
µ3 = 1.71
µ4 = 15.90

3.06 7.80

α = 5

µ
′
1 = 0.487
µ
′
2 = 0.484
µ
′
3 = 0.498
µ
′
4 = 0.527

µ2 = 0.26
µ3 = 0.02
µ4 = 0.08

0.03 1.25

5.2.5 Maximum likelihood estimation of the parameters of

DWG distribution

Consider a random sample (y1, y2, ..., yn) of size n, from the DWG(p, ρ, α). Then,

the log-likelihood function is given by

log(L) = n log(1−p)+
n∑

i=1

log(ρyα
i −ρ(yi+1)α

)−
n∑

i=1

log(1−pρyα
i )−

n∑
i=1

log(1−pρ(yi+1)α

).

(5.2.20)

The likelihood equations are

∂ log(L)

∂p
=

−n
1− p

+
n∑

i=1

ρyα
i

1− pρyα
i

+
n∑

i=1

ρ(yi+1)α

1− pρ(yi+1)α = 0, (5.2.21)
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∂ log(L)

∂ρ
=

n∑
i=1

yα
i ρ

yα
i −1 − (yi + 1)αρ(yi+1)α−1

ρyα
i − ρ(yi+1)α

+ p
n∑

i=1

yα
i ρ

yα
i −1

1− pρyα
i

+ p

n∑
i=1

(yi + 1)αρ(yi+1)α−1

1− pρ(yi+1)α = 0, (5.2.22)

and

∂ log(L)

∂α
= log(ρ)

n∑
i=1

yα
i ρ

yα
i log(yi)− (yi + 1)αρ(yi+1)α

log(yi + 1)

ρyα
i − ρ(yi+1)α

+ p log(ρ)
n∑

i=1

yα
i ρ

yα
i log(yi)

1− pρyα
i

+ p log(ρ)
n∑

i=1

(yi + 1)αρ(yi+1)α
log(yi + 1)

1− pρ(yi+1)α = 0. (5.2.23)

These equations do not have explicit solutions and they have to be obtained numer-

ically by using statistical softwares like nlm or optim packages in R programming.

Let the estimators be, θ̂ = (p̂, ρ̂, α̂)T . The Fisher’s information matrix is given by

Iy(θ) =


−E(∂2L

∂p2 ) −E( ∂2L
∂p∂ρ

) −E( ∂2L
∂p∂α

)

−E( ∂2L
∂ρ∂p

) −E(∂2L
∂ρ2 ) −E( ∂2L

∂ρ∂α
)

−E( ∂2L
∂α∂p

) −E( ∂2L
∂α∂ρ

) −E(∂2L
∂α2 )

 .

Here, the DWG distribution satisfies the regularity conditions which are full filled

for the parameters in the interior of the parameter space, but not on the boundary

(see Ferguson, 1996). Hence, the vector θ̂ is consistent and asymptotically normal.

That is
√
Iy(θ)[θ̂ − θ] converges in distribution to multivariate normal with zero

mean vector and identity covariance matrix. The Fisher’s information matrix can be
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computed using the approximation

Iy(θ̂) ≈


−∂2L

∂p2 |(p̂,ρ̂,α̂) − ∂2L
∂p∂ρ

|(p̂,ρ̂,α̂) − ∂2L
∂p∂α

|(p̂,ρ̂,α̂)

− ∂2L
∂ρ∂p

|(p̂,ρ̂,α̂) −∂2L
∂ρ2 |(p̂,ρ̂,α̂) − ∂2L

∂ρ∂α
|(p̂,ρ̂,α̂)

− ∂2L
∂α∂p

|(p̂,ρ̂,α̂) − ∂2L
∂α∂ρ

|(p̂,ρ̂,α̂) −∂2L
∂α2 |(p̂,ρ̂,α̂)

 ,

where p̂, ρ̂ and α̂ are the MLEs of p, ρ and α, respectively.

5.2.6 Stress-strength parameter

Let, Y ∼ DWG(θ1) and Z ∼ DWG(θ2), where, θ1 = (p1, ρ1, α1)
T and θ2 =

(p2, ρ2, α2)
T . Then, from Eqns.(5.2.7) and (5.2.9), we have

R =
∞∑

y=0

(1− p1)(ρ
yα1

1 − ρ
(y+1)α1

1 )(1− ρ
(y+1)α2

2 )

(1− p1ρ
yα1

1 )(1− p1ρ
(y+1)α1

1 )(1− p2ρ
(y+1)α2

2 )
. (5.2.24)

Assume that, (y1, y2, ..., yn) and (z1, z2, ..., zm) are independent observations drawn

from DWG(θ1) and DWG(θ2), respectively. The total likelihood function is given by,

LR(θ∗) = Ln(θ1) Lm(θ2), where, θ∗ = (θ1, θ2). The score vector is given by

UR(θ∗) =

(
∂LR

∂p1

,
∂LR

∂ρ1

,
∂LR

∂α1

,
∂LR

∂p2

,
∂LR

∂ρ2

,
∂LR

∂α2

)
.

The MLE, θ̂∗ may be obtained from the solution of the nonlinear equation, UR(θ̂∗) =

0. Applying θ̂∗, in the Eqn.(5.2.24), we obtain the stress-strength parameter R.
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5.2.7 Data applications of the DWG distribution

In this section, to show how the DWG(p, ρ, α) distribution works in practice, we use

two real data sets, of which the first data set is discrete version of a continuous data

and the second data set is a count data. The parameters are estimated by using the

method of maximum likelihood. We compare the fit of the DWG distribution with

the geometric (G) distribution, discrete Weibull (DW) distribution, discrete logistic

(DLOG) distribution and exponentiated discrete Weibull (EDW) distribution. The

values of the -log L, K-S, AIC, CAIC and BIC are calculated for the five distributions

in order to verify which distribution fits better to these data.

The first data set represents remission times(in months) of 128 bladder cancer

patients taken from Lee and Wang (2003). The data are :

0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400,

1.460, 1.760, 2.020, 2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690,

2.690, 2.750, 2.830, 2.870, 3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640,

3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980,

5.060, 5.090, 5.170, 5.320, 5.320, 5.340, 5.410, 5.410, 5.490, 5.620, 5.710, 5.850, 6.250,

6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 7.620, 7.630,

7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660, 9.020, 9.220, 9.470, 9.740, 10.06,

10.340, 10.660, 10.750, 11.250, 11.640, 11.790, 11.980, 12.020, 12.030, 12.070, 12.630,

13.110, 13.290, 13.800, 14.240, 14.760, 14.770, 14.830, 15.960, 16.620, 17.120, 17.140,

17.360, 18.100, 19.130, 20.280, 21.730, 22.690, 23.630, 25.740, 25.820, 26.310, 32.150,
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34.260, 36.660, 43.010, 46.120, 79.050.

Since the data set is continuous, here first we discretize the data by considering the

floor value (y). The values in Table 5.3, indicates that the DWG distribution leads

Table 5.3: Parameter estimates and goodness of fit for various models fitted for the
first data set.

Model ML estimates -log L AIC CAIC BIC K-S p value
G p̂ = 0.8991 414.836 831.672 831.704 831.779 0.1000 0.1549

DW
q̂ = 0.9114
β̂ = 1.0511

414.556 833.112 837.304 833.326 0.1131 0.0758

DLOG p̂ = 0.8000
µ̂ = 7.6149 456.825 917.650 917.746 917.864 0.1860 0.0003

EDW
p̂ = 0.4689
α̂ = 0.5397
γ̂ = 4.9697

409.766 825.532 825.726 825.854 0.1237 0.0399

DWG
p̂ = 0.9529
ρ̂ = 0.9982
α̂ = 1.7025

409.277 824.554 824.748 824.876 0.0905 0.2458

to a better fit compared to the other four models. Figure 5.3, shows the structure

of the cdf of the five models with the empirical distribution of the given data. Here

the dotted line indicates the empirical cdf of the data.

The second data set is the number of shocks before failure reported in Murthy et

al. (2004, p.245). The data are: 1, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 10, 11, 12, 14.

The values in Table 5.4, indicates that the DWG distribution leads to a better fit

for the second data set compared to the other four models. Figure 5.4, shows the

structure of the cdf of the five models in comparison with the empirical distribution

function of the given data. The dotted line indicates the empirical cdf of the second

data set.
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Figure 5.3: Empirical and fitted cdfs for the first data set.

5.3 Discrete Additive Weibull Geometric Distri-

bution

Xie and Lai (1995) proposed the additive Weibull (AW) distribution by combining

the failure rates of two Weibull distributions of which one has a decreasing failure

rate and the other has an increasing failure rate. The cdf of AW distribution is given

by

F (x;α, β, γ, δ) = 1− e−(αxβ+γxδ) (5.3.1)

where α > 0, γ > 0 and β > δ > 0 or (δ > β > 0), which gives identifiability to the

model. The corresponding pdf is given by

f(x;α, β, γ, δ) = (αβxβ−1 + γδxδ−1)e−(αxβ+γxδ). (5.3.2)
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Table 5.4: Parameter estimates and goodness of fit for various models fitted for the
second data set.

Model ML estimates -log L AIC CAIC BIC K-S p value
G p̂ = 0.8609 46.389 94.778 95.064 95.551 0.2995 0.1133

DW
q̂ = 0.9831
β̂ = 2.0111

41.637 87.274 88.197 88.819 0.2227 0.4057

DLOG p̂ = 0.6079
µ̂ = 6.2330 43.170 90.340 91.263 91.885 0.1851 0.6435

EDW
p̂ = 0.7183
α̂ = 1.0020
γ̂ = 4.6559

41.224 88.448 90.448 90.766 0.1868 0.6317

DWG
p̂ = 0.8637
ρ̂ = 0.9993
α̂ = 2.8921

41.050 88.100 90.100 90.418 0.1715 0.7341

Here α and γ are scale parameters, and β and δ are shape parameters. Lemonte et

al. (2014) examined some structural properties of AW distribution.

Suppose that X1, X2, ..., XN are N i.i.d. random variables from AW distribution

with cdf given in Eqn.(5.3.1). Let N be a discrete random variable following a

geometric distribution (truncated at zero) with the pmf given by

P (N = n) = (1− p)pn, for n ε N and p ε (0, 1). (5.3.3)

Let X(1) = Min{Xi}N
i=1, then the cdf of X(1) | N = n, is given by

G{X(1)|N=n} = 1− [1− F (x)]n = 1− e−n(αxβ+γxδ), (5.3.4)

the cdf of X(1) is given by

F (x;α, β, γ, δ, p) = (1− p)
∞∑

n=1

pn−1[1− e−n(αxβ+γxδ)]

=
1− e−(αxβ+γxδ)

1− pe−(αxβ+γxδ)
, (5.3.5)

where x > 0, 0 < p < 1, α > 0, β > 0, γ > 0 and δ > 0. The corresponding pdf of
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Figure 5.4: Empirical and fitted cdfs for the second data set.

X(1) is given by

f(x;α, β, γ, δ, p) =
(1− p)(αβxβ−1 + γδxδ−1)e−(αxβ+γxδ)

(1− pe−(αxβ+γxδ))2
, x ≥ 0. (5.3.6)

The distribution of X(1) is called additive Weibull geometric and its is survival func-

tion is given by

S(x;α, β, γ, δ, p) =
(1− p)e−(αxβ+γxδ)

1− pe−(αxβ+γxδ)
. (5.3.7)

This distribution is studied by Elbatal et al. (2016). Marshall and Olkin (1997)

introduced a method of adding a parameter into a family of distributions. According

to them if F̄ (x) denote the survival function of a continuous random variable X,

then the usual device of adding a new parameter results in another survival function
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Ḡ(x) defined by

Ḡ(x) =
θF̄ (x)

1− θ̄F̄ (x)
,−∞ < x <∞, θ > 0, (5.3.8)

where θ̄ = 1− θ. In particular when θ = 1, Ḡ(x) = F̄ (x).

Let Y be the discrete analogue of the continuous random variable X with sur-

vival function defined in the Eqn.(5.3.8). Gómez-Déniz (2010) obtained the discrete

analogue of Marshall-Olkin scheme by applying the Eqn.(5.3.8) in the Eqn.(1.6.1).

The corresponding random variable Y has the pmf

pY (y) = P (Y = y) =
θ[F̄ (y)− F̄ (y + 1)]

[1− θ̄F̄ (y)][1− θ̄F̄ (y + 1)]
(5.3.9)

Now, we apply the additive Weibull geometric distribution with survival function

defined in the Eqn.(5.3.7) into the Eqn.(5.3.9) and after re-parametrization as ρ =

e−α and η = e−γ, the pmf becomes

pY (y) =
θ(1− p)[ρyβ

ηyδ − ρ(y+1)β
η(y+1)δ

]

[1− (1− θ(1− p))ρyβηyδ ][1− (1− θ(1− p))ρ(y+1)βη(y+1)δ ]
, y = 0, 1, 2, ... ,

(5.3.10)

where θ > 0, 0 < p < 1, 0 < ρ < 1, 0 < η < 1, β > δ > 0 (or δ > β > 0). We call this

distribution as the generalized discrete additive Weibull geometric distribution.

When θ = 1, Eqn.(5.3.10) becomes

pY (y; p, ρ, η, β, δ) =
(1− p)(ρyβ

ηyδ − ρ(y+1)β
η(y+1)δ

)

(1− pρyβηyδ)(1− pρ(y+1)βη(y+1)δ)
, y = 0, 1, 2, ... , (5.3.11)

where 0 < p < 1, 0 < ρ < 1, 0 < η < 1, β > δ > 0 (or δ > β > 0). We call

this distribution as discrete additive Weibull geometric (DAWG) distribution with

parameters p, ρ, η, β and δ and is denoted as DAWG(p, ρ, η, β, δ), see Jayakumar

and Babu (2019a).

We have the following cases
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1. When θ = 1 and ρ ↑ 1 or η ↑ 1, then the equation Eqn.(5.3.10) reduces to the

discrete Weibull geometric distribution introduced in Jayakumar and Babu

(2018).

2. When η = ρ, δ = β, then also it becomes the discrete Weibull geometric

distribution with parameters ρ2 and β.

3. When β = 1 and η = 1, the it becomes the discrete exponential geometric

distribution.

4. When p ↓ 0 and β = 1, it becomes the discrete modified Weibull distribution.

5. When p ↓ 0 and η = 1, then it becomes the discrete Weibull distribution with

parameters ρ and β.

6. When β = 2 and η = 1, it becomes discrete Rayleigh geometric distribution.

7. When p ↓ 0, β = 2 and η = 1, then it becomes discrete Rayleigh distribution.

8. When p ↓ 0, β = 1 and η = 1, then it becomes geometric distribution with

parameter ρ.

5.3.1 Structural properties of the DAWG distribution

Figure 5.5, provides the pmf plots of DAWG(p, ρ, η, β, δ) for various choices of values

of the parameters. The probabilities can be calculate recursively using the following
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Figure 5.5: Shape of the pmf of DAWG(p, ρ, η, β, δ) distribution.

relation

pY (y + 1) =
(1− pρyβ

ηyδ
)(ρ(y+1)β

η(y+1)δ − ρ(y+2)β
η(y+2)δ

)

(1− pρ(y+2)βη(y+2)δ)(ρyβηyδ − ρ(y+1)βη(y+1)δ)
pY (y. (5.3.12)

We have the analogous statements for the DAWG distributions as:

i). The distribution is log-concave if and only if {pY (y+1)
pY (y)

}y≥0 is decreasing.

ii). The distribution is log-convex if and only if {pY (y+1)
pY (y)

}y≥0 is increasing.

iii). If the sequence {pY (y+1)
pY (y)

}y≥0 is constant, the hazard rate is constant and the

distribution is geometric.
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The cdf of DAWG(p, ρ, η, β, δ) is

F (y) = P (Y ≤ y) = 1− SX(y) + P (Y = y) =
1− ρ(y+1)β

η(y+1)δ

1− pρ(y+1)βη(y+1)δ . (5.3.13)

where y = 0, 1, 2, ...; β > δ > 0 (or δ > β > 0), 0 < p < 1, 0 < ρ < 1 and 0 < η < 1.

Here note that, F (0) = 1−ρη
1−pρη

. The proportion of positive values, 1− F (0) = ρη(1−p)
1−pρη

.

The survival function of DAWG(p, ρ, η, β, δ) is given by

S(y) = P (Y > y) = 1− P (Y ≤ y) =
(1− p)ρ(y+1)β

η(y+1)δ

1− pρ(y+1)βη(y+1)δ . (5.3.14)

The hrf of DAWG(p, ρ, η, β, δ) is given by

h(y) = P (Y = y/Y ≥ y) =
P (Y = y)

P (Y ≥ y)
=

1− ρ(y+1)β−yβ
η(y+1)δ−yδ

1− pρ(y+1)βη(y+1)δ , (5.3.15)

provided, P (Y ≥ y) > 0. Figure 5.6, provides the plots of hrf of DAWG(p, ρ, η, β, δ)

for various choices of values of the parameters. When y → 0, we have from the

Eqn.(5.3.15), h(y) → 1−ρη
1−pρη

= pY (0). Now to study the limit of h(y) as y → ∞ we

consider the following five cases based on the values of the shape parameters β and

δ.

Case (i). When β > 1 and δ > 1 ( provided β > δ or β < δ). Here note

that, lim
y→∞

h(y) = 1. Now in this case, h(0) = 1−ρη
1−pρη

, h(1) = 1−ρ2β−1η2δ−1

1−pρ2β
η2δ , h(2) =

1−ρ3β−2β
η3δ−2δ

1−pρ3β
η3δ ,... . That is, h(0) < h(1) < h(2) < ... < 1. Therefore, h(y) is an

increasing function increases from 1−ρη
1−pρη

to 1.

Case (ii). When β > 1 and δ = 1. Here, lim
y→∞

h(y) = 1. Also seen that h(0) <

h(1) < h(2) < ... < 1. Therefore, h(y) is an increasing function increases from 1−ρη
1−pρη

to 1.

Case (iii). When 0 < β < 1 and δ > 1 or 0 < δ < 1 and β > 1. Here also
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Figure 5.6: Shape of the hrf of DAWG(p, ρ, η, β, δ) distribution.

lim
y→∞

h(y) = 1. But, h(y) is initially decreases from h(0) to the minimum point h(m)

and then increases to 1. The minimum pointm can be numerically identify by solving

the conditions, h(m)− h(m− 1) ≤ 0 and h(m+ 1)− h(m) ≥ 0.

Case (iv). When β < 1 and δ = 1. In this case lim
y→∞

h(y) = 1 − η. Also, h(0) >

h(1) > h(2) > ... > 1− η. That is, h(y) is a decreasing function.

Case (v). When β < 1 and δ < 1 (provided β > δ or β < δ). Here, lim
y→∞

h(y) = 0.

Also seen that h(0) > h(1) > h(2) > ... > 0. That is, in this case also, h(y) is

decreasing.

The reverse hazard rate function is given by

h∗(y) = P (Y = y/Y ≤ y) =
(1− p)(ρyβ

ηδ − ρ(y+1)β
η(y+1)δ

)

(1− pρyβηδ)(1− ρ(y+1)βη(y+1)δ)
. (5.3.16)
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The second rate of failure is given by

h∗∗(y) = log

{
S(y)

S(y + 1)

}
= log

{
(1

ρ
)(y+2)β

( 1
η
)(y+2)δ − p

(1
ρ
)(y+1)β( 1

η
)(y+1)δ − p

}
. (5.3.17)

The accumulated hazard function, H(y) is given by

H(y) =

y∑
t=0

h(t) =

y∑
t=0

1− ρ(t+1)β−tβη(t+1)δ−tδ

1− pρ(t+1)βη(t+1)δ . (5.3.18)

The mean residual life function (MRL) is given by

L(y) = E[(Y − y)|Y ≥ y] =

∑
j>y S(j)

S(y)
=
∑
j≥y

j∏
i=y

(1− h(i))

=
∑
j≥y

j∏
i=y

ρ(i+1)β
η(i+1)δ

(1− pρiβηiδ)

ρiβηiδ(1− pρ(i+1)βη(i+1)δ)
; y = 0, 1, ... . (5.3.19)

5.3.2 Quantile function

Since the cdf of the DAWG distribution is not invertible, we use the method discussed

in Lemonte et al. (2014) to obtain the quantile function. We take

F (y) =
1− ρ(y+1)β

η(y+1)δ

1− pρ(y+1)βη(y+1)δ = u,

where uε(0, 1). This implies

(y + 1)βln(ρ) + (y + 1)δln(η) = ln

(
1− u

1− up

)
. (5.3.20)

We obtain the nonlinear equation, atβ + ctδ = x, where a = ln(ρ), c = ln(η), x =

ln( 1−u
1−up

) and t = y + 1. We can expand tβ in Taylor series as tβ =
∑∞

k=0(β)k(t −

1)k/k! =
∑∞

k=0 fjt
j, where fj =

∑∞
k=j(−1)k−j(

k

j
)(β)[k]/k!, (β)k = β(β − 1) ... (β −
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k + 1) is the falling factorial and (β)[k] = β(β + 1) ... (β + k − 1) is the as-

cending factorial. Analogously, we can expand tδ as tδ =
∑∞

k=0 gjt
j, where gj =∑∞

k=j(−1)k−j(
k

j
)(δ)[k]/k!. Now

x = H(t) =
∞∑

j=0

(afj + cgj)t
j =

∞∑
j=0

hjt
j, (5.3.21)

where hj = afj + cgj. To obtain an expansion for the quantile function of the

DAWG distribution we use the Lagrange theorem. Now suppose that the power

series expansion holds x = H(t) = h0 +
∑∞

j=1 hjt
j, h1 = H ′(t)|t=0 6= 0, where

H(t) is analytic at a zero point. Then, the inverse power series t = H−1(x) exists,

it is a single-valued in the neighborhood of the point x = 0 and it is given by

t = H−1(x) =
∑∞

j=1 υjx
j, where the coefficients υj can be given by

υj =
1

j!

(
dj−1

dtj−1

[
φ(t)

]j)∣∣∣∣
t=0

, φ(t) =
t

H(t)− h0

.

Hence, the quantile function can be expressed as

Q(u) =
∞∑

j=1

υj

(
ln

(
1− u

1− up

))j

− 1. (5.3.22)

5.3.3 Moments

The rth moment about origin is given by

µ
′

r = E(Y r) =
∞∑

y=0

yr (1− p)(ρyβ
ηyδ − ρ(y+1)β

η(y+1)δ
)

(1− pρyβηyδ)(1− pρ(y+1)βη(y+1)δ)
. (5.3.23)

Since the function is not in a tractable form, for given values of p, ρ, η, β and δ,

the moments can be numerically computed using R programming. The following
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Table 5.5 shows the moments, skewness and kurtosis for DAWG distribution for

given values of parameters.

Table 5.5: The Moments, skewness and kurtosis for p = 0.9, ρ = 0.8, η = 0.9 and
various choices of β and δ.

Parameter Raw moments Central moments Skewness Kurtosis

β = 1.5
δ = 2

µ
′
1 = 0.27
µ
′
2 = 0.45
µ
′
3 = 0.98
µ
′
4 = 2.70

µ2 = 0.38
µ3 = 0.65
µ4 = 1.82

2.79 12.59

β = 1.5
δ = 1

µ
′
1 = 0.32
µ
′
2 = 0.73
µ
′
3 = 2.37

µ
′
4 = 10.24

µ2 = 0.63
µ3 = 1.73
µ4 = 7.59

3.50 19.44

β = 0.5
δ = 1.5

µ
′
1 = 0.46
µ
′
2 = 1.76

µ
′
3 = 10.13
µ
′
4 = 76.97

µ2 = 1.55
µ3 = 7.88
µ4 = 60.28

4.09 25.18

β = 0.5
δ = 1

µ
′
1 = 0.82
µ
′
2 = 8.69

µ
′
3 = 175.90

µ
′
4 = 5284.45

µ2 = 8.01
µ3 = 155.61
µ4 = 4740.30

6.86 73.86

β = 0.2
δ = 0.9

µ
′
1 = 1.38

µ
′
2 = 27.89

µ
′
3 = 1092.96

µ
′
4 = 63894.82

µ2 = 26.00
µ3 = 983.02
µ4 = 58185.39

7.41 86.06

5.3.4 Stress-strength parameter

Let, Y ∼ ADWG(θ1) and Z ∼ ADWG(θ2), where, θ1 = (p1, ρ1, η1, β1, δ1)
T and

θ2 = (p2, ρ2, η2, β2, δ2)
T . Then, from Eqns.(5.3.10) and (5.3.13), the stress-strength

parameter is

R =
∞∑

y=0

(1− p1)(ρ
yβ1

1 ηyδ1

1 − ρ
(y+1)β1

1 η
(y+1)δ1

1 )(1− ρ
(y+1)β2

2 η
(y+1)δ2

2 )

(1− p1ρ
yβ1

1 ηyδ1

1 )(1− p1ρ
(y+1)β1

1 η
(y+1)δ1

1 )(1− p2ρ
(y+1)β2

2 η
(y+1)δ2

2 )
. (5.3.24)

Assume that, (y1, y2, ..., yn) and (z1, z2, ..., zm) are independent observations drawn

from ADWG(θ1) and ADWG(θ2), respectively. The total likelihood function is given
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by, LR(θ∗) = Ln(θ1) Lm(θ2), where, θ∗ = (θ1, θ2). The score vector is given by

UR(θ∗) =

(
∂LR

∂p1

,
∂LR

∂ρ1

,
∂LR

∂η1

,
∂LR

∂β1

,
∂LR

∂δ1
,
∂LR

∂p2

,
∂LR

∂ρ2

,
∂LR

∂η2

,
∂LR

∂β2

,
∂LR

∂δ2

)
. (5.3.25)

The MLE, θ̂∗ may be obtained from the solution of the nonlinear equation, UR(θ̂∗) =

0. Applying θ̂∗, in the Eqn.(5.3.24), the stress-strength parameter R can be ob-

tained. The stress strength reliability value for different choices of p1, ρ1, η1, β1, δ1

and p2, ρ2, η2, β2, δ2 are computed and presented in Table 5.6. We can see that the

values of R are decreasing when β1 and δ1 increase and increasing when β2 and δ2

increases.

5.3.5 Maximum likelihood estimation of parameters of DAWG

Distribution

Consider a random sample (y1, y2, ..., yn) of size n, from the DAWG(p, ρ, η, β, δ).

Then, the likelihood function is given by

L =
(1− p)n

∏n
i=1(ρ

yβ
i ηyδ

i − ρ(yi+1)β
η(yi+1)δ

)∏n
i=1(1− pρyβ

i ηyδ
i )
∏n

i=1(1− pρ(yi+1)βη(yi+1)δ)
. (5.3.26)

The log-likelihood function is

log(L) = n log(1− p) +
n∑

i=1

log(ρyβ
i ηyδ

i − ρ(yi+1)β

η(yi+1)δ

)

−
n∑

i=1

log(1− pρyβ
i ηyδ

i )−
n∑

i=1

log(1− pρ(yi+1)β

η(yi+1)δ

). (5.3.27)
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Table 5.6: Values of stress-strength parameter(R) for various choices of parameter
values.

p1 = 0.8, p2 = 0.8
ρ1 = 0.5, ρ2 = 0.5 η1 = 0.5, η2 = 0.5

(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.9404
0.9411
0.9413
0.9413

0.9402
0.9410
0.9413
0.9413

0.9402
0.9409
0.9412
0.9413

0.9401
0.9409
0.9412
0.9413

ρ1 = 0.2, ρ2 = 0.6 η1 = 0.2, η2 = 0.6
(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.8994
0.8996
0.8997
0.8977

0.8993
0.8996
0.8997
0.8997

0.8993
0.8995
0.8997
0.8997

0.8993
0.8995
0.8996
0.8997

p1 = 0.5, p2 = 0.8
ρ1 = 0.5, ρ2 = 0.5 η1 = 0.5, η2 = 0.5

(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.9443
0.9457
0.9463
0.9464

0.9438
0.9455
0.9462
0.9464

0.9436
0.9454
0.9462
0.9464

0.9435
0.9453
0.9461
0.9463

ρ1 = 0.2, ρ2 = 0.6 η1 = 0.2, η2 = 0.6
(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.9002
0.9006
0.9008
0.9009

0.9001
0.9006
0.9008
0.9009

0.9001
0.9005
0.9008
0.9009

0.9001
0.9005
0.9008
0.9009

p1 = 0.8, p2 = 0.5
ρ1 = 0.5, ρ2 = 0.5 η1 = 0.5, η2 = 0.5

(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.8637
0.8653
0.8659
0.8660

0.8632
0.8651
0.8658
0.8660

0.8630
0.8650
0.8658
0.8660

0.8630
0.8649
0.8657
0.8660

ρ1 = 0.2, ρ2 = 0.6 η1 = 0.2, η2 = 0.6
(β1, δ1) →
(β2, δ2) ↓ (0.5,1) (1,1.5) (1.5,2) (2,2.5)

(0.5, 1)
(1, 1.5)
(1.5, 2)
(2,2.5)

0.7816
0.7820
0.7822
0.7823

0.7815
0.7819
0.7821
0.7823

0.7815
0.7819
0.7821
0.7823

0.7815
0.7819
0.7821
0.7823
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The likelihood equations are the following

∂ log(L)

∂p
=

−n
1− p

+
n∑

i=1

ρyβ
i ηyδ

i

1− pρyβ
i ηyδ

i

+
n∑

i=1

ρ(yi+1)β
η(yi+1)δ

1− pρ(yi+1)βη(yi+1)δ = 0,(5.3.28)

∂ log(L)

∂ρ
=

n∑
i=1

yβ
i ρ

yβ
i −1ηyδ

i − (yi + 1)βρ(yi+1)β−1η(yi+1)δ

ρyβ
i ηyδ

i − ρ(yi+1)βη(yi+1)δ

+ p
n∑

i=1

yβ
i ρ

yβ
i −1ηyδ

i

1− pρyβ
i ηyδ

i

+ p

n∑
i=1

(yi + 1)βρ(yi+1)β−1η(yi+1)δ

1− pρ(yi+1)βη(yi+1)δ = 0,(5.3.29)

∂ log(L)

∂η
=

n∑
i=1

yδ
i ρ

yβ
i ηyδ

i−1 − (yi + 1)δρ(yi+1)β
η(yi+1)δ−1

ρyβ
i ηyδ

i − ρ(yi+1)βη(yi+1)δ

+ p
n∑

i=1

yδ
i ρ

yβ
i ηyδ

i−1

1− pρyβ
i ηyδ

i

+ p
n∑

i=1

(yi + 1)δρ(yi+1)β
η(yi+1)δ−1

1− pρ(yi+1)βη(yi+1)δ = 0,(5.3.30)

∂ log(L)

∂β
= log(ρ)

n∑
i=1

yβ
i ρ

yβ
i ηyδ

i log(yi)− (yi + 1)βρ(yi+1)β
η(yi+1)δ

log(yi + 1)

ρyβ
i ηyδ

i − ρ(yi+1)βη(yi+1)δ

+ p log(ρ)
n∑

i=1

yβ
i ρ

yβ
i ηyδ

i log(yi)

1− pρyβ
i ηyδ

i

+ p log(ρ)
n∑

i=1

(yi + 1)βρ(yi+1)β
η(yi+1)δ

log(yi + 1)

1− pρ(yi+1)βη(yi+1)δ = 0. (5.3.31)



162 Chapter 5: Discrete Analogues of Weibull distribution and its properties

and

∂ log(L)

∂δ
= log(η)

n∑
i=1

yδ
i ρ

yβ
i ηyδ

i log(yi)− (yi + 1)δρ(yi+1)β
η(yi+1)δ

log(yi + 1)

ρyβ
i ηyδ

i − ρ(yi+1)βη(yi+1)δ

+ p log(η)
n∑

i=1

yβ
i ρ

yβ
i ηyδ

i log(yi)

1− pρyβ
i ηyδ

i

+ p log(η)
n∑

i=1

(yi + 1)βρ(yi+1)β
η(yi+1)δ

log(yi + 1)

1− pρ(yi+1)βη(yi+1)δ = 0. (5.3.32)

These equations do not have explicit solutions and they have to be obtained numer-

ically by using statistical softwares like nlm package in R programming. Let the

estimators be, θ̂ = (p̂, ρ̂, η̂, β̂, δ̂)T . The Fisher’s information matrix is given by

Iy(θ) =



−E(∂2 log(L)
∂p2 ) −E(∂2 log(L)

∂p∂ρ
) −E(∂2 log(L)

∂p∂η
) −E(∂2 log(L)

∂p∂β
) −E(∂2 log(L)

∂p∂δ
)

−E(∂2 log(L)
∂ρ∂p

) −E(∂2 log(L)
∂ρ2 ) −E(∂2 log(L)

∂ρ∂η
) −E(∂2 log(L)

∂ρ∂β
) −E(∂2 log(L)

∂ρ∂η
)

−E(∂2 log(L)
∂η∂p

) −E(∂2 log(L)
∂η∂ρ

) −E(∂2 log(L)
∂η2 ) −E(∂2 log(L)

∂η∂β
) −E(∂2 log(L)

∂η∂δ
)

−E(∂2 log(L)
∂β∂p

) −E(∂2 log(L)
∂β∂ρ

) −E(∂2 log(L)
∂β∂η

) −E(∂2 log(L)
∂β2 ) −E(∂2 log(L)

∂β∂δ
)

−E(∂2 log(L)
∂δ∂p

) −E(∂2 log(L)
∂δ∂ρ

) −E(∂2 log(L)
∂δ∂η

) −E(∂2 log(L)
∂δ∂β

) −E(∂2 log(L)
∂δ2 )


.

Here, the DAWG distribution satisfies the regularity conditions which are full filled

for the parameters in the interior of the parameter space, but not on the boundary.

Hence, the vector θ̂ is consistent and asymptotically normal. That is,
√
Iy(θ)[θ̂ − θ]

converges in distribution to multivariate normal with zero mean vector and identity

covariance matrix. The Fisher’s information matrix can be computed using the
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approximation

Iy(θ̂) ≈



−∂2 log(L)
∂p2 |θ̂ −∂2 log(L)

∂p∂ρ
|θ̂ −∂2 log(L)

∂p∂η
|θ̂ −∂2 log(L)

∂p∂β
|θ̂ −∂2 log(L)

∂p∂δ
|θ̂

−∂2 log(L)
∂ρ∂p

|θ̂ −∂2 log(L)
∂ρ2 |θ̂ −∂2 log(L)

∂ρ∂η
|θ̂ −∂2 log(L)

∂ρ∂β
|θ̂ −∂2 log(L)

∂ρ∂δ
|θ̂

−∂2 log(L)
∂η∂p

|θ̂ −∂2 log(L)
∂η∂ρ

|θ̂ −∂2 log(L)
∂η2 |θ̂ −∂2 log(L)

∂η∂β
|θ̂ −∂2 log(L)

∂η∂δ
|θ̂

−∂2 log(L)
∂β∂p

|θ̂ −∂2 log(L)
∂β∂ρ

|θ̂ −∂2 log(L)
∂β∂η

|θ̂ −∂2 log(L)
∂β2 |θ̂ −∂2 log(L)

∂β∂δ
|θ̂

−∂2 log(L)
∂δ∂p

|θ̂ −∂2 log(L)
∂δ∂ρ

|θ̂ −∂2 log(L)
∂δ∂η

|θ̂ −∂2 log(L)
∂δ∂β

|θ̂ −∂2 log(L)
∂δ2 |θ̂


,

where θ̂ is the MLE of θ = (p, ρ, η, β, δ)T .

We compute the maximized unrestricted and restricted log-likelihood ratio (LR)

test statistic for testing on some DAWG sub models. Here, H0 : η = 1 versusH1 : η 6=

1 is equivalent to compare the DAWG distribution and the DWG distribution. The

LR test statistic reduces to ω = 2(l(p̂, ρ̂, η̂, β̂, δ̂)−l(p̂′ , ρ̂′ , 1, β̂ ′
, δ̂

′
)), where (p̂, ρ̂, η̂, β̂, δ̂)

and (p̂
′
, ρ̂

′
, β̂

′
, δ̂

′
) are the MLEs under H1 and H0, respectively. The test statistic ω is

asymptotically (as n→∞) distributed as χ2
(k), where k is the length of the parameter

vector of interest. The LR test rejects H0 if ω > χ2
(k,α) where χ2

(k,α) denotes the upper

100(1− α)% quantile of the χ2
(k) distribution.

5.3.6 Simulation study

This section explains the performance of the MLEs of the model parameters of

DAWG distribution using Monte Carlo simulation for various sample sizes and for

selected parameter values. The algorithm for the simulation study are given below.
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Step 1. Input the value of replications (N);

Step 2. Specify the sample size n and the values of the parameters p, ρ, η, β and δ;

Step 3. Generate ui ∼ Uniform(0, 1), i = 1, 2, ..., n.;

Step 4. Obtain the random observations from the DAWG distribution by solving for

the real roots of the Eqn.(5.3.22) and take the floor value;

Step 5. Compute the MLEs of the five parameters;

Step 6. Repeat steps 3 to 5, N times;

Step 7. Compute the average bias, mean square error (MSE) and coverage probability

(CP) for each parameter.

Here the expected value of the estimator is E(θ̂) = 1
N

∑N
i=1 θ̂i, average bias =

1
N

∑N
i=1(θ̂i − θ), MSE= 1

N

∑N
i=1(θ̂i − θ)2 and the coverage probability = Probability

of θi ∈
(
θ̂i ± 1.96

√
−∂2 log(L)

∂θ2
i

)
. We take the parameter values as p = 0.8, ρ =

0.5, η = 0.5, β = 0.5 and δ = 1.5 arbitrarily and generated random samples of size

n=20, 40, 60, 80 and 100 respectively. The MLEs of p, ρ, η, β and δ are determined by

maximizing the log-likelihood function in the equation (5.3.22) using the nlm package

of R software, based on each generated samples. This simulation is repeated 500

times and the average estimates of bias, MSE and coverage probability are computed

and presented in Table 5.7. From Table 5.7 it can be seen that, as sample size

increases the estimates of bias and MSE decreases. Also note that the CP values are

quite close to the 95% nominal level.
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Table 5.7: Values of the average bias, MSE and CP for given parameter values.
Sample size Actual value Estimates Average bias MSE CP

20

p = 0.8
ρ = 0.5
η = 0.5
β = 0.5
δ = 1.5

0.921
0.346
0.723
0.661
1.833

0.115
-0.164
0.213
0.165
0.301

0.074
0.086
0.017
0.038
0.099

0.873
0.926
0.932
0.896
0.882

40

p = 0.8
ρ = 0.5
η = 0.5
β = 0.5
δ = 1.5

0.893
0.453
0.632
0.643
1.608

0.099
-0.057
0.101
0.110
0.096

0.032
0.034
0.013
0.015
0.082

0.901
0.930
0.938
0.905
0.899

60

p = 0.8
ρ = 0.5
η = 0.5
β = 0.5
δ = 1.5

0.866
0.486
0.610
0.612
1.598

0.071
-0.013
0.102
0.110
0.096

0.016
0.018
0.008
0.012
0.073

0.926
0.936
0.943
0.912
0.917

80

p = 0.8
ρ = 0.5
η = 0.5
β = 0.5
δ = 1.5

0.841
0.489
0.596
0.593
1.573

0.046
-0.009
0.092
0.089
0.069

0.012
0.015
0.006
0.009
0.062

0.931
0.940
0.947
0.923
0.927

100

p = 0.8
ρ = 0.5
η = 0.5
β = 0.5
δ = 1.5

0.833
0.491
0.552
0.587
1.554

0.028
-0.003
0.057
0.083
0.052

0.009
0.007
0.005
0.006
0.011

0.938
0.942
0.949
0.929
0.934

5.3.7 Data applications of the DAWG distribution

In this section, to show how the DAWG(p, ρ, η, β, δ) distribution works in practice,

we use the data set representing remission times (in months) of 128 bladder cancer

patients (Lee and Wang (2003)). The data are given in Section 5.2.7. (page 144).

Since the data set is continuous, here first we discretize the data by considering the

floor value (y). The parameters are estimated by using the method of maximum

likelihood. We compare the fit of the DAWG distribution with the geometric (G)

distribution, the discrete Weibull (DW) distribution, the discrete Logistic (DLOG)

distribution, the exponentiated discrete Weibull (EDW) distribution and the discrete

Weibull geometric (DWG) distribution.
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Table 5.8: The parameter estimates and goodness of fit for various models fitted for
the first data set.
Model ML estimates -log L AIC CAIC BIC K-S p value
G p̂ = 0.8991 414.836 831.672 831.704 831.779 0.1000 0.1549

DW
q̂ = 0.9114
β̂ = 1.0511

414.556 833.112 837.304 833.326 0.1131 0.0758

DLOG p̂ = 0.8000
µ̂ = 7.6149 456.825 917.650 917.746 917.864 0.1860 0.0003

EDW
p̂ = 0.4689
α̂ = 0.5397
γ̂ = 4.9697

409.766 825.532 825.726 825.854 0.1237 0.0399

DWG
p̂ = 0.9529
ρ̂ = 0.9982
α̂ = 1.7025

409.277 824.554 824.748 824.876 0.0905 0.2458

DAWG

p̂ = 0.9589
ρ̂ = 0.9989
η̂ = 0.9995
β̂ = 1.7018
δ̂ = 1.7016

405.230 820.460 820.9518 820.996 0.0882 0.2727

The values of -log L, K-S, AIC, CAIC and BIC are calculated for the six distri-

butions in order to verify which distribution fits better to these data. The values in

Table 5.8, indicates that the DAWG distribution leads to a better fit compared to

the other five models. The following Figure 5.7, shows the structure of the cdf’s of

the six models with the empirical distribution of the given data. Here the dotted

line indicates the empirical cdf of the data.

The LR test statistic to test the hypothesis H0 : η = 1 versus H1 : η 6= 1 is

ω = 8.094 > 5.991 with p value 0.0175. So we reject the null hypothesis.

5.4 Summary

In this Chapter, we introduced some discrete versions of Weibull distribution by

discretizing the Weibull geometric and additive Weibull geometric distributions. This
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Figure 5.7: Fitted cdfs of the data with empirical distribution.

new discrete distributions are found to be better for modelling real life data, when

the data exhibits over or under dispersion. The discrete Weibull, discrete Rayleigh

and the geometric distributions are the sub models of the DWG distribution. The

hrf of the DWG distribution showed increasing, decreasing and bathtub shapes. The

parameters of the DWG distribution are estimated by the method of maximum

likelihood. A simulation study is also carried out to check the performance of the

method. Two data sets are used to check the flexibility of the DWG distribution for

lifetime data modelling.

The DAWG distribution is a more generalized family than the DWG distribu-

tion. The sub models of this distribution are DWG, discrete exponential geometric,
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discrete modified Weibull, discrete Weibull, discrete Rayleigh geometric, discrete

Rayleigh and the geometric distribution. Structural properties of the pmf and hrf

of the DAWG distribution are studied in detail. The hrf of DAWG distribution is

decreasing, increasing and bathtub shaped. The estimates of the five parameters of

the DAWG distribution are obtained by using MLE method. A simulation study

is also conducted to check the performances of the method. In order to check the

flexibility of the data modelling, we applied this model for fitting the remission times

of 128 bladder cancer patients data.



CHAPTER

SIX

DISCRETE COMPLEMENTARY WEIBULL GEOMETRIC

DISTRIBUTION: PROPERTIES AND APPLICATIONS

6.1 Introduction

In competing risk analysis, the lifetime associated with a specific risk is not observ-

able, but the minimum lifetime of all the risks are available. Whereas in comple-

mentary risk analysis, we observe only the maximum lifetime among all the risks.

In most of the reliability analysis, the real cause of failure of the system can be

hidden. To address such problems statistically, we need more generalized family of

distributions.

Let N be a discrete random variable denoting the number of complementary risks

169
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related to the occurrence of an event of interest and follows geometric distribution

with pmf,
P (N = n) = p(1− p)n−1, (6.1.1)

where 0 < p < 1 and n = 1, 2, ... . Also, let Xi denotes the time-to-event due to the

ith complementary risk, which are independent of N , i = 1, 2, ... . Then for given

N = n, the random variable Xi, i = 1, 2, ....n are assumed to be i.i.d. and following

the Weibull distribution W (β, α) with scale parameter β > 0, shape parameter α > 0

and the pdf
g(x; β, α) = αβαxα−1e−(βx)α

, x > 0. (6.1.2)

In the latent complementary risks scenario, the number of causes N and the

lifetime Xi are associated with a particular cause which are not observable (latent

variables), but only the maximum lifetime Z among all the causes is usually observed.

So the complementary lifetime is defined as

Z = max(X1, X2, ..., XN). (6.1.3)

From Tojeiro et al. (2014), we can see that, if the random variable Z is defined as in

Eqn.(6.1.3), then considering the Eqn.(6.1.1) and the Eqn.(6.1.2), Z is distributed

according to complementary Weibull geometric (CWG) distribution with pdf

f(z; p, β, α) =
pαβαzα−1e−(βz)α

[p+ (1− p)e−(βz)α ]2
, p > 0, β > 0, α > 0, z > 0. (6.1.4)

The cdf, survival function and hrf of CWG distribution are respectively given by

F (z) =
p(1− e−(βz)α

)

p+ (1− p)e−(βz)α , (6.1.5)

S(z) =
e−(βz)α

p+ (1− p)e−(βz)α , (6.1.6)
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and

h(z) =
pαβαzα−1

p+ (1− p)e−(βz)α . (6.1.7)

The properties of the CWG distribution are studied in Tojeiro et al. (2014). This

distribution is complementary to the Weibull geometric (WG) distribution proposed

in Barreto-Souza et al. (2011).

In Section 2, we introduce the discrete complementary Weibull geometric distribution

and identify its sub models. We study the various properties of this distribution such

as, shapes of pmf and hrf, quantile function and probability generating function in

Section 3. Maximum likelihood estimation of its parameters and their existence and

uniqueness are discuss in Section 4. The performance of the MLEs of the model

parameters are discuss by conducting a simulation study and the results are presents

in this section. Two real-life data applications of this distribution are illustrates in

Section 5.

6.2 The Discrete Complementary Weibull Geo-

metric Distribution

Now, by applying the method of discretization given in Eqn.(1.6.1) and after a

reparametrization, ρ = e−βα
, the pmf of the discrete analogues say, Y , of the CWG
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distribution is obtained as

PY (y; p, ρ, α) = P (Y = y) = SZ(y)− SZ(y + 1)

=
p(ρyα − ρ(y+1)α

)

[p+ (1− p)ρyα ][p+ (1− p)ρ(y+1)α ]
, (6.2.1)

where y = 0, 1, 2, ..., p > 0, α > 0 and 0 < ρ < 1. Here the parameter p and ρ can be

interpreted as concentration parameters, while α is a shape parameter. We call this

distribution as discrete complementary Weibull geometric (DCWG) distribution and

is denoted as DCWG(p, ρ, α).

In particular, when α = 1, the pmf becomes

PY (y; p, ρ) =
p(ρy − ρ(y+1))

[p+ (1− p)ρy][p+ (1− p)ρ(y+1)]
, (6.2.2)

which is called the discrete complementary exponential geometric distribution.

When p → 1, PY (y; ρ, α) = ρyα − ρ(y+1)α
which is the discrete Weibull distribution

of Nakagawa and Osaki (1975).

When p→ 1 and α→ 2, then PY (y; ρ) = ρy2 − ρ(y+1)2 which is the discrete Rayleigh

distribution of Roy (2004).

When p → 1 and α → 1, then PY (y; ρ) = ρy − ρ(y+1) which is the geometric distri-

bution with parameter ρ.

When p→ 0+, the DCWG tends to a distribution degenerate at zero.
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6.3 Structural Properties of the DCWG Distribu-

tion

The shape of the pmf of the DCWG(p, ρ, α) distribution for various choices of pa-

rameter values are shown in Figure 6.1. It can be seen that the distribution is

unimodal and highly positively skewed. For α > 0, p > 0 and 0 < ρ < 1 we have

pY (0) > pY (1) > pY (2) > ...., and hence pY (y) is strictly decreasing function. Also

note that when α = 1, pY (y) is geometric and when α > 1, pY (y) is initially in-

creasing to the maximum point and then decreasing. The recurrence relation for

Figure 6.1: Shape of pmf for various parameter values.
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probabilities of the DCWG(p, ρ, α) distribution is as follows:

PY (y + 1) =
(ρ(y+1)α − ρ(y+2)α

)(p+ (1− p)ρyα
)

(ρyα − ρ(y+1)α)(p+ (1− p)ρ(y+2)α)
PY (y) (6.3.1)

The distribution is

(a) log-concave if and only if {PY (y+1)
PY (y)

}y≥0 is decreasing,

(b) log-convex if and only if {PY (y+1)
PY (y)

}y≥0 is increasing and

(c) geometric if {PY (y+1)
PY (y)

}y≥0 is constant. The cdf of the DCWG(p, ρ, α) distribution

is obtained as

F (y) = P (Y ≤ y) = 1− SZ(y + 1) =
p(1− ρ(y+1)α

)

p+ (1− p)ρ(y+1)α
, (6.3.2)

where y = 0, 1, 2, ...; p > 0, 0 < ρ < 1 and α > 0.

Remark 6.3.1. The cdf of the DCWG(p, ρ, α) distribution can be expressed as

F (y) =
1− ρ(y+1)α

1− (p−1
p

)ρ(y+1)α
. (6.3.3)

This becomes the discrete Weibull-geometric distribution of Jayakumar and Babu

(2018) if 0 < p−1
p
< 1 and is satisfied only if p ∈ (1,∞).

The survival function of the DCWG(p, ρ, α) distribution is given by

S(y) = P (Y > y) = 1− P (Y ≤ y) =
ρ(y+1)α

p+ (1− p)ρ(y+1)α . (6.3.4)

The hrf is given by

h(y) =
Y = y

P (Y ≥ y)
=

1− ρ(y+1)α−yα

1− p−1
p
ρ(y+1)α

, (6.3.5)

provided P (Y ≥ y) > 0. Here note that as y → 0, h(y) → p(1−ρ)
p+(1−p)ρ

.

For α = 1, we have limy→∞ h(y) → 1 − ρ, for 0 < α < 1, limy→∞ h(y) → 0 and for
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Figure 6.2: Shape of hrf for various parameter values.

α > 1, limy→∞ h(y) → 1. The shape of hrf for various choices of parameter values

are shown in Figure 6.2. The reverse hazard rate function is given by

h∗(y) =
P (Y = y)

P (Y ≤ y)
=

ρyα − ρ(y+1)α

(1− ρ(y+1)α)(p+ (1− p)ρyα)
. (6.3.6)

The second rate of failure is given by

h∗∗(y) = log

[
S(y)

S(y + 1)

]
= log

[1− 1
1− 1

p

(1
ρ
)(y+2)α

1− 1
1− 1

p

(1
ρ
)(y+1)α

]
. (6.3.7)

6.3.1 Quantile function

The uth quantile φ(u) of the DCWG(p, ρ, α) distribution is obtained as

φ(u) = dyue =

⌈(
ln(p(1− u))− ln(p+ (1− p)u)

ln(ρ)

) 1
α

− 1

⌉
, (6.3.8)
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where dyue denotes the smallest integer greater than or equal to yu.

The median is

φ(0.5) = dy0.5e =

⌈(
ln(p)− ln(p+ 1)

ln(ρ)

) 1
α

− 1

⌉
. (6.3.9)

Let u follows Uniform(0, 1) distribution, then using the expression given in the

Eqn.(6.3.8), we can generate random samples from the DCWG(p, ρ, α) distribution.

6.3.2 Probability generating function

The pgf of the DCWG(p, ρ, α) distribution is

PY (s) = 1 + (s− 1)
∞∑

y=1

sy−1ρ(y+1)α

p+ (1− p)ρ(y+1)α . (6.3.10)

The expressions for mean and variance are

E(Y ) =
∞∑

y=1

ρ(y+1)α

p+ (1− p)ρ(y+1)α , (6.3.11)

and

V (Y ) =
∞∑

y=1

(2y − 1)ρ(y+1)α

p+ (1− p)ρ(y+1)α −
[ ∞∑

y=1

ρ(y+1)α

p+ (1− p)ρ(y+1)α

]2

. (6.3.12)

The mean, variance, skewness and kurtosis of the DCWG(p, ρ, α) distribution for var-

ious choices of parameter values are numerically computed and presented in Table6.1.

The results shows that this distribution is suitable for modelling both over and under

dispersed data.
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Table 6.1: The mean, variance, skewness and kurtosis of the DCWG distribution for
various parameter values.

Parameters α→ 0.5 1.0 1.5 2.0

p = 0.5
ρ = 0.5

Mean
Variance
Skewness
Kurtosis

6.419
149.154
5.144
54.088

1.529
2.814
1.589
6.696

0.975
0.785
0.760
3.435

0.788
0.418
0.323
2.695

p = 1.0
ρ = 0.5

Mean
Variance
Skewness
Kurtosis

3.788
85.699
6.695
89.298

1.00
2.00
2.121
9.500

0.672
0.638
1.151
4.275

0.564
0.379
0.660
2.746

p = 1.5
ρ = 0.8

Mean
Variance
Skewness
Kurtosis

28.983
5728.556

7.787
120.295

3.162
16.094
2.350
11.255

1.609
2.463
1.283
5.059

1.159
0.959
0.751
3.435

p = 2.0
ρ = 0.2

Mean
Variance
Skewness
Kurtosis

0.274
1.441
9.973

188.106

0.137
0.181
3.846
22.100

0.117
0.114
2.832
10.624

0.112
0.101
2.537
7.741

6.4 Maximum Likelihood Estimation of Parame-

ters of the DCWG Distribution

Consider a random sample (y1, y2, ..., yn) of size n from the DCWG(p, ρ, α). Then the

likelihood function is given by

L =
n∏

i=1

p[ρyα
i − ρ(yi+1)α

]

[p+ (1− p)ρyα
i ][p+ (1− p)ρ(yi+1)α ]

(6.4.1)

The log-likelihood function is

logL = n log(p) +
n∑

i=1

log[ρyα
i − ρ(yi+1)α

]

−
n∑

i=1

log[p+ (1− p)ρyα
i ]−

n∑
i=1

log[p+ (1− p)ρ(yi+1)α

] (6.4.2)
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Hence, the likelihood equations are respectively

∂ logL

∂p
=
n

p
−

n∑
i=1

1− ρyα
i

p+ (1− p)ρyα
i
−

n∑
i=1

1− ρ(yi+1)α

p+ (1− p)ρ(yi+1)α = 0, (6.4.3)

∂ logL

∂ρ
=

n∑
i=1

yα
i ρ

yα
i −1 − (yi + 1)αρ(yi+1)α−1

ρyα
i − ρ(yi+1)α − (1− p)

n∑
i=1

yα
i ρ

yα
i −1

p+ (1− p)ρyα
i

−(1− p)
n∑

i=1

(yi + 1)αρ(yi+1)α−1

p+ (1− p)ρ(yi+1)α = 0, (6.4.4)

and

∂ logL

∂α
=

n∑
i=1

log(ρ)[yα
i ρ

yα
i ln(yi)− (yi + 1)αρ(yi+1)α

log(yi + 1)]

ρyα
i − ρ(yi+1)α

−(1− p) log(ρ)
n∑

i=1

yα
i ρ

yα
i log(yi)

p+ (1− p)ρyα
i

−(1− p) log(ρ)
n∑

i=1

(yi + 1)αρ(yi+1)α
log(yi + 1)

p+ (1− p)ρ(yi+1)α = 0. (6.4.5)

These equations do not have explicit solutions and they have to be obtained numer-

ically by using statistical softwares like nlm or optim packages in R programming.

Let the estimators be, θ̂ = (p̂, ρ̂, α̂)T . The Fisher’s information matrix is given by

IY (θ) =


−E(∂2 log L

∂p2 ) −E(∂2 log L
∂p∂ρ

) −E(∂2 log L
∂p∂α

)

−E(∂2 log L
∂ρ∂p

) −E(∂2 log L
∂ρ2 ) −E(∂2 log L

∂ρ∂α
)

−E(∂2 log L
∂α∂p

) −E(∂2 log L
∂α∂ρ

) −E(∂2 log L
∂α2 )

 . (6.4.6)



Chapter 6: Discrete complementary Weibull geometric distribution: properties and
applications 179

The DCWG distribution satisfies the regularity conditions which are full filled for the

parameters in the interior of the parameter space, but not on the boundary. Hence,

the vector θ̂ is consistent and asymptotically normal. That is,
√
IY (θ)[θ̂−θ] converges

in distribution to multivariate normal with zero mean vector and identity covariance

matrix. The Fisher’s information matrix can be computed using the approximation

IY (θ̂) ≈


−∂2 log L

∂p2 |θ̂ −∂2 log L
∂p∂ρ

|θ̂ −∂2 log L
∂p∂α

|θ̂

−∂2 log L
∂ρ∂p

|θ̂ −∂2 log L
∂ρ2 |θ̂ −∂2 log L

∂ρ∂α
|θ̂

−∂2 log L
∂α∂p

|θ̂ −∂2 log L
∂α∂ρ

|θ̂ −∂2 log L
∂α2 |θ̂

 , (6.4.7)

where θ̂ is the MLE of θ. The existence and uniqueness of MLEs of the parameters of

the DCWG(p, ρ, α) distribution are established when the other parameters are known

as suggested in Popović et al. (2016) and are explained in the following theorems.

Theorem 6.4.1. From the Eqn.(6.4.3), let f1(p; ρ, α, y) = ∂ ln(L)
∂p

, where ρ and

α are the true values of the parameters. Then there exist a unique solution for

f1(p; ρ, α, y) = 0, for p̂ ∈ (0,∞).

Proof. We have

f1(p; ρ, α, y) =
n

p
−

n∑
i=1

1− ρyα
i

p+ (1− p)ρyα
i
−

n∑
i=1

1− ρ(yi+1)α

p+ (1− p)ρ(yi+1)α . (6.4.8)

The limiting values of f1(p; ρ, α, y) as p→ 0 and p→∞ are obtained as follows:

lim
p→0

f1(p; ρ, α, y) = ∞+ 2n−
[ n∑

i=1

1

ρyα
i

+
n∑

i=1

1

ρ(yi+1)α

]
= ∞, (6.4.9)

and

lim
p→∞

f1(p; ρ, α, y) = 0, (6.4.10)
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since limp→∞
∑n

i=1
1−ρyα

i

p+(1−p)ρyα
i

= 0 and limp→∞
∑n

i=1
1−ρ(yi+1)α

p+(1−p)ρ(yi+1)α = 0.

Thus, there exist at least on root, say p̂ ∈ (0,∞), such that f1(p; ρ, α, y) = 0.

Now to show the uniqueness, we have to show that ∂f1(p;ρ,α,y)
∂p

< 0, that is,

− n

p2
+

n∑
i=1

(1− ρyα
i )2

(p+ (1− p)ρyα
i )

+
n∑

i=1

(1− ρ(yi+1)α
)2

(p+ (1− p)ρ(yi+1)α)
< 0, (6.4.11)

and this is possible when

n∑
i=1

(1− ρyα
i )2

(p+ (1− p)ρyα
i )

+
n∑

i=1

(1− ρ(yi+1)α
)2

(p+ (1− p)ρ(yi+1)α)
<

n

p2
. (6.4.12)

This completes the proof.

Theorem 6.4.2. From the Eqn.(6.4.4), let f2(ρ; p, α, y) = ∂ ln(L)
∂ρ

, where p and

α are the true values of the parameters. Then there exist a unique solution for

f2(ρ; p, α, y) = 0, for ρ̂ ∈ (0, 1).

Proof. We have

f2(ρ; p, α, y) =
n∑

i=1

yα
i ρ

yα
i −1 − (yi + 1)αρ(yi+1)α−1

ρyα
i − ρ(yi+1)α − (1− p)

n∑
i=1

yα
i ρ

yα
i −1

p+ (1− p)ρyα
i

−(1− p)
n∑

i=1

(yi + 1)αρ(yi+1)α−1

p+ (1− p)ρ(yi+1)α . (6.4.13)

Now we can see that
lim
ρ→∞

f2(ρ; p, α, y) = ∞, (6.4.14)

since limp→0+

∑n
i=1

yα
i ρyα

i −1−(yi+1)αρ(yi+1)α−1

ρyα
i −ρ(yi+1)α

= ∞, limp→0

∑n
i=1

yα
i ρyα

i −1

p+(1−p)ρyα
i

= 0 and

limp→0

∑n
i=1

(yi+1)αρ(yi+1)α−1

p+(1−p)ρ(yi+1)α = 0.

Also

lim
ρ→∞

f2(ρ; p, α, y) = −∞− (1− p)
[ n∑

i=1

yα
i +

n∑
i=1

(yi + 1)α
]

= −∞, (6.4.15)
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since limp→1−
∑n

i=1
yα

i ρyα
i −1−(yi+1)αρ(yi+1)α−1

ρyα
i −ρ(yi+1)α

= −∞, limp→1

∑n
i=1

yα
i ρyα

i −1

p+(1−p)ρyα
i

=
∑n

i=1 y
α
i

and limp→0

∑n
i=1

(yi+1)αρ(yi+1)α−1

p+(1−p)ρ(yi+1)α =
∑n

i=1(yi + 1)α. Hence there exist a root for ρ ∈

(0, 1). The first derivative of f2(ρ; p, α, y) is given by

∂f2(ρ; p, α, y)

∂ρ
=

n∑
i=1

[
yα

i ρ
yα

i (yα
i − 1)− (yi + 1)αρ(yi+1)α

[(yi + 1)α − 1]

ρyα
i − ρ(yi + 1)α

−

[yα
i ρ

yα
i −1 − (yi + 1)αρ(yi+1)α−1]2

[ρyα
i − ρ(yi + 1)α]2

]
−(1− p)

n∑
i=1

[
yα

i ρ
yα

i −1(yα
i − 1)

ρ[p+ (1− p)ρyiα]
− (1− p)y2α

i ρ2(yα
i −1)

[p+ (1− p)ρyα
i ]2

]
−(1− p)

n∑
i=1

[
(yi + 1)αρ(yi+1)α−1[(yi + 1)α − 1]

ρ[p+ (1− p)ρ(yi+1)α ]
−

(1− p)(yi + 1)2αρ2[(yi+1)α−1]

[p+ (1− p)ρ(yi+1)α ]2

]
. (6.4.16)

The roots are unique when

n∑
i=1

[
yα

i ρ
yα

i (yα
i − 1)− (yi + 1)αρ(yi+1)α

[(yi + 1)α − 1]

ρyα
i − ρ(yi + 1)α

−

[yα
i ρ

yα
i −1 − (yi + 1)αρ(yi+1)α−1]2

[ρyα
i − ρ(yi + 1)α]2

]
< (1− p)

n∑
i=1

[
yα

i ρ
yα

i −1(yα
i − 1)

ρ[p+ (1− p)ρyiα]
− (1− p)y2α

i ρ2(yα
i −1)

[p+ (1− p)ρyα
i ]2

]
+ (1− p)

n∑
i=1

[
(yi + 1)αρ(yi+1)α−1[(yi + 1)α − 1]

ρ[p+ (1− p)ρ(yi+1)α ]
−

(1− p)(yi + 1)2αρ2[(yi+1)α−1]

[p+ (1− p)ρ(yi+1)α ]2

]
. (6.4.17)

This completes the proof.

Theorem 6.4.3. From the Eqn.(6.4.5), let f3(α; p, ρ, y) = ∂ ln(L)
∂α

, where p and
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ρ are the true values of the parameters. Then there exist a unique solution for

f3(α; p, ρ, y) = 0, for α̂ ∈ (0,∞).

Proof. We have

f3(α; p, ρ, y) =
n∑

i=1

ln(ρ)[yα
i ρ

yα
i ln(yi)− (yi + 1)αρ(yi+1)α

ln(yi + 1)]

ρyα
i − ρ(yi+1)α

−(1− p) ln(ρ)
n∑

i=1

yα
i ρ

yα
i ln(yi)

p+ (1− p)ρyα
i

−(1− p) ln(ρ)
n∑

i=1

(yi + 1)αρ(yi+1)α
ln(yi + 1)

p+ (1− p)ρ(yi+1)α . (6.4.18)

Then for yi > 0, we have

lim
α→0

f3(α; p, ρ, y) = ∞, (6.4.19)

since limα→0+

∑n
i=1

ln(ρ)[yα
i ρyα

i ln(yi)−(yi+1)αρ(yi+1)α ln(yi+1)]

ρyα
i −ρ(yi+1)α

= ∞,

limα→0(1− p) ln(ρ)
∑n

i=1
yα

i ρyα
i ln(yi)

p+(1−p)ρyα
i

= (1−p) ln(ρ)
p+(1−p)ρ

∑n
i=1 ln(yi)

and limα→0(1− p) ln(ρ)
∑n

i=1
(yi+1)αρ(yi+1)α ln(yi+1)

p+(1−p)ρ(yi+1)α = (1−p) ln(ρ)
p+(1−p)ρ

∑n
i=1 ln(yi + 1).

Also

lim
α→∞

f3(ρ; p, α, y) = 0, (6.4.20)

since limα→∞
∑n

i=1
ln(ρ)[yα

i ρyα
i ln(yi)−(yi+1)αρ(yi+1)α ln(yi+1)]

ρyα
i −ρ(yi+1)α

= 0,

limα→∞(1− p) ln(ρ)
∑n

i=1
yα

i ρyα
i ln(yi)

p+(1−p)ρyα
i

= 0 and

limα→∞(1 − p) ln(ρ)
∑n

i=1
(yi+1)αρ(yi+1)α ln(yi+1)

p+(1−p)ρ(yi+1)α = 0. Hence there exist a root for α ∈

(0,∞). The first derivative of f3(α; p, ρ, y) with respect to α is given by

∂f3(α; p, ρ, y)

∂α
= ln(ρ)D1 − (1− p) ln(ρ)(D2 +D3), (6.4.21)
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where

D1 =
n∑

i=1

[
yα

i ρ
yα

i [ln(yi)]
2[1 + yα

i ln(ρ)]− (yi + 1)αρ(yi+1)α
[ln(yi + 1)]2[1 + (yi + 1)α ln(ρ)]

ρyα
i −ρ(yi+1)α

− [yα
i ρ

yα
i ln(yi)− (yi + 1)αρ(yi+1)α

ln(yi + 1)]2

[ρyα
i −ρ(yi+1)α

]2

]
,

D2 =
n∑

i=1

[
yα

i ln(yi)ρ
yα

i [1 + yα
i ln(yi) ln(ρ)]

p+ (1− p)ρyα
i

− (1− p) ln(ρ)y2α
i ρ2yα

i [ln(yi)]
2

[p+ (1− p)ρyα
i ]2

]
,

and

D3 =
n∑

i=1

[
(yi + 1)α ln(yi + 1)ρ(yi+1)α

[1 + (yi + 1)α ln(yi + 1) ln(ρ)]

p+ (1− p)ρ(yi+1)α

− (1− p) ln(ρ)(yi + 1)2αρ2(yi+1)α
[ln(yi + 1)]2

[p+ (1− p)ρ(yi+1)α ]2

]
.

The roots are unique when

D1 < (1− p)(D2 +D3). (6.4.22)

This completes the proof.

6.4.1 Simulation study

This section explains the performance of the MLEs of the model parameters of the

DCWG distribution using Monte Carlo simulation for various sample sizes and for

selected parameter values. The algorithm for the simulation study is given below:

Step 1. Input the value of replication (N);

Step 2. Specify the sample size n and the values of the parameters p, ρ and α;

Step 3. Generate ui ∼ Uniform(0, 1), i = 1, 2, ..., n.;
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Step 4. Obtain the random observations from the DCWG distribution using the

Eqn.(6.3.8);

Step 5. Compute the MLEs of the three parameters;

Step 6. Repeat steps 3 to 5, N times;

Step 7. Compute the parameter estimate, standard error of estimate, average bias,

MSE and CP for each parameter.

We take random samples of size n=50,100,200 and 500 respectively. The MLEs of

the parameter vector θ = (p, ρ, α)T are determined by maximizing the log-likelihood

function given in Eqn.(6.4.2) by using the optim package of R software based on each

generated samples. This simulation is repeated 1000 times and the average estimate

and its standard error, average bias, MSE and CP are computed and presented in

Table 6.2. From Table 6.2, it can be seen that, as sample size increases the estimates

of bias and MSE decreases. Also note that the CP values are quite closer to the 95%

nominal level.

6.5 Data Applications of the DCWG Distribution

In this section, we analyze two real data sets to prove empirically the flexibility

of the DCWG distribution. The goodness-of-fit statistics for this model are com-

pared with other competitive models and the MLEs of the model parameters are

determined numerically. The first data set is taken from University of Bosphoros,

Kandilli Observatory and Earthquake Research Institute-National Earthquake Mon-
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Table 6.2: The parameter estimate, standard error, average bias, MSE and CP for
given parameters.

Parameter(θ) Samples(n) E(θ̂)(E(SE(θ̂))) Average bias MSE CP

p = 0.5

50
100
200
500

0.3481(0.1202)
0.3992(0.0911)
0.4235(0.0531)
0.4807(0.0327)

-0.151
-0.101
-0.077
-0.018

0.049
0.011
0.006
0.003

86.4
88.3
90.6
92.5

ρ = 0.9

50
100
200
500

0.5861(0.1925)
0.6032(0.1322)
0.7864(0.1103)
0.8429(0.1051)

-0.324
-0.288
-0.104
-0.061

0.099
0.089
0.013
0.001

83.8
85.1
90.6
93.2

α = 0.5

50
100
200
500

0.5886(0.1317)
0.5432(0.0633)
0.5277(0.0432)
0.5013(0.021)

0.091
0.034
0.028
0.011

0.008
0.003
0.002
0.001

90.3
92.6
93.8
94.5

p = 0.8

50
100
200
500

0.4138(0.1316)
0.5883(0.1172)
0.7114(0.1082)
0.7938(0.0922)

-0.391
-0.201
-0.089
-0.016

0.147
0.045
0.008
0.001

88.2
89.3
91.6
94.1

ρ = 0.5

50
100
200
500

0.4832(0.1132)
0.4891(0.1071)
0.4986(0.0192)
0.4993(0.0112)

-0.017
-0.011
-0.009
-0.007

0.019
0.012
0.002
0.001

90.7
92.6
93.1
94.6

α = 1.5

50
100
200
500

2.1336(0.2218)
1.9817(0.1677)
1.7926(0.1281)
1.6013(0.0927)

0.534
0.451
0.283
0.101

0.402
0.238
0.088
0.010

87.9
89.8
91.3
93.9

itoring Research Center and is studied in Kus (2007). The data represents the time

interval of the successive earthquakes and are as follows:

1163, 3258, 323, 159, 501, 616, 398, 67, 2039, 217, 9, 633, 4863, 143, 182, 2117, 756,

409, 896, 8592, 461, 1821, 3709, 979.

The second data set represents the lifetime of eighteen electronic devices studied

in Wang (2000). The data are as follows:

5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, 420.

The fit of the new discrete distribution is compared with discrete Weibull (DW)

and geometric (G) distributions. To compare the goodness of fit of distributions,
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we consider the criteria like, Kolmogorov-Smirnov (K-S) statistic, Cramér - von

Mises criterion (W*), and Anderson - Darling criterion (A*). The best distribution

corresponds to lower -logL, K-S distance, A* and W* statistics values and high p

value. The parameter estimates and goodness of fit statistics for the two data sets

are presented in Table 6.3 and Table 6.4 respectively. The values in Table 6.3 show

Table 6.3: The parameter estimates and goodness of fit for the first data set.
Model ML estimates -log L K-S A* W* p value
G ρ̂ = 0.9993 198.372 0.1836 1.0642 0.2033 0.3499
DW ρ̂ = 0.0.9963, α̂ = 0.7868 197.001 0.1002 0.2519 0.0435 0.9500

DCWG p̂ = 0.0006, ρ̂ = 0.0841,
α̂ = 0.1677 196.912 0.0776 0.1639 0.0238 0.9963

that the DCWG distribution leads to a better fit to the first data set. Figure 6.3,

shows the fitted cdfs with the empirical distribution of the first data set. The values

Figure 6.3: Fitted cdf plots for the first data set.
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Table 6.4: The parameter estimates and goodness of fit for the second data set.
Model ML estimates -log L K-S A* W* p value
G ρ̂ = 0.9942 110.719 0.1253 0.4279 0.0739 0.9071
DW ρ̂ = 0.0.9975, α̂ = 1.1560 110.466 0.1175 0.4634 0.0672 0.9403

DCWG p̂ = 0.3448, ρ̂ = 0.9875,
α̂ = 0.9415 110.186 0.1056 0.3469 0.0441 0.9751

in Table 6.4 show that the DCWG distribution leads to a better fit to the second

data set. Figure 6.4, shows the fitted cdfs with the empirical distribution of the

second data set.

Figure 6.4: Fitted cdf plots for the second data set.
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applications

6.6 Summary

In this Chapter, we have introduced a new three-parameter discrete complementary

Weibull-geometric (DCWG) distribution. We have studied some of its mathematical

and statistical properties. The expressions for the quantile function, probability

generating function and order statistics are derived. The model parameters are

estimated using maximum likelihood estimation method and present a simulation

study to illustrate the performance of the estimates. The new distribution is applied

to two real data sets to show its flexibility for data modelling.



CHAPTER

SEVEN

CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

7.1 Conclusions

In this thesis, in Chapter 2 we have introduced a class of distributions called ”T-

transmuted X family” by combining the T-X family and the transmuted family. Since

this class of distributions is a combination of T-X family and transmuted family of

distributions, it shows more flexibility in data modelling. We have generated differ-

ent combinations of distributions from this family. The study is mainly focussed on

a special case of exponential-transmuted Weibull distribution namely, exponential-

transmuted exponential (ETE) distribution. Statistical properties of ETE distribu-

189
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tion are studied in this Chapter. The hazard rate function (hrf) of ETE distribution

have shown the various shapes like, increasing, decreasing and constant. The flexi-

bility of this model for data fitting was illustrated with two real-life data sets, one

on the fatigue life of 76 Kelvar 373 epoxy and the other on the survival times of 121

patients with breast cancer. While comparing the goodness of fit statistics such as,

-log(L), AIC, CAIC, K-S and p value, we have obtained that ETE distribution is

a better model for these data sets compared with the exponential, Weibull, expo-

nentiated Weibull and Kumaraswamy exponential distribution. We believe that this

family can generate more classes of distributions which are suitable for modelling

different types of real life data.

In Chapter 3, we discussed the construction and statistical properties of the

Weibull truncated negative binomial (WTNB) distribution. Being a generalization

of Weibull distribution, WTNB distribution is identified as a good model for real life

data modelling. We have studied its characterizations by truncated moments and hrf.

This distribution is identified as a better model for fitting the mercury concentrations

of swordfish in marine sciences than the Marshall-Olkin extended Weibull, Marshall-

Olkin extended exponential, exponential-truncated negative binomial and Weibull

distribution. We have also developed a first order autoregressive minification process

with WTNB distribution as marginal and is a competitive model to the time series

data sets modelled with minification process having marginal distributions, such as

exponential, Weibull, etc.

We introduced a new bivariate distribution with modified Weibull distribution
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as marginals in the Chapter 4. Here we considered the shock modelling situation

with three independent shock sources, say, S1, S2 and S3 are affecting a system with

two components, say, C1 and C2. Also assume that, if the shock from S1 hits the

system, it destroys C1 and if the shock is from S2, it destroys C2, while the shock

from S3 destroys both the components suddenly. Let Ui denote the inter interval

times between the shocks Si, i = 1, 2, 3 and assume that U1 and U2 follow Weibull

distribution and U3 follows exponential distribution. The random variables X1 and

X2 are defined by

Xi = min(Ui, U3), i = 1, 2.

Here the random variables X1 and X2 are dependent because of the common (latent)

random variable U3 and the distribution of (X1, X2) follows the bivariate modified

Weibull distribution. We derived the marginal and conditional probability distri-

butions, bivariate reliability function, joint hazard rate function, mean waiting time

and the reverse hazard rate function of the new bivariate distribution. The flexibility

of data modelling using the proposed bivariate distribution was illustrated with the

American football data (see page 123). The goodness of fit statistics showed that

the new bivariate modified Weibull distribution is a better model than the bivari-

ate generalized Gompertz, bivariate exponentiated generalized Weibull-Gompertz,

bivariate exponentiated Weibull extension and the bivariate exponentiated Pareto

distribution.

Discretization of continuous distributions are discussed in Chapter 5 and Chapter

6. We have developed the discrete versions of Weibull geometric, additive Weibull
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geometric and the complementary Weibull geometric distributions. Shape properties

of pmf and hrf of these distributions showed that they are good choice for modelling

over and under dispersed data. While modelling the data sets of the number of shocks

before failure of a component, we have obtained that the discrete Weibull geometric

(DWG) distribution is a good choice than the exponentiated discrete Weibull distri-

bution, discrete logistic distribution, discrete Weibull distribution and the geometric

distribution. Where as, the discrete additive Weibull geometric distribution is ob-

tained as a good model more fitting the data sets of remission times of 128 bladder

cancer patients than the DWG distribution. For the modelling of the data sets like,

time intervals of the successive earthquakes and the lifetime of electronic devices,

the discrete complementary Weibull geometric distribution was identified as a good

choice.

To conclude, we have identified and studied some distributions that are capable

of modelling some real life data sets, compared with existing distributions in the

literature.

7.2 Future Work

Based on the major findings of this research work, we propose some future works as

follows:

• Since the T-transmuted X family is a combination of T-X family and trans-

muted family, we expect to conduct more studies to explore its model identifia-
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bility and further developments by using the quantile function. Construction of

bivariate and multivariate cases of this family are also expected to be a future

work.

• Bivariate and Multivariate extensions of WTNB distribution.

• Bivariate copula functions of the newly introduced models.

• We expected to propose a more generalized family of Weibull distribution by

considering Xi’s, i = 1, 2, ..., specified in Eqn.(6.1.3) are i.i.d. having additive

Weibull distribution proposed in Xie and Lai (1995), where α > 0, γ > 0 and

β > δ > 0, or (δ > β > 0) with pdf

f(x;α, β, γ, δ) = (αβxβ−1 + γδxδ−1)e−(αxβ+γxα). (7.2.1)

Then the distribution of Z = max(X1, X2, ..., XN) is distributed as the com-

plementary additive Weibull geometric (CAWG) distribution with cdf

F (z) =
p(1− e−(αzβ+γzδ))

p+ (1− p)e−(αzβ+γzδ)
. (7.2.2)

The pdf, survival function and hrf of the CAWG distribution are respectively,

f(z) =
p(αβzβ−1 + γδzδ−1)e−(αzβ+γzδ)

[p+ (1− p)e−(αzβ+γzδ)]2
, (7.2.3)

S(z) =
e−(αzβ+γzδ)

p+ (1− p)e−(αzβ+γzδ)
, (7.2.4)

and

h(z) =
p(αβzβ−1 + γδzδ−1)

p+ (1− p)e−(αzβ+γzδ)
. (7.2.5)

When γ → 0, this distribution becomes the complementary Weibull geometric

distribution. Using the method of difference in survival function as mentioned
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in Eqn.(1.6.1), the discrete version of the CAWG distribution is obtained as

PY (y) =
p(qzβ

1 q
zδ

2 − q
(z+1)β

1 q
(z+1)δ

2 )

[p+ (1− p)qzβ

1 q
zδ

2 ][p+ (1− p)q
(z+1)β

1 q
(z+1)δ

2 ]
, (7.2.6)

where q1 = e−α and q2 = e−δ. When q2 → 1, this distribution reduces to the

DCWG distribution. The properties and applications of this distribution are

to be explored in the future work.

• We have followed the method of differences in survival functions to discretize

continuous distributions. As a future work, the other well known methods are

to be used to discretize these distributions and to compare there model ade-

quacy. The problems of information loss occurred while discretizing continuous

data are also to be addressed.

• In all the distributions discussed in this thesis we used only MLE method for

estimating the parameter values. There are different methods are available in

the literature, including Bayesian method and as a future work we will use

these estimation procedures and compare the results obtained.
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