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Introduction

In 1914, Hausdorff [17] used the concept of open sets in a topological space to

study the properties of continuous functions between two topological spaces. Thus

from 1914 onwards, a topological space was considered as a non-empty set X together

with a lattice ΩpXq of open subsets of X. The American Mathematician Marshall

Stone was the first Mathematician who studied the interrelation between topology

and lattice theory in his work on topological representation of Boolean algebras [47]

[48] and distributive lattices [49], where two important results have been developed.

The first one reveals the importance of ideals in lattice theory by viewing Boolean

algebra as a type of Boolean ring. The other result was Stone representation theorem

which was a milestone in the development of theory of locales.

Stone’s Representation Theorem

Every Boolean algebra is isomorphic to the Boolean algebra of open-closed sets of a

totally disconnected compact Hausdorff space.

After Stone, Henry Wallman [51], was the first person who used the lattice

theoretic notions to study topological properties. In order to introduce the concept of

Wallman compactification of T1 topological spaces, he used the lattice theoretic ideas.

After a few years, American logician McKinsey and a Polish Mathematician Tarski

[28] [29], carried out a study on “Algebra of Topology”. The book “Grundlagen der
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Analytischen Topologie”[33] by Nobeling was the first text book which explain general

topology in the view point of lattice theory. Charles Ehresmann and his student Jean

Benabou [13] studied topological and differentiable categories and they developed an

idea that the lattices with right distributive property should be studied as

“generalized topological spaces”. They named these “generalized topological spaces”as

local lattices. At the same period, Dona and Seymour Papert [35] [36] used similar

concepts to study topological spaces.

Isbell [20] [22], in his paper pointed out that generalized spaces have some sort

of differences with topological spaces. The main difference is that the product of

generalized spaces behaved better than Tychonoff product of topological spaces.

C.H.Dowker [8] suggested the term Frame for generalized spaces. Frame theory

is point-free topology which views topology ΩpXq of a topological space pX,ΩpXqq

as a lattice of open subsets of X satisfying infinite distributive property. The functor

Ω : Top Ñ Frm from the category Top of topological spaces to the category Frm of

frames, which sends a topological space pX,ΩpXqq to the lattice ΩpXq of its open sets,

is contravariant. Accordingly the category of “generalized topological spaces”must

be opposite to the category of frames. The term Locale was the contribution of Isbell

[20] to the objects in this opposite category. If we do not refer to the morphisms in

the category Loc of locales and the category Frm of frames, then the objects frames

and locales are same. Dowker, Papert [8] and Isbell [20] had taken up the study of

sublocales (quotient frames) and Isbell put forward the term sublocales.

As the properties such as compactness and connectedness are defined in terms

of open sets, it is easy to extend these concepts to localic background. But some

topological properties such as T1 � axiom are defined in terms of points. So the
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extension of such ideas to localic background is not so easy. In such cases, we

have to apply alternate definitions.

Localic version of Hausdorff axiom was put forward by Isbell [23], C.H.Dowker and

D.Strauss [10], H.Simmons [45], P.T Johnstone and S.H Sun [26] and J.Paseka [37].

Among these most acceptable form was the axiom introduced by Isbell [23]. Isbell

defined localic version of Hausdorff axiom in terms of diagonals. But this axiom has

a disadvantage. It should not be considered as equivalent to the Hausdorff axiom for

topological spaces. Though the definition of regularity in topological spaces involves

the points, it has alternate representation in terms of open sets. So extension of

regularity to localic background is straight forward. Thus, as locales are extension of

topological spaces, most of the topological properties are extended into localic back-

ground.

In addition to the above development, among many introductions to topology,

a particular view that has arisen in Theoretical Computer Science starts with the

theory of domains, as defined by Scott and Strachey [42], to provide a mathemat-

ical foundation for semantics of programming languages, establishing that domains

could be put into a topological setting. Mike Smyth [46] has developed the idea fur-

ther. The topology describes an essential computational notion that provide them

an independence from the points of topological spaces and this fall into the branch

of mathematics, the theory of locales.

Duality between Frames and topological spaces have been utilized to make a

connection between syntactical and semantical approach to logic. But the application

of Stone duality in modal logic require a duality for Boolean algebras or distributive

lattices endowed with additional operations.
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The background of theory of locales used as a theory of information is the motiva-

tion for the present study in this thesis titled “A study on properties of locales, action

of locales and their applications”. The above context has inspired the introduction

of the concept of “an action of a locale on a join semilattice”. Given a locale L and a

join semilattice J with bottom element 0J , we have introduced a new concept called

L-slice, denoted by pσ, Jq, to be an action σ of the locale L on the join semilattice

J together with a set of conditions. The L-slice, though algebraic in nature adopts

topological properties such as compactness through the action σ. Several different

aspects of L-slice for a locale L have been obtained in the present study.

The study in this thesis is begun with an investigation into construction of

sublocales from ideals of a locale L. An embedding theorem for a locale L has been

derived.

The content in the thesis is described in the following way.

Chapter 1 contains a quick review of the preliminary materials required to read

and understand this thesis.

In chapter 2, the following are studied. Sublocales of a locale L are traditionally

presented in terms of sublocale homomorphism, frame congruence and nucleus. In

[39] Pultr and Picado have shown that there exist a one-one correspondence between

sublocales of a locale L and nuclei in L. The work in this chapter discusses a method

of construction of sublocales using ideals of a locale L. Given an ideal I of a locale

L, a collection tIa; a P Lu of ideals of L with the property I � Ia for all a P L has

been constructed. The following results are obtained.

• If the ideal I is prime, then the ideals Ia are prime for all a P L.

• If the ideal I is closed under arbitrary join, then there exists a complete join
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semilattice homomorphism from the locale L to the complete lattice

M � ptIa; a P Lu,�q and M induces a frame congruence RI on L. This

congruence determines a sublocale of L.

• The topological properties such as subfit, fit, S 12, regularity, normality and com-

pactness of the sublocale S of L thus constructed are obtained using the class

of core elements of L with respect to I.

Chapter 3 deals with the following ideas. If X is a topological space and CpXq,

the ring of continuous real-valued functions on X, then the sets of the form

tf P CpXq : fpxq P V, V open in Ru, which depends on both points of X and

topology of R, forms a subbase for a point-open topology on CpXq. Also if L is a

locale and Σx denotes the set of completely prime filters in L containing x P L, then

SppLq � ptall completely prime filters of Lu, tΣa; a P Luq is a topological space.

In this chapter, as a generalization of above context to localic background, we have

proved the following

• For a, b P L, the collection ra,Σbs � tf P OpLq : Σfpaq � Σbu are ideals in

OpLq, where OpLq is the locale of order preserving maps on L. Some algebraic

properties of these ideals ra,Σbs have been established.

• For each a P L, ideals of the form ra,Σbs generates a spatial locale

Ja � tra,Σbs, b P Lu. Separation properties such as subfit, S 12, regularity and

normality pertaining to the locale Ja have been established.

• Using the ideals ra,Σbs, a congruence �a is defined in L and it is proved that

L{ �a is isomorphic to Ja.

• For each a P L, congruence Ra is defined in OpLq and it is proved that the
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quotient frame OpLq{Ra of OpLq is isomorphic to the quotient frame L{ �a of

L.

• Using the congruences on L and OpLq, an embedding theorem for locale L is

established.

• Setting the coproduct J �
±
Ja, the productive properties of J have been

proved.

• For a, b P L, the collection xa,Σby � tf P OpLq : Σfpaq � Σbu is a filter in OpLq.

Sufficient conditions for the filter xa,Σby to be completely prime is derived.

• For a compact open set Σb in spectrum SppLq of L, the collection

txa,Σby : a P Lu, a, b P L determines a compact, connected, T0 subspace of the

spectrum SppOpLqq of OpLq.

In chapter 4, a new concept pσ, Jq, called L-slice, is introduced as, an action σ of

a given locale L, on a join semilattice J with bottom element 0J . Using the algebraic

properties of the L-slice pσ, Jq, a congruence R on pσ, Jq is obtained. We have proved

that the pair pγ, J{Rq, of all equivalence classes with respect to the congruence R on

pσ, Jq, is an L-slice, where the action γ is defined in terms of σ. The Factor of L-slice

pσ, Jq with respect to the subslice pσ, J 1q of pσ, Jq, is defined.

Chapter 5 discusses various properties of L-slice homomorphism. We have proved

the following

• The collection L�HompJ,Kq of all L-slice homomorphisms from L-slice pσ, Jq

to the L-slice pµ,Kq is an L-slice with respect to the action

δ : L � L � HompJ,Kq Ñ L � HompJ,Kq and that every L-slice pσ, Jq is

isomorphic to a subslice of pδ, L�HompL, Jqq.
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• An isomorphism theorem for L-slice is derived. As an application, the notion

of finitely generated L-slice of a locale L is introduced and we have shown

that every finitely generated L-slice pσ, Jq of a locale L with n generators is

isomorphic to the quotient slice of the L-slice p[, Lnq.

• For each a P L, σa : pσ, Jq Ñ pσ, Jq defined by σapxq � σpa, xq is an interior

operator on pσ, Jq.

• The collection M � tσa; a P Lu is a Priestley space and a subslice of

pδ, L�HompJ, Jqq. If the locale L is spatial an isomorphism between the L-slices

p[, Lq and pδ,Mq has been established.

• Fixed set of σa, a P L is a subslice of pσ, Jq.

• For each x P pσ, Jq, σx : p[, Lq Ñ pσ, Jq defined by σxpaq � σpa, xq is an

L-slice homomorphism and the collection P � tσx;x P pσ, Jqu is an L-subslice

of pδ, L�HompL, Jqq.

• The map x ÞÑ σx is an L-slice isomorphism between the L-slices pσ, Jq and pδ, P q

• The compactness in L-slice pσ, Jq is defined and it is proved that L-slice com-

pactness is stronger than topological compactness and localic compactness.

• A subspace Y of spectrum SppLq of L has been constructed using filters

Fx � ta P L : σxpaq � xu for compact elements x P pσ, Jq and the compactness

of the subspace Y is characterized using the existence of maximal compact

element in the L-slice pσ, Jq.

• It is known that there is a contravariant functor from the category JSLat of

join semilattice with bottom element, and semilattice homomorphism to the

xv



category iTopMon of idempotent topological monoids, and continuous monoid

homomorphisms. In this context, we have proved that there is a contravarint

functor from the category L-slice of L-slices of a locale L to the category

TopWMod of topological weak L-modules.

In chapter 6, as an application of the above study of L-slices, a key exchange

protocol has been developed that utilizes the concept of L-slices for the generation

of secret and public keys. The L-slice and its properties are utilized to extend the

existing Diffie Hellman key exchange protocol that uses groups in algebra, to the

background of L-slices of a locale L. A modification is given to the extended Diffie

Hellman key exchange protocol using L-slices of a locale L in order to give optimum

security to the system.

The thesis is concluded with further scope of study.
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Chapter 1

Preliminaries

This chapter includes some preliminary concepts on Order theory, Category theory,

Frames and Locales and Cryptography required for the next chapters.

1.1. Order theoretical concepts

Definition 1.1.1. [24] Let L be a set. A partial order on L is a binary relation �

which is

i. reflexive : for all a P L, a � a,

ii. antisymmetric: if a � b and b � a, then a � b, and

iii. transitive: if a � b and b � c, then a � c.

A partially ordered set (also called poset) is a set equipped with a partial order.

Definition 1.1.2. [5] An element x P A � L is called minimal if a P A, a � x implies

a � x. If L has a unique minimal element, then it is called the least element (bottom)

of L denoted by 0L.
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Definition 1.1.3. [5] An element x P A � L is called maximal if a P A, x � a implies

a � x. If L has a unique maximal element, then it is called the greatest element (top)

of L denoted by 1L.

Definition 1.1.4. [5] An element x P L is called an upperbound of A � L, if for all

a P A, we have a � x. The least element of the set of all upperbounds of A in L, if

it exists, is called the least upperbound (supremum)of A. It is denoted by
�
A.

Definition 1.1.5. [5] An element x P L is called a lowerbound of A � L, if for all

a P A, we have x � a. The greatest element of the set of all lowerbounds of A in L,

if it exists, is called the greatest lowerbound (infimum) of A. It is denoted by
d
A

Definition 1.1.6. [39] A poset L is called a join-semilattice (resp.meet-semilattice)

if there is a supremum a\ b (resp.infimum a[ b) for any two a, b P L.

Definition 1.1.7. [24] A partially ordered set L in which for every pair of elements

a, b, there exists the supremum a \ b and the infimum a [ b is called a lattice. A

partially ordered set L for which every set A � L has the supremum
�
A and the

infimum
d
A exist in L is called a complete lattice.

Definition 1.1.8. [24] A lattice L is distributive if a [ pb \ cq � pa [ bq \ pa [ cq

which is equivalent to a\ pb[ cq � pa\ bq [ pa\ cq.

Definition 1.1.9. [5] A map f : L Ñ M , where L,M are partially ordered sets, is

called monotone(order preserving) if a �L b ñ fpaq �M fpbq for all a, b P L. If f is

bijective and its inverse f�1 is also monotone, then it is called an order isomorphism.

Definition 1.1.10. [39] Monotone maps f : L Ñ M, g : M Ñ L are Galois adjoint

(or are in a Galois connection)-f is a left adjoint to g, and g is a right adjoint of f - if

@x P L, @y PM, fpxq � y ô x � gpyq.

2



Theorem 1.1.11. [39] Monotone maps f : LÑM and g : M Ñ L are adjoint (f on

the left, g on the right) if and only if there holds fpgpyqq � y and x � gpfpxqq.

Corollary 1.1.12. [39] If monotone maps f, g are adjoint, then fgf=f and gfg=g.

Theorem 1.1.13. [39] The left Galois adjoint preserves suprema, and the right one

preserves infima.

Theorem 1.1.14. [39] If L,M are complete lattices, then a monotone map

f : LÑM is a left (resp. right) adjoint if and only if it preserves all suprema (resp.

infima).

Remark. The left adjoint of f : LÑM is denoted by f� and right adjoint by f�.

Definition 1.1.15. [24] Let L be a distributive lattice with greatest element 1L and

least element 0L. The complement ac of an element a P L is the one satisfying

a[ ac � 0L and a\ ac � 1L.

Definition 1.1.16. [24] A Boolean algebra is a distributive lattice with 0L and 1L in

which every element has a complement.

Definition 1.1.17. [39] An element p � 1 in a lattice L is said to be meet-irreducible

if for any a, b P L, a[ b � p implies that either a � p or b � p.

Definition 1.1.18. [39] An element p � 0 in a lattice L is join-irreducible if for any

a, b P L, p � a\ b implies that either p � a or p � b.

Definition 1.1.19. [15] Let L be a poset. We say that x is way below y, px ! yq if

and only if for all directed subset D � L for which supD exists, the relation y � supD

always implies the existence of a d P D with x � d.
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Definition 1.1.20. [15] An element satisfying x ! x is said to be compact or isolated

from below.

Definition 1.1.21. [39] A lattice A is said to be a Heyting algebra if for each pair of

elements pa, bq in A, there exist an element a Ñ b such that c � pa Ñ bq if and only

if c[ a � b.

Definition 1.1.22. [6] Let pX,�q be a poset. A map f : X Ñ X is called interior

operator if

i. f is order preserving

ii. fpxq � x for all x P X

iii. f � f � f .

Definition 1.1.23. Let L be bounded distributive lattice, and let X denote the set

of prime filters of L. For each a P L, let φ�paq � tx P X : a P xu. Then pX, τ�q is

a spectral space, where the topology τ� on X is generated by tφ�paq; a P Lu. The

spectral space pX, τ�q is called the prime spectrum of L.

The map φ� is a lattice isomorphism from L onto the lattice of all compact open

subsets of pX, τ�q. Similarly, if φ�paq � tx P X : a R xu and τ� denotes the topology

generated by tφ�paq; a P Lu, then pX, τ�q is also spectral space. Let � be set-theoretic

inclusion on the set of prime filters of L and let τ � τ� Y τ�. Then pX, τ,�q is a

Priestley space.

1.2. Categorical Concepts

Definition 1.2.1. [18] A category C consist of:

i. A class ObC of objects (notation: A,B,C....)
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ii. A class MorC of morphisms (notation: f, g, h...). Each morphism f has a domain

or source A (notation: dompfq) and a codomain or target B (notation: codompfqq

which are objects of C ; this is indicated by writing f : AÑ B.

iii. A composition law that assign to each pair pf, gq of morphisms satisfying

dompgq � codompfq a morphism g � f : dompfq Ñ codompgq, satisfying

(a) h � pg � fq � ph � gq � f whenever the compositions are defined.

(b) For each object A of C there is an identiy idA : A Ñ A such that f � idA � f

and idA � g � g whenever the composition is defined.

Definition 1.2.2. [18] A category B is said to be a subcategory of the category C

provided that the following conditions are satisfied.

i. ObpBq � ObpC q.

ii. MorpBq �MorpC q.

iii. The domain, codomain and composition functions of B are restriction of the

corresponding functions of C .

iv. Every B -identity is a C -identity.

Theorem 1.2.3. [18] Every product category of categories is a category.

Definition 1.2.4. [18] If C is a category we can take the same class of objects and

morphisms, and interchange the domains and codomains (which leads to inverted

composition). Thus f : A Ñ B is now f : B Ñ A and we have a composition

f � g � g �f . Thus obtained category is called the dual or opposite of C and denoted

by C op.

Definition 1.2.5. [18] A morphism f : AÑ B in a category C is said to be section

in C provided that there exists some C -morphism g : B Ñ A such that g � f � idA.
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Definition 1.2.6. [18] A morphism f : A Ñ B in a category C is said to be a

retraction in C provided that there exists some C -morphism g : B Ñ A such that

f � g � idB.

Definition 1.2.7. [18] A C -morphism is said to be an isomorphism in C provided

that it is both C -section and C -retraction.

Definition 1.2.8. [18] Let C be a category and A,B P ObjpC q. A morphism

f : AÑ B is epimorphism if f �g � f �h implies g � h for all morphisms g, h : B Ñ C

Definition 1.2.9. [18] A C -morphism f : A Ñ B is said to be a monomorphism in

C provided that for all C -morphisms h and k such that f � h � f � k, it follows that

h � k.

Definition 1.2.10. [18] A C -morphism is said to be a bimorphism in C provided

that it is both a monomorphism and an epimorphism.

Definition 1.2.11. [18] Let C ,D be categories. A functor from C to D is a triple

(C ,F ,D) where F is a function from the class of morphisms of C to the class of

morphisms of D (i.e. F : MorC ÑMorD) satisfying the following conditions.

i. F preserves identities: i.e., if e is a C -identity, then F peq is a D- identity.

ii. F preserves composition: F pf � gq � F pfq � F pgq;i.e., whenever

dompfq � codompgq, then dompF pfqq � codompF pgqq and the above equality holds.

Definition 1.2.12. [18] A triple (C , F , D) is called a contravariant functor from C

to D if and only if pC op, F,Dq is a functor (or, equivalently, if and only if pC , F,Dopq

is a functor).
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1.3. Frames and Locales

Definition 1.3.1. [39] A frame is a complete lattice L satisfying the infinite distribu-

tivity law a[
�
B �

�
ta[ b; b P Bu for all a P L and B � L.

Definition 1.3.2. [39] A map f : LÑ M between frames L,M preserving all finite

meets (including the top 1) and all joins (including the bottom 0) is called a frame

homomorphism. A bijective frame homomorphism is called a frame isomorphism.

Remark. The category of frames is denoted by Frm. The opposite of category Frm

is the category Loc of locales. We can represent the morphism in Loc as the infima

-preserving f : LÑM such that the corresponding left adjoint f� : M Ñ L preserves

finite meet. If we do not refer to the morphisms in the category Loc of locales and

the category Frm of frames, then the objects frames and locales are same.

Remark. The category of topological spaces and continuous maps is denoted by Top

Definition 1.3.3. [39] The functor Ω : Top Ñ Frm maps objects and morphisms as

follows

i. A topological spaces pX,ΩpXqq is mapped into frame of open sets ΩpXq

ii. Ω sends morphism f : X Ñ Y in Top to the frame homomorphism

Ωpfq : ΩpY q Ñ ΩpXq defined by ΩpfqpV q � f�1pV q.

Theorem 1.3.4. [39] The functor Ω : TopÑ Frm is a contravariant functor

Definition 1.3.5. [24] A subset I of a locale L is said to be an ideal if

i. I is a sub-join-semilattice of L; that is 0L P I and a P I, b P I implies a\ b P I ;and

ii. I is a lower set; that is a P I and b � a imply b P I.
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If a P L, the set Ó paq � tx P L;x � au is an ideal of L. Ó paq is the smallest

ideal containing a and is called the principal ideal generated by a. A proper ideal I

is prime if x[ y P I implies that either x P I or y P I [24].

Definition 1.3.6. [39] A subset F of locale L is said to be a filter if

i. F is a sub-meet-semilattice of L; that is 1L P F and a P F , b P F imply a[ b P F .

ii. F is an upper set; that is a P F and a � b imply b P F .

Definition 1.3.7. [39] A filter F is proper if F � L, that is if 0L R F .

A proper filter F in a locale L is prime if a1 \ a2 P F implies that a1 P F or a2 P F .

Definition 1.3.8. [39] A proper filter F in a locale L is a completely prime filter

if for any indexing set J and ai P L, i P J ,
�
ai P F ñ Di P J such that ai P F .

Completely prime filters are denoted by c.p filters.

Example 1.3.9. [39] Upxq � tV P ΩpXq;x P V u is a completely prime filter in the

locale ΩpXq.

For an element a of a locale L, set Σa � tF � L;F � φ, F is c.p filters; a P F u.

We can easily check that Σ0 � φ, Σ� ai=
�

Σai , Σa[b � Σa X Σb and

Σ1 � tall c.p filtersu.

The spectrum of a locale is defined as follows.

Sp(L)=ptall c.p filtersu, tΣa : a P Luq. Then SppLq is a topological space with the

topology ΩpSppLqq � tΣa : a P Lu.

Definition 1.3.10. [39] If f : L Ñ M is a morphism in the category Loc, then

Sppfq : SppLq Ñ SppMq defined by SppfqpF q � pf�q�1pF q is a morphism in the

category Top.
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Definition 1.3.11. [39] A locale L is said to be spatial if it is isomorphic to ΩpXq

of some topological space X.

We have a frame homomorphism ΦL : L Ñ LcpSppLqq given by ΦLpaq � Σa.

Their right Galois adjoint is the localic map σL � pΦLq�: Lc(Sp(L))Ñ L.

Proposition 1.3.12. [39] The following statements on a locale are equivalent.

i. L is spatial.

ii. σL: Lc(Sp(L))Ñ L is a complete lattice isomorphism.

iii. σ�L:L Ñ Lc(Sp(L)) is a complete lattice isomorphism.

iv. σL is onto.

v. σ�L is one-one.

Definition 1.3.13. [39] Let L be a frame. An equivalence relation θ on L is said to

be a congruence on L if pa, bq P θ ñ pa [ c, b [ cq P θ and pa \
�
S, b \

�
Sq P θ for

all c P L, S � L.

1.3.1 Products in frame

Definition 1.3.14. [39] If Li, i P J are frames, we endow the cartesian product
¹
iPJ

Li

with the structure of frame coordinatewise (which is same as defining the order by

pxiqiPJ � pyiqiPJ iff xi � yi). The projections

pj � ppxiqiPJ Ñ xjq :
¹
iPJ

Li Ñ Lj

are then frame homomorphisms and we see that for each system phj : M Ñ LjqjPJ of

frame homomorphisms there is precisely one frame homomorphism h : M Ñ
¹
iPJ

Li

such that pj � h � hj for all j P J , namely the one given by hpxq � phjpxqqjPJ .
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Remark. [39] Those were the product of non-empty systems. The empty product is

the one element frame 1 � t01 � 11u. The constant mapping L Ñ 1 are obviously

frame homomorphisms.

Since Frm has products, Loc has coproducts. Let us present the coproducts

injections explicitely.

Definition 1.3.15. [39] For a fixed j P J , define αj : Lj Ñ
¹
iPJ

Li by setting

pαjpxqqi �

$''&
''%
x if i=j

1 otherwise

We immediately see that pjppxiqiPJq � x iff pxiqiPJ � αjpxq.

Thus pαj : Lj Ñ
¹
iPJ

LiqjPJ constitutes the coproduct in Loc.

1.3.2 Subframes and Sublocales

Definition 1.3.16. [39] A subset of a frame L which is closed under the same finite

meets and arbitrary joins in the frame is called a subframe. That is a subframe is

itself a frame under the induced order of L.

The concept of sublocale is something different, corresponding to quotient frames.

Definition 1.3.17. [39] Let L be a locale. A subset S � L is a sublocale of L if

i. S is closed under meets, and

ii. For every s P S and every x P L, xÑ s P S.

A sublocale is always nonempty, since 1 �
d
φ P S. The least sublocale t1u will

be denoted by 0
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Definition 1.3.18. [39] Let L be a locale and a P L. The open sublocale associated

with a is defined by opaq � ta Ñ x, x P Lu. The closed sublocale is the compliment

of open sublocale and it is defined by cpaq � tx P L, a � xu �Ò a.

Proposition 1.3.19. [39] Let L be a locale. A subset S � L is a sublocale if and

only if it is a locale in the induced order and the embedding map j : S � L is a localic

map.

Definition 1.3.20. [39] A nucleus in a locale L is a mapping v : LÑ L such that

i. a � vpaq,

ii. a � bñ vpaq � vpbq

iii. vpvpaqq � vpaq and

iv. vpa[ bq � vpaq [ vpbq.

Sublocales of a locale L have alternate representations in[39].

i. Sublocales of a locale L are represented as onto frame homomorphism g : LÑM ,

a sublocale homomorphism. The translation between sublocale homomorphism to

sublocales and vice versa is as follows.

h ÞÑ h�rM s for an onto h : LÑM and h� is its right adjoint, and

S ÞÑ j�S : LÑ S for jS : S � L.

ii. Sublocales of a locale can also be represented using frame congruence. A sublocale

homomorphism g : L Ñ M induces a frame congruence Eg � tpx, yq : gpxq � gpyqu

and a frame congruence gives rise to a sublocale homomorphism x ÞÑ Ex : LÑ L{E,

where L{E denotes the quotient frame defined by the congruence E, and Ex denotes

the E-class.

iii. Sublocales of a locale can also be represented using nucleus. The translation
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between nuclei and frame congruence resp. sublocale homomorphism is straight for-

ward:

v ÞÑ Ev � tpx, yq : vpxq � vpyqu,

E ÞÑ vE � px ÞÑ
�
Exq : LÑ L;

v ÞÑ vh � v restricted to LÑ vrLs,

h ÞÑ vh � px ÞÑ h�hpxqq : LÑ L

We can relate sublocales and nuclei directly. For a sublocale S � L, set

vSpaq � j�Spaq �
d
ts P S : a � su and for a nucleus v : LÑ L, set Sv � vrLs.

Proposition 1.3.21. [39] The formula S ÞÑ vS and v ÞÑ Sv constitute a one-one

correspondence between subloales of L and nuclei.

Definition 1.3.22. [39] A sublocale S of a locale L is said to be dense if it contains

0L.

Definition 1.3.23. [39] The closure of a sublocale S of a locale L is the least closed

sublocale of L containing S, given by the formula S̄ �Ò p
d
S).

Definition 1.3.24. [39] A cover of a locale L is a subset A � L such that
�
A � 1.

A subcover of a cover A is a subset B � A such that
�
B � 1. A locale is said to be

compact if each cover has a finite subcover.

Definition 1.3.25. [39] A localic map f : L Ñ M is said to be closed if the image

of each closed sublocale is closed.

Definition 1.3.26. [39] A localic map f : L Ñ M is said to be open if the image

f rSs of each open sublocale S � L is open.
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1.3.3 Separation Axioms

As in classical topology, the point free topology have separation axioms. Subfit and

fit correspond to T1 axiom of classical topology.

Definition 1.3.27. [39] A locale L is said to be subfit if for a, b P L, a � b, then

Dc P L, such that a\ c � 1 and b\ c � 1.

Definition 1.3.28. [39] A locale L is said to be fit if for a, b P L, a � b, then Dc P L,

such that a\ c � 1 and cÑ b ¦ b.

Definition 1.3.29. [39] A frame L is called I-Hausdorff whenever the diagonal

∆ : LÑ L` L is a closed localic map.

Definition 1.3.30. [10] A locale L is said to have S
1

2 property if for any a, b P L, if

a\ b � 1 with a � 1 and b � 1, then there exist u, v P L with u[v � 0, v � a, u � b.

Definition 1.3.31. [39] In a locale L, for a, b P L, we say that a is rather below b,

denoted by a   b, if there exist c P L such that a[ c � 0 and c\ b � 1.

Definition 1.3.32. [39] A locale L is said to be regular if a �
�
tx : x   au for every

a P L.

Definition 1.3.33. [39] Let a, b be elements of a locale L. We say that a is completely

below b and write a    b if there are ar P L (r rational, 0 ¤ r ¤ 1) such that

a0 � a, a1 � b and ar   as for r   s.

Definition 1.3.34. [39] A locale L is said to be completely regular if

a �
�
tx : x    au for every a P L.

Definition 1.3.35. [10] A locale L is called normal if it satisfies the condition: If

a\ b � 1, then there exist u, v P L such that a\ v � 1, u\ b � 1, u[ v � 0.
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1.4. Cryptography

Public key cryptography mainly depends on two types of computational problems.

One is the problem of factorization of integers and other is discrete logarithm problem

in groups. Diffie Hellman key exchange protocol [7] is based on discrete logarithm

problem.

Definition 1.4.1. [34] Public key cryptography, or, asymmetric cryptography, is any

cryptographic system that uses pairs of keys: public keys which may be disseminated

widely, and private keys which are known only to the owner.

In a public key encryption system any person can encrypt the message using the

receiver’s public key. That encrypted message can only be decrypted with the re-

ceiver’s private key [34].

We define two party key exchange protocol as a sequence of calculation and trans-

mission between two parties, most commonly referred to as Alice and Bob.

Definition 1.4.2. [34]Key Exchange Protocol(KEP)

i. Setup:

An initial handshake is performed, and protocol parameters specified.

ii. Generation of public/private keys

Both parties generate ephemeral key pairs pkAs , k
A
p q and pkBs , k

B
p q respectively.

iii. Exchange of public keys:

The parties exchnage their public keys kAp , k
B
p .

iv. Calculating the shared keys:

Alice uses the recieved public key kBp and her own key pair to calculate a shared key

(shared secret)KA. Bob uses kAp and his own key pair to calculate KB.

Correctness of a protocol is given if KA � KB for all possible key pairs.
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The following definition discuss about two different attacker model for our frame-

work.

Definition 1.4.3. [34] i. Passive Attacker/Eavesdropper

A passive attacker gathers all the information that is sent between the parties involved

in the protocol and tries to infer information about the shared secret. This attacker

has no means of interfering with the transmission and can not alter or disrupt them.

ii Active Attacker/Main -in-the -Middle:

An active attacker not only sees all the transmission between the parties but also has

the ability to alter or disrupt the information in transit or inject his own information

into the channel.

Definition 1.4.4. [34] Diffie-Hellman key exchange protocol

i. Setup:

The protocol parameters are negotiated. These include the group G of order n with

generator g.

ii. Generation of public/private keys:

Both parties, Alice and Bob, choose secret elements a, b P Zn respectively as their

secret keys and calculate their public keys as

pA � ga

pB � gb.

iii. Exchange of public keys:

Alice and Bob exchange their public keys pA, pB.

iv. Calculating the shared key:

Alice, upon recieving pB from Bob, calculates

KA � paB

Bob similarly computes
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KB � pbA

Correctness follows from the commutativity in Zn, since

KA � pgbqa � gab � pgaqb � KB.

Definition 1.4.5. [34] ElGamal Encryption based on Diffie-Hellman KEP

The public parameters include a cyclic group G of order n together with a generator

g.

i. Alice generate a static key pair by uniformly at random choosing the secret key

a P Zn and calculating the public key ga P G. She publishes her public key ga.

ii. For every message mi, Bob uniformly at random chooses an element bi P Zn and

calculates the pair pgbi ,mi.g
abiq using Alice’s public key.

iii. Upon receiving a pair pgbi ,mi.g
abiq, Alice uses her secret key to calculate pgbiqa

and multiplies the second component by its inverse, hence attaining mi.
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Chapter 2

Unique Sublocales from Ideals of a

Locale

In a locale L, if I is an ideal, which is closed under arbitrary join, then we can

construct a complete lattice M � tIa; a P Lu of ideals of L with the property I � Ia

for all a P L. M induces a frame congruence RI on L and RI determines a sublocale

S of L. The topological properties such as subfit, fit, S 12, regularity, normality and

compactness of the sublocale S of L thus constructed can be obtained using the class

of core elements of L with respect to I. On the other hand, from a sublocale S of a

locale L, an ideal IS which is closed under arbitrary join can be obtained. It is proved

that the sublocale constructed using the congruence RIS as above is embeddable in

the given sublocale S.
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2.1. Ideal Ia, a P L

Definition 2.1.1. Given an ideal I of a locale L, for each a P L, define

Ia � tx P L : a[ x P Iu.

Examples 2.1.2. 1. Let the locale L be given as follows.

Let I � t1, 2u. Then I is an ideal in L.

I3 � I6 � t1, 2, 4u, I4 � t1, 2, 3, 6u, I2 � I1 � L and I12 � I.

2. Let f : LÑ L be a morphism in Frm and b P L. Then

pfqb � tx P L : Σfpxq � Σbu is an ideal in L. For each a P L, let

xayf � tx P L : a [ x P pfqbu � tx P L : Σfpa[xq � Σbu. Then xayf is ideal in L for

all a P L.

This section discusses various properties of the collection Ia.

Proposition 2.1.3. Let L be a locale and let I be any ideal in L. For each a P L, Ia

is an ideal in L.

Proof. Since 0 � 0[ a P I, 0 P Ia. Hence Ia is nonempty.

Let x, y P Ia. Then a[ x, a[ y P I.
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Since I is closed under finite join, a[ px\ yq � pa[ xq \ pa[ yq P I.

Therefore x\ y P Ia. Hence Ia is a subjoin semilattice of L.

Let x P Ia and y P L such that y � x.

Since x P Ia, a[ x P I.

y � x implies y [ a � x[ a. Since I is a lower set, y [ a P I.

Hence y P Ia. Thus Ia is a lower set.

Definition 2.1.4. Let I be an ideal in a locale L. An element a R I in L is said to

be partially prime to the ideal L if for any x P L, a[ x P I implies x P I.

Example 2.1.5. Let L be a chain and a � b. Then b is partially prime to the ideal

Ó a.

The next proposition gives a sufficient condition for the ideal Ia to be prime.

Proposition 2.1.6. If I is a prime ideal in a locale L, then Ia is prime ideal for

a P L. If a P L is partially prime to the ideal I and Ia is prime, then I is prime.

Proof. Let I be a prime ideal and let x[ y P Ia. Then a[ px[ yq P I.

Since I is prime, either a[ x P I, or y P I.

If a[ x P I, then x P Ia.

If y P I, then a[ y P I and hence y P Ia.

Conversely let a be partially prime to I and Ia be prime ideal in L.

Let x[ y P I. Then we have a[ px[ yq P I. Hence x[ y P Ia.

Since Ia is prime, either x P Ia or y P Ia.

That is either a[ x P I or a[ y P I.

Since a is partially prime to I, either x P I or y P I.

In 2.1.2 (2), if Σb is meet-irreducible element in the spectrum SppLq of L, then

pfqb is a prime ideal in L. Then for each a P L, xayf is prime ideal.
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Proposition 2.1.7. Let L be a locale and I be any ideal in L.

i. If a, b P L with a � b, then Ib � Ia

ii. I � Ia for every a P L

iii. Ia � L if and only if a P I

iv. I1 � I.

Proof. Let L be a locale and I be any ideal in L.

i. Let a � b. Then x P Ib implies b[ x P I.

Since a[ x � b[ x, a[ x P I.

Hence x P Ib implies x P Ia. Thus Ib � Ia.

ii. Let x P I. Since I is a lower set, a[ x P I for all a P L.

Thus x P Ia for all a P L. Hence I � Ia for all a P L.

iii. Let Ia � L. Then 1 P Ia � L. Thus a � a[ 1 P I.

Hence Ia � L implies a P I.

Conversely assume a P I. Then for any x P L, a[ x P I.

Hence x P Ia for all x P L. Thus Ia � L.

iv. I1 � tx P L : x[ 1 P Iu � tx P L : x P Iu � I.

The above proposition compares the ideals Ia for a P L and gives a hint to con-

struct the concept of core element.

Proposition 2.1.8. Let L be a locale and let I be any ideal in L.

i. For any a, b P L, Ia X Ib � Ia\b.

ii. For any a, b P L, IaYIb � Ia[b. If a[b is partially prime to I, then IaYIb � Ia[b.
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Proof. Let L be a locale and let I be any ideal in L.

i. x P Ia X Ib if and only if a[ x P I and b[ x P I

if and only if x[ pa\ bq � px[ aq \ px[ bq P I

if and only if x P Ia\b

Hence Ia X Ib � Ia\b.

ii. x P Ia Y Ib implies a[ x P I or b[ x P I.

Then pa[ xq [ pb[ xq � pa[ bq [ x P I.

Thus x P Ia Y Ib implies x P Ia[b. Hence Ia Y Ib � Ia[b.

Let a[ b be partially prime to I. Then x P Ia[b implies pa[ bq [ x P I.

Since a[ b is partially prime to I, x P I .

Hence x P Ia Y Ib.

Proposition 2.1.9. Let the ideal I in a locale L be closed under arbitrary join, then

the set M � tIa; a P Lu is a complete lattice under the partial order inclusion.

Proof. By 2.1.8, M is closed under finite intersection.

Suppose I is closed under arbitrary join and let Iaα P M , α P J , for some index set

J .

Then x P
£
αPJ

Iaα if and only if x P Iaα for all α P J

if and only if x[ aα P I for all α P J

if and only if
§
αPJ

px[ aαq � x[
§

aα P I

if and only if x P I� aα .

Hence
£
αPJ

Iaα � I� aα PM . Also I0 � L is the top element.

Therefore M is a complete semilattice with top and bottom elements. Hence M is a

complete lattice.
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Proposition 2.1.10. If the ideal I in a locale L is closed under arbitrary join, then

there is a complete join semilattice homomorphism from the locale L to the complete

lattice M � ptIa; a P Lu,�q.

Proof. Order M � tIa; a P Lu as Ia � Ib if and only if Ia � Ib .

With respect to the order �, we have Ia \ Ib � Ia X Ib.

Thus M � ptIa; a P Lu,�q is a complete lattice with bottom element I0 � L and top

element I1 � I.

Define f : LÑM by fpaq � Ia.

fp
�
aαq � I� aα �

�
Iaα �

�
fpaαq and fp0q � I0 � L.

2.2. Sublocales from ideals of a locale

The work in this section explains a method of construction of sublocales using ideals

of a locale L.

Lemma 2.2.1. If I is an ideal of a locale having the property that I is closed under

arbitrary join. Then for any a, b, c P L and A � L, we have

i. Ia � Ib implies Ia[c � Ib[c.

ii. Ia � Ib implies Ia\�A � Ib\�A.

Proof. Let the ideal I of locale L is closed under arbitrary join.

i. Let a, b, c P L and Ia � Ib.

x P Ia[c if and only if a[ pc[ xq � pa[ cq [ x P I

if and only if c[ x P Ia � Ib

if and only if b[ pc[ xq � x[ pb[ cq P I

if and only if x P Ib[c.
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Therefore Ia � Ib implies Ia[c � Ib[c.

ii. Let Ia � Ib and A � L.

x P Ia\�A if and only if x[ pa\
�
Aq � x[

�
pa\ yq �

�
x[ pa\ yq P I

if and only if x[ pa\ yq � px[ aq \ px[ yq P I for all y P A

if and only if x[ a P I and x[ y P I for all y P A

if and only if x P Ia � Ib and x[ y P I for all y P A

if and only if x[ b P I and x[
�
y �
�
px[ yq P I

if and only if px[ bq \ px[
�
Aq � x[ pb\

�
Aq P I

if and only if x P Ib\�A.

Hence Ia � Ib implies Ia\�A � Ib\
�
A.

Definition 2.2.2. Let I be an ideal of a locale L having the property that I is closed

under arbitrary join. Define a relation RI on L by pa, bq P RI if and only if Ia � Ib.

The following proposition is a direct consequence of above lemma.

Proposition 2.2.3. Let I be an ideal of a locale L having the property that I is closed

under arbitrary join. The binary relation RI defined on L is a frame congruence on

L.

Proof. The binary relation RI defined by pa, bq P RI if and only if Ia � Ib is an

equivalence relation on L. If pa, bq P RI , by above lemma pa [ c, b [ cq P RI and

pa\
�
A, b\

�
Aq P RI . Hence RI is a congruence relation on L.

Since RI is a congruence on L, by [8], L{RI is a frame with respect to the

partial order rxs � rys if and only if x � y in L.

In example 2.1.2 (1), the congruence RI gives r1s � t1, 2u, r3s � t3, 6u,

23



r4s � t4u and r12s � t12u and the quotient frame L{RI is given below.

Lemma 2.2.4. Let I be an ideal of a locale L having the property that I is closed

under arbitrary join. There exist a bijection between the locale L{RI and the complete

lattice M � ptIa : a P Lu,�q.

Proof. The function f : L{RI ÑM defined by fprasq � Ia is a bijection.

Lemma 2.2.5. If I is a prime ideal in a locale L, then Ia � L for all a P I and

Ib � I for all b R I.

Proof. Let I be a prime ideal. By Proposition 2.1.7, Ia � L for all a P I.

Let b R I. Then Ib � tx P L : b[ x P Iu.

If x P Ib, then b[ x P I.

Since I is prime and b[ x P I, we have x P I. Therefore Ib � I.

Hence Ib � I for all b R I.

Proposition 2.2.6. If I is a prime ideal in a locale L, then the sublocale (quotient

frame) L{RI is isomorphic to the two element locale 2.
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Proof. By above lemma, if I is prime Ia � I0 for all a P I and Ia � I1 for all a R I.

Hence L{RI � tr0s, r1su which is isomorphic to the locale 2.

Corollary 2.2.7. Let the locale L be a chain and I be any ideal of L. Then the

sublocale L{RI is isomorphic to the two element locale 2.

Proof. Let L be a chain. Then every ideal of I is principal and prime.

Remark. Given an ideal I that is closed under arbitrary join, we get a frame congru-

ence on L and hence a sublocale of L.

In example 2.1.2(1), the sublocale corresponding to the ideal I � t1, 2u is the

closed sublocale cp2q �Ò 2.

Lemma 2.2.8. Let c be a meet-irreducible element of a locale L. Then the ideal

I �Ó pcq is prime.

Proof. Let x[ y P I. That is x[ y � c.

Since c is meet irreducible, either x � c or y � c. So either x P I or y P I.

Hence I is prime.

Proposition 2.2.9. Let c be a meet-irreducible element of a locale L and let I �Ó pcq.

Let S be the sublocale corresponding to the ideal I. Then S is closed if and only if c

is maximal element of the locale L.

Proof. Since c is meet-irreducible element of the locale L, by above lemma ideal I is

prime.

By lemma 2.2.5, Ia � L, @a P I and Ia � I,@a R I.

Then by construction, the corresponding sublocale S � tc, 1u.

Assume S is closed. Then S � pÒ
d
S)=Ò pcq � tc, 1u.
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Thus there exist no element b such that c � b � 1.

Hence c is maximal element of the locale L.

Conversely assume c is maximal element of the locale L.

Then Ò c � tc, 1u � S. Hence the sublocale S is closed.

2.3. Ideals from Sublocales of a locale

Given a sublocale S of a locale L, we construct the ideal IS, which is closed under

arbitrary join. In this section we show that the sublocale constructed using the

congruence RIS is embeddable in the sublocale S of L.

Proposition 2.3.1. Let S be a sublocale of L and j : S Ñ L be the inclusion map.

Then kerj�S � tx P L : j�Spxq �
d
Su is an ideal of L and kerj�S is closed under

arbitrary join.

Proof. j�Spxq �
d
ts P S : x � su.

Then j�Sp0q �
d
S. So 0 P kerj�S and hence kerj�S is nonempty.

Let x P kerj�S and y P L such that y � x.

Then j�Spyq � j�Spy [ xq � j�Spyq [ j�Spxq �
d
S.

Thus y P kerj�S. Hence kerj�S is a lower set.

Let xi P kerj
�
S for i P I. Then we have j�Spxiq �

d
S for all i P I.

Also j�Sp
�
xiq �

�
j�Spxiq �

�d
S �

d
S. Thus

�
xi P kerj

�
S.

Hence kerj�S is an ideal which is closed under arbitrary join.

Denote the ideal kerj�S by IS. Let L{RIS be the corresponding quotient frame.

Proposition 2.3.2. Let S be a sublocale of a locale L. If
d
S is a meet-irreducible

element of the locale L, then the ideal IS is prime.
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Proof. Let x[ y P IS. Then j�Spx[ yq �
d
S. That is j�Spxq [ j�Spyq �

d
S.

Since
d
S is meet-irreducible element, either j�Spxq �

d
S or j�Spyq �

d
S.

Hence either x P IS or y P IS. Thus the ideal IS is prime.

Proposition 2.3.3. A sublocale S of a locale L is dense in L if and only if the ideal

IS is trivial.

Proof. Let the sublocale S be dense in L. Then 0 P S and hence
d
S � 0.

Then IS � tx P L : j�Spxq �
d
S � 0u.

Since j�S is a nucleus on L, we have x � j�Spxq for all x P L.

y P IS if and only if y � j�Spyq � 0.

Hence IS � t0u, the trivial ideal.

Conversely let the ideal IS is trivial.

By Proposition 2.1.7, Ia � L if and only if a P I.

Since IS is trivial ideal, Ia � L if and only if a � 0.

So r0s � t0u and hence 0 P S.

Thus the sublocale S is dense in L.

From the above proposition it is clear that sublocales which are not dense in the

corresponding locale gives non trivial ideals.

Proposition 2.3.4. If S is a closed sublocale of the locale L, then the ideal IS is

principal.

Proof. Let S � Cpaq �Ò paq be a closed sublocale of L.
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Then the corresponding nucleus j�S is of the form j�Spxq � a\ x for all x P L.

IS � kerj�S � tx P L : j�Spxq �
l

S � au

� tx P L; a\ x � au � tx P L : x � au

� Ó paq

Thus the ideal IS is principal.

Proposition 2.3.5. Let S be a sublocale of a locale L. Then the sublocale constructed

using the congruence RIS is embeddable in S.

Proof. Let S be a sublocale of a locale L and let L{RIS be the quotient frame con-

structed using the congruence RIS in L. Let φ : L Ñ L{RIS be the corresponding

extremal epimorphism in Frm. Then φ�pL{RISq is the sublocale generated by the

congruence RIS . We will show that the sublocale φ�pL{RISq is embeddable in the

sublocale S.

Let y P φ�pL{RISq, then y � φ�prxsq for some x P L. Thus y can be written as

y � φ�pφpxqq for some x P L. Define h : φ�pL{RISq Ñ S by hpyq � j�Spxq. Then the

following triangle commutes.
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The map h : φ�pL{RISq Ñ S is a one-one map. Hence the sublocale φ�pL{RISq is

embeddable in the sublocale S.

2.4. Core element with respect to an ideal I

Let L be a locale and I � L be an ideal, which is closed under arbitrary join. The

concept of core element with respect to the ideal I is introduced in this section.

Definition 2.4.1. An element a P L is called core element with respect to the ideal

I if Ia � I. Let us denote the set of core elements of L by C.¸

By proposition 2.1.7 (iv), 1 PÇ. Hence Ç is nonempty.

Proposition 2.4.2. For any ideal I of a locale L , we have the following

i. Ç is a congruence class with respect to RI .

ii. Ç is closed under finite meet and arbitrary join.

iii. Ç is a filter of L .

iv. If I is prime, Ç is a completely prime filter.

Proof. Let Ç be the set of core elements of a locale L.

i. By proposition 2.1.7 (iv), 1 PÇ.

We will show that the equivalence class of 1 with respect to RI is Ç.

r1sRI � tt P L : p1, tq P RIu � tt P L : It � I1u � tt P L : It � Iu � Ç.

ii. Let x, y P Ç. Then by above part, x, y P r1sRI so that p1, xq P RI and p1, yq P RI .

Since RI is a congruence, p1, xq P RI implies p1[y, x[yq P RI . That is py, x[yq P RI .

Since RI is an equivalence relation, p1, yq P RI , py, x[ yq P RI implies p1, x[ yq P RI .

Hence x[ y P r1sRI � Ç. Thus Ç is closed under finite meet.

Now let S � txi; i P Ju �Ç. Then we have p1, xiq P RI for every i P J .
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Since RI is a congruence, we have p1\
�
S, xi \

�
Sq � p1,

�
Sq P RI .

Hence
�
S P r1sRI � Ç. Thus Ç is closed under arbitrary join.

iii. By proposition 2.1.7 (iv), 1 PÇ. By above part Ç is closed under finite meet.

Let x PÇ and y P L be such that x � y. Since x P Ç, we have Ix � I.

By proposition 2.1.7 (i), since x � y, Iy � Ix � I.

Also by proposition 2.1.7 (ii), I � Iy. Hence Iy � I. Thus y PÇ. Hence Ç is a filter

in L.

iv. Let I be prime ideal. Then by Lemma 2.2.5, Ç � tx P L : x R Iu.

Let
�
xα P Ç. Then

�
xα R I. Since I is closed under arbitrary join, xα R I for some

α. Hence xα PÇ and so Ç is completely prime filter of L.

Theorem 2.4.3. Let I be an ideal of a locale L. Then the sublocale (quotient frame)

L{RI is a Boolean algebra if and only if for each x P L, there exist y P L such that

x[ y P I and x\ y P Ç.

Proof. Let x P L. Then rxs P L{RI .

The sublocale L{RI is a Boolean algebra if and only if there exist rys P L{RI such

that rxs [ rys � r0s and rxs \ rys � r1s.

That is if and only if rx[ ys � r0s, rx\ ys � r1s or Ix[y � I0 � L and Ix\y � I1 � Ç.

Hence by proposition 2.1.7, x[ y P I and x\ y P Ç.

Theorem 2.4.4. Let I be an ideal of a locale L. If L{RI is a Boolean algebra, then

RI is the largest congruence relation having congruence class Ç.

Proof. Clearly RI is a congruence with Ç as a congruence class.

Let θ be any other congruence with Ç as a congruence class and let px, yq P θ.

Then for any a P L, we have px, yq P θ implies px\ a, y \ aq P θ.

30



Hence x\ a PÇ if and only if y \ a P Ç. That is Ix\a � I if and only if Iy\a � I.

Then by proposition 2.1.8, we have Ix X Ia � I if and only if Iy X Ia � I.

Since L{RI is a Boolean algebra, by above theorem, there exist x1, a1 P L such that

x[ x1, a[ a1 P I and Ix\x1 � I, Ia\a1 � I.

Since x[ x1, a[ a1 P I, we have x1 P Ix and a1 P Ia.

Thus x1 [ a1 P Ix X Ia � Ix\a � I.

x1 [ a1 P I, implies a1 P Ix1 .

Similarly, we get a1 P Iy1 for suitable y1 P L.

Thus we have a1 P Ix1 if and only if a1 P Iy1 . Thus Ix1 � Iy1 or px1, y1q P RI .

Hence x1 PÇ if and only if y1 P Ç. That is Ix1 � I if and only if Iy1 � I.

Hence Ix\x1 � Ix if and only if Iy\y1 � Iy. Thus Ix � I if and only if Iy � I.

Hence Ix � Iy. Thus px, yq P RI .

Proposition 2.4.5. The quotient frame (sublocale) L{RI is subfit if and only if for

every a, b P L with a � b, there exist c P L such that a\ c P Ç, b\ c R Ç.

Proof. Assume the quotient frame L{RI satisfies subfit property.

Let a, b P L with a � b. Then ras � rbs in L{RI .

Since L{RI is a subfit, there exist rcs P L{RI such that ras\rcs � r1s and rbs\rcs � r1s.

Hence by proposition 2.4.2, a\ c P Ç, b\ c R Ç.

For converse, let ras, rbs P L{RI such that ras � rbs. Then a, b P L with a � b.

By assumption there exist c P L such that a\ c P Ç, b\ c R Ç.

But a\ c P Ç if and only if ra\ cs � ras \ rcs � r1s.

Hence the quotient frame L{RI is a subfit frame.

Proposition 2.4.6. The quotient frame (sublocale) L{RI is fit if and only if for every

a, b P L with a � b, there exist c, d P L such that a\ c P Ç, c[ d � b, d � b.
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Proof. Suppose the quotient frame L{RI is fit.

Let a, b P L with a � b. Then ras, rbs P L{RI with ras � rbs.

Since L{RI is fit, there exist rcs P L{RI such that ras \ rcs � r1s and rcs Ñ rbs � rbs.

But ras \ rcs � r1s if and only if a\ c P Ç.

Also rcs Ñ rbs � rbs if and only if there exist rds P L{RIsuch rds [ rcs � rbs and

rds � rbs.

That is if and only if there exist d P L such that c[ d � b, d � b.

For converse, let ras, rbs P L{RI with ras � rbs. Then a, b P L with a � b.

By assumption there exist there exist c, d P L such that a\ c P Ç, c[ d � b, d � b.

Then rcs, rds P L{RI with ras \ rcs � r1s and rcs Ñ rbs � rbs.

Hence the quotient frame L{RI is fit.

Proposition 2.4.7. The quotient frame (sublocale) L{RI is S 12 if and only if for

every a, b P L with a\ b P Ç, a, b R Ç, there exist u, v P L such that a � u, b � v and

u[ v P I.

Proof. Suppose the locale L{RI is S 12.

Let a, b P L with a\ b P Ç, a, b R Ç. Then ras, rbs P L{RI with

ras \ rcs � r1s, ras � r1s, rbs � r1s.

Since the locale L{RI is S 12, there exist rus, rvs P L{RI such that

ras � rus, rbs � rvs, rus [ rvs � r0s.

But rus [ rvs � r0s if and only if u[ v P I.

In a similar manner we can prove the converse.

Lemma 2.4.8. ras   rbs P L{RI if and only if there exist c P L such that a [ c P I

and b\ c P Ç.

Proof. ras   rbs P L{RI if and only if there exist rcs P L{RI such that ras [ rcs � r0s
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and rbs \ rcs � r1s. But ras [ rcs � r0s if and only if a [ c P I and rbs \ rcs � r1s if

and only if b\ c P Ç. Hence the result.

Proposition 2.4.9. The quotient frame (sublocale) L{RI is regular if and only if for

every a P L there exist xi, bi P L for every i P J , where J is an indexing set, such that

I�xi � Ia, xi [ bi P I and a\ bi PÇ.

Proof. The quotient frame (sublocale) L{RI is regular if and only if for every

ras P L{RI , there exist rxis P L{RI such that ras � r\xis with rxis   ras.

But ras � r
�
xis if and only if I�xi � Ia.

Also by above lemma, rxis   ras if and only if there exist bi P L such that xi [ bi P I

and a\ bi PÇ.

Proposition 2.4.10. The quotient frame (sublocale) L{RI is normal if and only if

for every a, b P L with a\ b P Ç, there exist u, v P L such that a\ v P Ç, b\ u P Ç,

u[ v P I.

Proof. The quotient frame L{RI is normal if and only if for every ras, rbs P L{RI with

ras \ rbs � r1s, there exist rus, rvs P L{RI such that

rus [ rvs � r0s and ras \ rvs � r1s � rbs \ rus.

But rus [ rvs � r0s if and only u[ v P I and ras \ rvs � r1s � rbs \ rus if and only if

a\ v P Ç, b\ u P Ç.

Definition 2.4.11. A filter F in a locale L is said to be weekly completely prime if
�
aα P F , there exist α1, α2, α3............αn such that aα1 \ aα2 \ aα3 \ ......\ aαn P F .

Proposition 2.4.12. The quotient frame (sublocale) L{RI is compact if and only if

the filter Ç is weekly completely prime.
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Proof. Assume the quotient frame L{RI is compact.

Let
�
aα P Ç. Then r

�
aαs �

�
raαs � r1s.

Thus traαs : α P Ju is a cover for the locale L{RI .

Since the frame L{RI is compact, there exist α1, α2, ....αn P J such that

raα1s \ raα2s \ ....\ raαns � raα1 \ aα2 \ ....\ aαns � r1s.

Thus aα1\aα2\aα3\ .........\aαn P Ç. Hence the filter Ç is weekly completely prime.

In a similar manner we can prove the converse.
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Chapter 3

An Embedding Theorem for

Locales

For a, b P L the collection ra,Σbs � tf P OpLq : Σfpaq � Σbu are ideals in OpLq. We

claim that for each a P L, the collection Ja � tra,Σbs : b P Lu is a spatial locale

of pseudo subframes of OpLq. Defining proper congruences on L and OpLq, we have

derived an embedding theorem for locale L. Finally the collection B � tJa, a P Lu

forms a full subcategory of the category Loc. The coproduct J �
±
Ja satisfies the

separation axioms subfit and normality if and only if each Ja is subfit and normal

respectively.

3.1. Ideals ra,Σbs for a,b P L

Let L be a locale and OpLq denote the collection of all order preserving maps on L.

That is OpLq=tf ; f : L Ñ L is order preservingu. Define a relation ¤ on OpLq by

f ¤ g if and only if fpaq � gpaq @a P L. Then the relation ¤ is a partial order on
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OpLq. If \ and [ denote join and meet with respect to the partial order � on L, then

f _ g, f ^ g : LÑ L defined by pf _ gqpaq � fpaq\ gpaq and pf ^ gqpaq � fpaq[ gpaq

represents join and meet in OpLq with respect to the partial order ¤. Also infinite

distributivity of ^ over
�

follows from the infinite distributivity of [ over
�

. Hence

OpLq is a locale with bottom 0 and top 1, where 0,1 : LÑ L are defined by 0paq � 0

and 1paq � 1@a P L.

Definition 3.1.1. Let L be a locale. For a, b P L, define

ra,Σbs=tf P OpLq : Σfpaq � Σbu.

Some simple properties of ra,Σbs have been verified in the following lemmas.

Lemma 3.1.2. Let L be a locale and a, b P L

i. ra,Σbs is an ideal for all a, b P L.

ii. If Σb is meet-irreducible element of ΩpSppLqq, then ra,Σbs is prime ideal.

Proof. Let L be a locale and a, b P L

i. Since Σ0paq=Σ0 � φ � Σb, we get 0 P ra,Σbs for all a, b P L. Hence ra,Σbs is

nonempty.

Let f, g P ra,Σbs.

f, g P ra,Σbs ñ Σfpaq � Σb and Σgpaq � Σb

ñ Σfpaq Y Σgpaq � Σb

ñ Σpf_gpaqq � Σfpaq\gpaq � Σb

ñ f _ g P ra,Σbs

Hence ra,Σbs is a sub-join semilattice.

Now let f P ra,Σbs and g ¤ f in OpLq.

g ¤ f ñ gpaq � fpaq ñ Σgpaq � Σfpaq.
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g ¤ f and f P ra,Σbs ñ Σgpaq � Σfpaq � Σb ñ g P ra,Σbs.

Hence ra,Σbs is an ideal.

ii. Assume Σb is a meet-irreducible element of ΩpSppLqq and f ^ g P ra,Σbs.

f ^ g P ra,Σbs ñ Σpf^gqpaq � Σb

ñ Σfpaq X Σgpaq � Σb

Since Σb is meet-irreducible element of ΩpSppLqq, either Σfpaq � Σb or Σgpaq � Σb.

That is either f P ra,Σbs or g P ra,Σbs. Hence ra,Σbs is a prime ideal.

In [24] Johnstone has defined lattice without bottom element or Top element

as pseudo lattice. Using the same terminology we can define pseudo subframe as

follows.

Definition 3.1.3. Pseudo subframe M of a frame L is a subset M of L which is

closed under all joins and nonempty finite meets so that 1L RM .

Proposition 3.1.4. Let L be a locale and a, b P L,then ra,Σbs is a pseudo subframe

of OpLq.

Proof. Let I be a nonempty indexed set and let fi P ra,Σbs @i P I.

fi P ra,Σbs ñ Σfipaq � Σb, @i P I

ñ
�

Σfipaq � Σb and Σfipaq X Σfjpaq � Σb

ñ Σ� fipaq � Σb and Σfipaq[fjpaq � Σb

ñ
�
fi P ra,Σbs and fi ^ fj P ra,Σbs

Hence ra,Σbs is a complete lattice.

Also ra,Σbs satisfies infinite distributive law as OpLq satisfies the same.

But 1 R ra,Σbs if b � 1 .

Hence ra,Σbs is a pseudo subframe of OpLq and ra,Σ1s is the locale OpLq.
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Lemma 3.1.5. Let L be a locale and a1, a2, b1, b2 P L.

i. If a1 � a2, then ra1,Σbs � ra2,Σbs .

ii. If b1 � b2, then ra,Σb1s � ra,Σb2s.

Proof. Let L be a locale and a1, a2, b1, b2 P L.

i. Suppose a1 � a2. Then fpa1q � fpa2q @f P OpLq.

f P ra2,Σbs ñ Σfpa2q � Σb

ñ Σfpa1q � Σfpa2q � Σb

ñ f P ra1,Σbs

Hence ra1,Σbs � ra2,Σbs.

ii. Let b1 � b2. Then Σb1 � Σb2 .

f P ra,Σb1s ñ Σfpaq � Σb1 � Σb2

ñ f P ra,Σb2s

Hence ra,Σb1s � ra,Σb2s.

Remark. fb denotes the constant function on the locale L with the value b. That is

fbpxq � b @x P L.

Lemma 3.1.6. Let L be a locale. For a, b, c P L, ra,Σbs � ra,Σcs if and only if

Σb � Σc.

Proof. If Σb � Σc, then clearly ra,Σbs � ra,Σcs.

Conversely let ra,Σbs � ra,Σcs. Since Σfbpaq � Σb, fb P ra,Σbs � ra,Σcs. Then

Σfbpaq � Σc. That is Σb � Σc. In a similar manner Σc � Σb. Hence Σb � Σc.
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Examples 3.1.7. 1. Let the locale L be given as follows.

Then Σ0 � φ, Σa � tF1u, Σb � tF2u, Σ1 � tF1, F2u, where completely prime filters

F1 and F2 are given by F1 � ta, 1u, F2 � tb, 1u.

Then OpLq � tf1, f2, ......, f33u, where the order preserving maps fi : L Ñ L is given

by the following formulas.

f1pxq �

"
0 if x=0,a,b,1

f2pxq �

$''&
''%

0 if x=0,a,b

a if x=1

f3pxq �

$''&
''%

0 if x=0,a,b

b if x=1

f4pxq �

$''&
''%

0 if x=0,a,b

1 if x=1
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f5pxq �

$''&
''%

0 if x=0,a

a if x=b,1

f6pxq �

$''''''&
''''''%

0 if x=0,a

a if x=b

1 if x=1

f7pxq �

$''&
''%

0 if x=0,a

b if x=b,1

f8pxq �

$''''''&
''''''%

0 if x=0,a

b if x=b

1 if x=1

f9pxq �

$''&
''%

0 if x=0,b

a if x=a,1

f10pxq �

$''&
''%

0 if x=0

a if x=a,b,1

f11pxq �

"
x if x=0,a,b,1

f12pxq �

$''''''&
''''''%

0 if x=0

a if x=a

1 if x=b,1
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f13pxq �

$''&
''%

0 if x=0,b

b if x=a,1

f14pxq �

$''''''&
''''''%

0 if x=0,b

b if x=a

1 if x=1

f15pxq �

$''''''''''&
''''''''''%

0 if x=0

b if x=a

a if x=b

1 if x=1

f16pxq �

$''&
''%

0 if x=0

b if x=a,b,1

f17pxq �

$''''''&
''''''%

0 if x=0

b if x=a,b

1 if x=1

f18pxq �

$''''''&
''''''%

0 if x=0

b if x=a

1 if x=b,1
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f19pxq �

$''''''&
''''''%

0 if x=0,b

a if x=a

1 if x=1

f20pxq �

$''''''&
''''''%

0 if x=0

a if x=a,b

1 if x=1

f21pxq �

$''&
''%

0 if x=0,b

1 if x=a,1

f22pxq �

$''&
''%

0 if x=0

1 if x=a,b,1

f23pxq �

"
a if x=0,a,b,1

f24pxq �

$''&
''%
a if x=0,a,b

1 if x=1

f25pxq �

$''&
''%
a if x=0,a

1 if x=b,1

f26pxq �

$''&
''%
a if x=0

1 if x=a,b,1
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f27pxq �

"
b if x=0,a,b,1

f28pxq �

$''&
''%
b if x=0,a,b

1 if x=1

f29pxq �

$''&
''%
b if x=0,a

1 if x=b,1

f30pxq �

$''&
''%
b if x=0

1 if x=a,b,1

f31pxq �

"
1 if x=0,a,b,1

f32pxq �

$''&
''%
a if x=0,b

1 if x=a,1

f33pxq �

$''&
''%
b if x=0,b

1 if x=a,1

ra,Σ0s � tf P OpLq : Σfpaq � Σ0u =tf P OpLq : Σfpaq � φu

=tf1, f2, f3, f4, f5, f6, f7, f8u

ra,Σas � tf1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f19, f20, f23, f24, f25u

ra,Σbs � tf1, f2, f3, f4, f5, f6, f7, f8, f13, f14, f15, f16, f17, f18, f27, f28, f29u

ra,Σ1s � ra,Σa\bs � OpLq

2. For non spatial example, consider L � the Boolean algebra of all regularly open

subsets of the real line R. Then for any regularly open subsets U, V we have
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rU,ΣV s � tf P OpLq; ΣfpUq � ΣV u � OpLq, since SppLq � φ.

3.2. The locale Ja, a P L

Let L be a locale. Fix some a P L, and let Ja=tra,Σbs : b P Lu. Define binary

relations N,O on Ja by ra,Σbs N ra,Σcs � ra,Σb[cs and ra,Σbs O ra,Σcs � ra,Σb\cs.

Then pJa,Nq and pJa,Oq are commutative monoids in which every element is idem-

potent. Also

ra,Σbs O pra,Σbs N ra,Σcsq � ra,Σbs O ra,Σb[cs � ra,Σb\pb[cqs � ra,Σbs and

ra,Σbs N pra,Σbs O ra,Σcsq � ra,Σbs N ra,Σb\cs � ra,Σb[pb\cqs � ra,Σbs.

Thus absorption laws are satisfied and hence Ja is a lattice. Since
�
ai, for ai P L

exist, Ja is a complete lattice.

ra,Σbs N
j
ra,Σcis � ra,Σbs N ra,Σ� cis � ra,Σb[

�
cis � ra,Σ� b[cis

�
j
ra,Σb[cis �

j
pra,Σbs N ra,Σcisq

Hence Ja satisfies infinite distributive law. Thus Ja is a locale of pseudo subframes

of OpLq with top element ra,Σ1s and bottom element ra,Σ0s.

From example 3.1.7(2), we get the locale JU � The one point locale O, for all

U P L.

From example 3.1.7(1), we get the locales J0 � tr0,Σbs : b P Lu,

Ja � tra,Σbs : b P Lu, Jb � trb,Σas : a P Lu and J1 � tr1,Σbs : b P Lu.

Proposition 3.2.1. The locale Ja is compact if and only if SppLq is compact.

Proof. Assume Ja is compact. We have to show that SppLq is compact.

Let Σ1 �
¤
iPI

Σbi . Then Σ1 � Σ� bi .
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By Lemma 3.1.6,
b
ra,Σbis � ra,Σ� bis � ra,Σ1s. Hence tra,Σbis; i P Iu is a cover for

Ja.

Since Ja is compact, we have ra,Σb1s O ra,Σb2s O ....... O ra,Σbns � ra,Σ1s for some

b1, b2, ....bn P L. That is ra,Σb1\b2\b3\.....bns � ra,Σ1s.

Then Σb1\b2\b3\.....bn � Σ1, using lemma 3.1.6. Hence SppLq is compact.

Conversely assume SppLq is compact. Let tra,Σbis; i P Iu be a cover of Ja.

That is
b
ra,Σbis � ra,Σ1s or ra,Σ� bis � ra,Σ1s. This gives Σ� bi � Σ1.

Since SppLq is compact, we have Σ1 � Σb1\b2\...\bn .

Hence ra,Σbi\b2\......\bns � ra,Σ1s. Thus Ja is compact.

Isomorphism of Ja with a quotient locale of L

Define a relation �a on L by b�ac if ra,Σbs � ra,Σcs. Clearly the relation �a

is an equivalence relation. Let (b,c)P�a. We claim that pb [ d, c [ dq P�a and

pb\
�
S, c\

�
Sq P�a.

ra,Σb[ds � ra,Σbs N ra,Σds � ra,Σcs N ra,Σds � ra,Σc[ds.

Hence pb[ d, c[ dq P�a.

ra,Σb\
�
Ss � ra,Σbs O ra,Σ�Ss � ra,Σcs O ra,Σ�Ss � ra,Σc\

�
Ss.

Hence pb\
�
S, c\

�
Sq P�a. Thus �a is a frame congruence on L.

Then by [8], L{ �a is a quotient frame (sublocale) of L with respect to the partial

order ras � rbs iff a � b.

Note that if L is spatial, then L{ �a� L for all a P L.

Define ψa : L{ �aÑ Ja by ψaprbsq � ra,Σbs. Then

ψaprbs [ rcsq � ψaprb [ csq � ra,Σb[cs � ra,Σbs N ra,Σcs � ψaprbsq N ψaprcsq and

ψap
�
rbisq � ψapr

�
bisq � ra,Σ� bis �

b
ra,Σbis �

b
ψaprbisq.

Hence ψa is a frame homomorphism.

Also ψa is one-one and onto. Thus ψa is an isomorphism in the category Frm. Since
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the isomorphism is a self dual property, ψa is an isomorphism in the category Loc.

Thus the locale Ja is isomorphic to a sublocale of the locale L.

Congruence on OpLq

Define a relation Ra on OpLq by fRag if Σfpaq � Σgpaq. Then Ra is an equivalence

relation. Suppose fRag. Then

Σpf^hqpaq � Σfpaq[hpaq � Σfpaq X Σhpaq � Σgpaq X Σhpaq � Σgpaq[hpaq � Σpg^hqpaq.

Thus f ^ h Ra g ^ h.

Σpf_
�
fiqpaq � Σfpaq Y Σ� fipaq � Σgpaq Y Σ� fipaq � Σgpaq\

�
fipaq � Σpg_

�
fiqpaq.

Hence f _
�
fi Ra g _

�
fi. Thus Ra is a congruence on OpLq.

Then by [8], OpLq{Ra is a quotient frame (sublocale) of OpLq with respect to the

partial order rf s ¤ rgs in OpLq{Ra if and only if f ¤ g in OpLq.

Example 3.2.2. In example 3.1.7(1), we have OpLq{Ra � trf1s, rf9s, rf13s, rf21su,where

rf1s � tf1, f2, f3, f4, f5, f6, f7, f8u

rf9s � tf9, f10, f11, f12, f19, f20, f23, f24, f25u

rf13s � tf13, f14, f15, f16, f17, f18, f27, f28u

rf21s � tf21, f22, f26, f29, f30, f31, f32, f33u

Lemma 3.2.3. If pf, gq P Ra, then pfpaq, gpaqq P�a.

Proof. Let pf, gq P Ra. Then Σfpaq � Σgpaq.

By lemma 3.1.6, ra,Σfpaqs � ra,Σgpaqs. Hence pfpaq, gpaqq P�a.

Proposition 3.2.4. The quotient frame(sublocale) L{ �a of L is isomorphic to the

quotient frame(sublocale) OpLq{Ra of OpLq.

Proof. Define the map σ : OpLq{Ra Ñ L{ �a by σprf sq � rfpaqs.
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σprf sq � σprgsq ñ rfpaqs � rgpaqs

ñ ra,Σfpaqs � ra,Σgpaqs

ñ Σfpaq � Σgpaq, by lemma 3.1.6

ñ rf s � rgs.

Thus the map σ is one one.

Also for each rbs P L{ �a, σprfbsq � rfbpaqs � rbs. Thus σ is onto.

σp
�
rfisq � σpr

�
fisq � rp

�
fiqpaqs � r

�
pfipaqqs �

�
rfipaqs �

�
σprfisq and

σprf s ^ rgsq � σprf ^ gsq � rpf ^ gqpaqs � rfpaq [ gpaqs

� rfpaqs [ rgpaqs � σpfq [ σpgq

Hence σ is an isomorphism in Frm. Thus a sublocale of L is isomorphic to a sublocale

of OpLq

Theorem 3.2.5. Embedding Theorem for locale L A sublocale of the locale L

can be embedded as a sublocale of OpLq. If the locale L is spatial, then L can be

embedded as a sublocale of OpLq.

Proof. Define G : OpLq Ñ OpLq{Ra by Gpfq � rf s. Then G is an onto frame

homomorphism.

Consider σ � G : OpLq Ñ L{ �a where σ : OpLq{Ra Ñ L{ �a is the isomorphism in

3.2.4. For each rbs P L we have fb P OpLq such that pσ �Gqpfbq � rbs.

Thus the map σ �G is onto.

Also since G, σ are frame homomorphisms, σ �G is a frame homomorphism.

Since σ � G is an onto frame homomorphism, its adjoint δ is a one one localic map

from the sublocale L{ �a of L to OpLq.

If L is spatial, L{ �a� L and so L can be embedded as a sublocale of OpLq
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Localic map from SppLq to OpLq{Ra

Define φa : OpLq{Ra Ñ SppLq by φaprf sq � Σfpaq. Then

φaprf s ^ rgsq � Σf^gpaq � Σfpaq X Σgpaq � φaprf sq X φaprgsq and

φap
�
rf siq � φapr

�
fisq � Σp

�
fiqpaq �

�
Σfipaq.

Hence φa is a frame homomorphism and its adjoint φ�a is a localic map from SppLq

to O(L)/Ra.

Lemma 3.2.6. If f P ra,Σbs, then [f ]P ra,Σbs.

Proof. Let f P ra,Σbs and let g P rf s. Then we have Σfpaq � Σgpaq.

Since f P ra,Σbs, Σfpaq � Σb, which implies Σgpaq � Σb. Hence rf s P ra,Σbs.

Proposition 3.2.7. The locale Ja is subfit if and only if for every ra,Σbs in Ja

with ra,Σbs ¦ ra,Σcs, there exists Σd P SppLq such that r1s � φ�1
a pΣb Y Σdq and

r1s � φ�1
a pΣc Y Σdq.

Proof. Suppose locale Ja is a subfit. Let ra,Σbs, ra,Σcs P Ja with ra,Σbs ¦ ra,Σcs.

Since Ja is a subfit, there exist ra,Σds such that ra,Σbs O ra,Σds � ra,Σ1s and

ra,Σcs O ra,Σds � ra,Σ1s.

Since ra,Σb\ds � ra,Σ1s, we have 1 P ra,Σb\ds. Then by lemma 3.2.6, r1s P ra,Σb\ds.

Thus φapr1sq � Σ1paq � Σb\d. Hence r1s � φ�1
a pΣb Y Σdq.

Also, if r1s � φ�1
a pΣc Y Σdq, then 1 P ra,Σc\ds, a contradiction.

Hence r1s � φ�1
a pΣc Y Σdq.

Conversely, suppose ra,Σbs ¦ ra,Σcs. Then by hypothesis, r1s � φ�1
a pΣb Y Σdq.

That is φapr1sq P Σb\d. Thus 1 P ra,Σb\ds and hence ra,Σb\ds � ra,Σ1s.

If ra,Σc\ds � ra,Σ1s, then r1s � φ�1
a pΣcYΣdq, a contradiction. Hence Ja is subfit.

Proposition 3.2.8. The locale Ja has S2’ property if and only if for every

ra,Σbs � ra,Σ1s, ra,Σcs � ra,Σ1s in Ja with ra,Σb\cs � ra,Σ1s, there exist
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Σd,Σe P ΩpSppLqq such that Σe � Σb,Σd � Σc and φaprf sq � Σd [ Σeimplies that

f P r0s.

Proof. Suppose Ja has S2’ property. Let ra,Σbs O ra,Σcs � ra,Σ1s. Then there

exist ra,Σds, ra,Σes P Ja such that ra,Σds N ra,Σes � ra,Σ0s,ra,Σes ¦ ra,Σbs and

ra,Σds ¦ ra,Σcs. Then Σd,Σe P ΩpSppLqq. If Σe � Σb, then ra,Σes � ra,Σbs, a

contradiction.

Hence Σe � Σb. Similarly we can prove that Σd � Σc.

Let φaprf sq � Σd X Σe. Then Σfpaq � Σd[e.

Hence f P ra,Σd[es � ra,Σ0s. Thus f P r0s.

Hence φaprf sq � Σd X Σe implies f P r0s.

Conversely, let ra,Σbs � ra,Σ1s, ra,Σcs � ra,Σ1s with ra,Σb\cs � ra,Σ1s.

Then by assumption, there exist Σd,Σe P ΩpSppLqq with Σe � Σb, Σd � Σc and

φaprf sq � Σd X Σe implies that f P r0s.

Also f P ra,Σd[es, implies Σfpaq � Σd[e.

Hence φaprf sq � Σd X Σe ñ f P r0s ñ f P ra,Σ0s.

Hence ra,Σds N ra,Σes � ra,Σ0s.

Also since Σe � Σb, Σd � Σc, ra,Σes ¦ ra,Σbs and ra,Σds ¦ ra,Σcs. Thus Ja has S2’

property.

Lemma 3.2.9. If b   c in L, then ra,Σbs   ra,Σcs in Ja.

Proof. Suppose b   c in L. Then there exist d P L such that b[ d � 0 and c\ d � 1.

We have

ra,Σbs N ra,Σds � ra,Σb[ds � ra,Σ0s and ra,Σcs O ra,Σds � ra,Σc\ds � ra,Σ1s.

Hence ra,Σbs   ra,Σcs in Ja.

Proposition 3.2.10. If L is a regular locale, then Ja is a regular locale.
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Proof. Proof follows directly from the above lemma.

Proposition 3.2.11. Locale Ja is normal if and only if for every ra,Σbs, ra,Σcs P Ja

with ra,ΣbsOra,Σcs � ra,Σ1s, there exist Σu,Σv P ΩpSppLqq such that r1s P φ�1
a pΣuY

Σbq, r1s P φ
�1
a pΣv Y Σcq and φaprf sq P Σu[v ñ f P r0s.

Proof. Suppose Ja is normal. Let ra,Σbs, ra,Σcs P Ja with ra,Σbs O ra,Σcs � ra,Σ1s.

Since Ja is normal, there exist ra,Σus, ra,Σvs P Ja such that

ra,Σbs O ra,Σus � ra,Σ1s, ra,Σcs O ra,Σvs � ra,Σ1s and ra,Σus N ra,Σvs � ra,Σ0s.

Then Σu,Σv P ΩpSppLqq.

Also φapr1sq � Σ1paq � Σb Y Σu. Hence r1s P φ�1
a pΣu Y Σbq.

Similarly r1s P φ�1
a pΣv Y Σcq. Now φaprf sq P Σu[v implies Σfpaq � Σu[v.

Hence f P ra,Σu[vs � ra,Σ0s, which implies Σfpaq � Σ0. Hence f P r0s.

Conversely, let ra,Σbs, ra,Σcs P Ja with ra,Σbs O ra,Σcs � ra,Σ1s. By assumption,

there exist Σu,Σv P ΩpSppLqq such that r1s P φ�1
a pΣu Y Σbq, r1s P φ

�1
a pΣv Y Σcq and

φaprf sq P Σu[v ñ f P r0s. Σu,Σv P ΩpSppLqq.

Since Σu,Σv P ΩpSppLqq, ra,Σus, ra,Σvs P Ja. Also r1s P φ�1
a pΣu Y Σbq implies

φapr1sq � Σ1paq � Σu\b. Thus 1 P ra,Σu\bs. Hence ra,Σu\bs � ra,Σ1s.

Similarly we can prove that ra,Σv\cs � ra,Σ1s.

Also f P ra,Σu[vs implies Σfpaq � φaprf sq � Σu[v. Then by assumption f P ra,Σ0s.

Hence ra,Σu[vs � ra,Σ0s.

Proposition 3.2.12. The locale Ja is Boolean if and only if for each b P L, Σb is a

clopen subset of ΩpSppLqq.

Proof. Suppose the locale Ja is Boolean and let Σb P ΩpSppLqq.

Then ra,Σbs P Ja. Since the locale Ja is Boolean, there exist ra,Σcs P Ja such that

ra,Σbs N ra,Σcs � ra,Σ0s and ra,Σbs O ra,Σcs � ra,Σ1s.
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ra,Σb[cs � ra,Σ0s implies Σb[c � Σ0 by lemma 3.1.6. Hence Σb X Σc � φ.

ra,Σb\cs � ra,Σ1s implies that Σb\c � Σ1. Hence Σb Y Σc � Σ1.

Thus Σc P ΩpSppLqq is the compliment of Σb. Hence Σb is both closed and open.

Conversely assume that each Σb is clopen and let ra,Σbs P Ja.

Then Σb P ΩpSppLqq. Since Σb is clopen, we have Σc � pΣbq
c P ΩpSppLqq.

Then ra,Σcs P Ja.

ra,Σbs N ra,Σcs � ra,Σb[cs � ra,Σb X Σcs � ra, φs � ra,Σ0s.

ra,Σbs O ra,Σcs � ra,Σb\cs � ra,Σb Y Σcs � ra,Σ1s.

Hence the locale Ja is Boolean.

3.3. Coproduct of the locales Ja, a P L

In [39], if Li, i P I are locales, then the cartesian product
±
Li together with

component wise ordering is a locale. Since each Ja, a P L is a locale, J �
±
Ja is a

locale together with the map pa : Ja Ñ J , a P L, defined by papra,Σbsq �
±
rb,Σxs

where rb,Σxs � rb,Σ1s for all b � a and ra,Σxs � ra,Σbs. Then ppa : Ja Ñ JqaPL is

the coproduct of locales Ja.

Notation Any element of the coproduct locale J is denoted by
±
ra,Σxas, where

ra,Σxas P Ja.

Proposition 3.3.1. The locale J is subfit if and only if each Ja is a subfit.

Proof. Suppose each Ja is subfit and let A �
±
ra,Σxas, B �

±
ra,Σyas P J such that

A ¦ B.

Then there exist d P L such that rd,Σxds ¦ rd,Σyds.

Since Jd is subfit, there exist rd,Σzs such that rd,Σxds O rd,Σzs � rd,Σ1s and

rd,Σyds O rd,Σzs � ra,Σ1s.
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Take C P J as C �
±
ra,Σzas where ra,Σzas � ra,Σ1s for a � d and rd,Σzds � rd,Σzs.

Then we have AO C � 1J and B O C � 1J . Hence J is a subfit locale.

Conversely assume that J is a subfit locale and let ra,Σbs, ra,Σcs P Ja with

ra,Σbs ¦ ra,Σcs.

Then let A �
±
rb,Σxbs, B �

±
rb,Σybs where rb,Σxbs � rb,Σ1s, rb,Σybs � rb,Σ1s for

b � a and ra,Σxas � ra,Σbs and ra,Σyas � ra,Σcs.

Then A,B P J is such that A ¦ B. Since J is a subfit locale there exist

C �
±
rb,Σzbs P J such that AO C � 1J and B O C � 1J .

Then we must have ra,Σbs O ra,Σzas � ra,Σ1s and ra,Σcs O ra,Σzas � ra,Σ1s.

Thus Ja is a subfit locale.

Proposition 3.3.2. If the locale J has S
1

2 property, then each Ja, a P L has S
1

2

property.

Proof. Suppose that the locale J has S
1

2 property and let ra,Σbs � ra,Σ1s,

ra,Σcs � ra,Σ1s P Ja with ra,Σbs O ra,Σcs � ra,Σ1s.

Let A �
±
rb,Σxbs, B �

±
rb,Σybs where rb,Σxbs � rb,Σybs � rb,Σ1s for b � a and

ra,Σxas � ra,Σbs and ra,Σyas � ra,Σcs.

Then we have A,B � 1J P J with AOB � 1J .

Since J has S
1

2 property, there exist U �
±
rb,Σubs, V �

±
rb,Σvbs P J such that

U N V � 0J , U ¦ B, V ¦ A.

Thus ra,Σvas ¦ ra,Σbs, ra,Σuas ¦ ra,Σcs and ra,Σvas N ra,Σuas � ra,Σ0s.

Hence Ja has S
1

2 property.

Proposition 3.3.3. The locale Ja is normal if and only if J is normal.

Proof. Suppose that each Ja is normal and let A �
±
rb,Σxbs, B �

±
rb,Σybs P J

such that AOB � 1J .
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Then ra,Σxas, ra,Σyas P Ja with ra,Σxas O ra,Σyas � ra,Σ1s for all a P L.

Since Ja is normal, there exist ra,Σuas, ra,Σvas P Ja such that

ra,ΣxasOra,Σvas � ra,Σ1s and ra,ΣyasOra,Σuas � ra,Σ1s, ra,ΣvasOra,Σuas � ra,Σ0s.

Let U �
±
rb,Σubs, V �

±
rb,Σvbs.

Then U, V P J such that AO V � 1J , B O U � 1J , U N V � 0J . Hence J is normal.

Conversely assume that J is normal and let ra,Σbs, ra,Σcs P Ja with

ra,Σbs O ra,Σcs � ra,Σ1s.

Consider A �
±
rb,Σxbs, B �

±
rb,Σybs where rb,Σxbs � rb,Σybs � rb,Σ1s for b � a

and ra,Σxas � ra,Σbs, ra,Σyas � ra,Σcs.

Then A,B P J with AOB � 1J .

Since J is normal, there exist U �
±
rb,Σubs, V �

±
rb,Σvbs such that A O V � 1J ,

B O U � 1J , U N V � 0J .

Then ra,Σbs O ra,Σvas � ra,Σ1s, ra,Σcs O ra,Σuas � ra,Σ1s, and

ra,Σvas N ra,Σuas � ra,Σ0s.

Hence Ja is normal

3.4. Filters xa,Σby for a,b P L

Definition 3.4.1. Let L be a locale. For each a, b P L, define

xa,Σby=tf P OpLq : Σfpaq � Σbu.
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Example 3.4.2. In example 3.1.7

xa,Σ0y � tf P OpLq : Σfpaq � Σ0u

� tf P OpLq : Σfpaq � φu � OpLq

xa,Σay � tf9, f10, f11, f12, f19, f20, f21, f22, f23, f24, f25, f26, f30, f31, f32, f33u

xa,Σby � tf13, f14, f15, f16, f17, f18, f21, f22, f26, f27, f28, f29, f30, f31, f32, f33u

xa,Σ1y � tf21, f22, f26, f30, f31, f32, f33u

Some simple properties of xa,Σby have been verified in the following propositions.

Proposition 3.4.3. For each a, b P L

i. xa,Σby is closed under finite meet and join.

ii. xa,Σby is an upper set.

iii. xa,Σby is a filter in L.

iv. If Σb is a join-irreducible element of ΩpSppLqq, then xa,Σby is a prime filter in

OpLq.

Proof. i. Let f,g P xa,Σby.

f, g P xa,Σby ñ Σfpaq � Σb and Σgpaq � Σb

ñ Σfpaq Y Σgpaq � Σb and Σfpaq X Σgpaq � Σb

ñ Σfpaq\gpaq � Σband Σfpaq[gpaq � Σb

ñ Σpf_gpaqq � Σb and ΣpfNgpaqq � Σb

ñ f _ g, f ^ g P xa,Σby

ii. Let g P xa,Σby and g ¤ f in OpLq.

g P xa,Σby, g ¤ f ñ gpaq � fpaq
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ñ Σgpaq � Σfpaq

ñ Σb � Σgpaq � Σfpaq

ñ f P xa,Σby

Hence xa,Σby is an upper set.

iii. Proof follows directly from part i, ii.

iv. Assume Σb is a join-irreducible element of ΩpSppLqq. Let f _ g P xa,Σby.

f _ g P xa,Σby ñ Σpf_gqpaq � Σb

ñ Σfpaq Y Σgpaq � Σb

Since Σb is join-irreducible, either Σfpaq � Σb or Σgpaq � Σb. Hence f P xa,Σby or

g P xa,Σby. Thus xa,Σby is a prime filter.

Proposition 3.4.4. Let L be a locale and a1, a2, b1, b2, a, b P L.

i. If a1 � a2, then xa1,Σby � xa2,Σby .

ii. If b1 � b2, then xa,Σb1y � xa,Σb2y

Proof. Let L be a locale and a1, a2, b1, b2, a, b P L.

i. Suppose a1 � a2. Then fpa1q � fpa2q @f P OpLq.

f P xa1,Σby ñ Σfpa1q � Σb

ñ Σfpa2q � Σfpa1q � Σb

ñ f P xa2,Σby

Therefore xa1,Σby � xa2,Σby .

ii. Let b1 � b2. Then Σb1 � Σb2 .

f P xa,Σb2y ñ Σfpaq � Σb2 � Σb1 .

ñ f P xa,Σb1y

55



Therefore xa,Σb1y � xa,Σb2y.

Proposition 3.4.5. For any a, b, c P L, xa,Σby � xa,Σcy if and only if Σb � Σc.

Proof. If Σb � Σc, then clearly xa,Σby � xa,Σcy.

Conversely let xa,Σby � xa,Σcy. Since Σfbpaq � Σb, fb P xa,Σby � xa,Σcy. Then

Σfbpaq � Σc. That is Σb � Σc. In a similar manner Σc � Σb. Hence Σb � Σc.

Proposition 3.4.6. Let Σb be compact element in SppLq. Then for each a P L, xa,Σby

is completely prime filter in OpLq.

Proof. By proposition 5.5.5, xa,Σby is a filter in OpLq. Let
�
fα P xa,Σby. Then we

have Σ� fαpaq � Σb or
�

Σfαpaq � Σb. Since Σb is a compact element in SppLq, there

is some β such that Σfβpaq � Σb. Hence fβ P xa,Σby. Thus for each a P L, xa,Σby is

completely prime filter.

Proposition 3.4.7. Let Σb be a join-irreducible element in ΩpSppLqq. If f P OpLq

immediately preceeds g P OpLq with Σfpaq � Σgpaq and Σb � ΣgpaqztF u for some

F P SppLq, then xa,Σby is a slicing filter in OpLq.

Proof. Let Σb be a join-irreducible element in ΩpSppLqq. Then by Proposition5.5.5,

xa,Σby is a prime filter in OpLq. Since Σb � ΣgpaqztF u,Σgpaq � Σb. Hence

g P xa,Σby. As f immediately preceeds g and Σfpaq � Σgpaq, Σfpaq � Σgpaq. Since

Σb � ΣgpaqztF u,Σfpaq � Σb. Hence f R xa,Σby. Hence xa,Σby is a slicing filter in

OpLq.

Proposition 3.4.8. For a fixed a P L, Xxa,Σbαy � xa,Σ� bαy.

Proof. Fix some a P L.
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f P Xxa,Σbαy ñ f P xa,Σbαy for all α

ñ Σfpaq � Σbα for all α

ñ Σfpaq �
�

Σbα � Σ� bα

ñ Xxa,Σbαy � xa,Σ� bαy.

Now let f P xa,Σ� bαy.

f P xa,Σ� bαy ñ Σfpaq � Σ� bα �
�

Σbα

ñ Σfpaq � Σbα for all α

ñ f P xa,Σbαy for all α

ñ f P Xxa,Σbαy

So xa,Σ� bαy � Xxa,Σbαy.

Hence xa,Σ� bαy � Xxa,Σbαy.

Proposition 3.4.9. For each a P L, let Sa � txa,Σby b P Lu. Then Sa is a complete

lattice under the partial order �.

Proof. By above proposition Sa is a complete meet semilattice with top element

xa,Σ0y. Since every complete semilattice with top and bottom is a complete lattice,

Sa is a complete lattice under the partial order �.

3.5. Construction of subspace of SppOpLqq using

xa,Σby, a, b P L

Proposition 3.5.1. Let Σb be a compact open set in SppLq and let

Yb � txa,Σby : a P Lu. Then pYb,ΩpSppOpLqqq{Ybq is a compact subspace of spectrum

SppOpLqq.
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Proof. Since Σb is a compact element of SppLq, for all a P L, the filter xa,Σby is com-

pletely prime. Hence Yb � SppOpLqq and ΩpSppOpLqqq{Yb is the subspace topology

on Yb. Hence pYb,ΩpSppOpLqqq{Ybq is a subspace of spectrum SppOpLqq.

Let tΣfα : α P Iu be an open cover of Yb. Then we have Yb �
�

Σfα � Σ� fα . Then the

element x0,Σby of Yb is in Σ� fα . Hence
�
fα P x0,Σby and so

�
Σfαp0q � Σ\fαp0q � Σb.

Since Σb is compact there exist β P I such that Σfβp0q � Σb. Then x0,Σby P Σfβ . Since

fβpaq ¥ fβp0q, Σfβpaq � Σb for all a P L and so Yb � Σfβ . Hence Yb is compact.

Proposition 3.5.2. Let Σb be a compact open set in SppLq and let

Yb � txa,Σby : a P Lu. Then pYb,ΩpSppOpLqqq{Ybq satisfies T0 axiom.

Proof. Let xa1,Σby, xa2,Σby P Yb such that xa1,Σby � xa2,Σby. So there is atleast one

f P OpLq such that f is in one of them and not in other.

Let f P xa1,Σby and f R xa2,Σby. Then xa1,Σby P Σf X Yb and xa2,Σby R Σf X Yb.

Hence pYb,ΩpSppOpLqqq{Ybq satisfies T0 axiom.

Proposition 3.5.3. Let Σb be a compact open set in SppLq and let

Yb � txa,Σby : a P Lu. Then pYb,ΩpSppOpLqqq{Ybq is connected.

Proof. Let Yb � pΣf X Ybq Y pΣg X Ybq, where pΣf X Ybq, pΣg X Ybq are nonempty open

subsets of pYb,ΩpSppOpLqqq{Ybq.

So there is xa1,Σby, xa2,Σby P Yb such that xa1,Σby P Σf X Yb, xa2,Σby P Σg X Yb.

Then Σfpa1q � Σb,Σgpa2q � Σb. Since f, g P OpLq, fpa1q � fp1q, gpa2q � gp1q. Hence

Σfp1q � Σb,Σgp1q � Σb. Hence x1,Σby P pΣf X Ybq X pΣg X Ybq. So Σf X Yb,Σg X Yb

cannot be disjoint. Hence pYb,ΩpSppOpLqqq{Ybq is connected.
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Chapter 4

The Concept of L-slice

for a locale L

Given a locale L and a join semilattice J with bottom element 0J , we have introduced

a new concept of an action σ of locale L on join semilattice J together with a set

of conditions. The pair pσ, Jq is called L-slice. L-slice, though algebraic in nature

adopts properties of L through the action σ.

4.1. L-Slices

This section discusses the concept of L-slice and some of its properties.

Definition 4.1.1. Let L be a locale and J be join semilattice with bottom element

0J . By the “action of L on J”we mean a function σ : L � J Ñ J such that the

following conditions are satisfied.

i. σpa, x1 _ x2q � σpa, x1q _ σpa, x2q for all a P L, x1, x2 P J .

ii. σpa, 0Jq � 0J for all a P L.
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iii. σpa[ b, xq � σpa, σpb, xqq � σpb, σpa, xqq for all a, b P L, x P J .

iv. σp1L, xq � x and σp0L, xq � 0J for all x P J .

v. σpa\ b, xq � σpa, xq _ σpb, xq for a, b P L, x P J .

If σ is an action of the locale L on a join semilattice J , then we call pσ, Jq as

L-slice.

Next propsoition gives sufficient conditon for a subset S � OpLq, to be an L-slice.

Proposition 4.1.2. Let L be a locale, and let S be a set of order preserving maps

LÑ L such that :

i. The constant map 0 P S(0 takes everything to 0).

ii. If f, g P S, then f _ g P S.

iii. For all a P L and for all f P S, the meet of the constant map a and f is in S (i.e.

f [ a P S).

Then the map σ : L�S Ñ S defined by σpa, fqpxq � fpxq[ a is an action of L on S.

Proof. By the hypothesis, S is a join semilattice with bottom element 0 and the map

σ is well defined.

i. σpa, f _ gqpxq � pf _ gqpxq [ a � pfpxq \ gpxqq [ a � pfpxq [ aq \ pgpxq [ aq

� σpa, fqpxq \ σpa, gqpxq � pσpa, fq _ σpa, gqqpxq

ii. σpa,0qpxq � 0pxq [ a � 0[ a � 0 � 0pxq

iii. σpa[ b, fqpxq � fpxq [ pa[ bq � a[ pfpxq [ bq

� a[ σpb, fqpxq � σpa, σpb, fqqpxq � σpb, σpa, fqqpxq

iv. σp1L, fqpxq � fpxq [ 1L � fpxq

σp0L, fqpxq � fpxq [ 0L � 0pxq
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v. σpa\ b, fqpxq � fpxq [ pa\ bq � pfpxq [ aq \ pfpxq [ bq

� σpa, fqpxq \ σpb, fqpxq � pσpa, fq _ σpb, fqqpxq

Hence pσ, Sq is an L-slice.

Examples 4.1.3. 1. Let L be a locale and I be any ideal of L. Consider each x P I as

constant map x : LÑ L. Then by proposition 4.1.2, (σ, I) is an L-slice. In particular

(σ, L) is an L-slice.

2. Let the locale L be a chain with Top and Bottom elements and J be any join

semilattice with bottom element. Define σ : L � J Ñ J by σpa, jq � j @a � 0 and

σp0L, jq � 0J . Then σ is an action of L on J and (σ, J) is an L-slice.

Proposition 4.1.4. The product of two L-slices of a locale L is an L-slice.

Proof. Let pσ1, J1q, pσ2, J2q be two L-slices of a locale L. Since J1, J2 are join semilat-

tices with bottom elements, J1 � J2 is join semilattice with bottom p0J1 , 0J2q.

Define σ : L� pJ1 � J2q Ñ J1 � J2 by σpa, px1, x2qq � pσ1pa, x1q, σ2pa, x2qq. Then

i. σpa, px1, y1q _ px2, y2qq � σpa, px1 _ x2, y1 _ y2qq � pσ1pa, x1 _ x2q, σ2pa, y1 _ y2qq

� pσ1pa, x1q _ σ1pa, x2q, σ2pa, y1q _ σ2pa, y2qq

� pσ1pa, x1q, σ2pa, y1qq _ pσ1pa, x2q, σ2pa, y2qq

� σpa, px1, y1qq _ σpa, px2, y2qq

ii. σpa, p0J1 , 0J2qq � pσ1pa, 0J1q, σ2pa, 0J2qq � p0J1 , 0J2q

iii. σpa[ b, px, yqq � pσ1pa[ b, xq, σ2pa[ b, yqq � pσ1pa, σ1pb, xqq, σ2pa, σ2pb, yqqq

� σpa, pσ1pb, xq, σ2pb, yqqq � σpa, σpb, px, yqqq

iv. σp1L, px, yqq � pσ1p1L, xq, σ2p1L, yqq � px, yq

σp0L, px, yqq � pσ1p0L, xq, σ2p0L, yqq � p0J1 , 0J2q
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v. σpa1 \ a2, px, yqq � pσ1pa1 \ a2, xq, σ2pa1 \ a2, yqq

� pσ1pa1, xq _ σ1pa2, xq, σ2pa1, yq _ σ2pa2, yqq

� pσ1pa1, xq, σ2pa1, yqq _ pσ1pa2, xq, σ2pa2, yqq

� σpa1, px, yqq _ σpa2, px, yqq

Thus σ is an action on J1 � J2 and pσ, J1 � J2q is a L-slice of locale L.

Definition 4.1.5. Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be L-slice homomorphism if

i. fpx1 _ x2q � fpx1q _ fpx2q for all x1, x2 P J .

ii. fpσpa, xqq � µpa, fpxqq for all a P L and all x P pσ, Jq.

Remark. More about L-slice homomorphism are studied in chapter 5.

4.2. L-Subslice

Definition 4.2.1. Let (σ, J) be an L-slice of a locale L. A subjoin semilattice J 1 of

J is said to be L-subslice of J if J 1 is closed under action by elements of L.

Examples 4.2.2. 1. Let L be a locale and OpLq denotes the collection of all order

preserving maps on L. Then pσ,OpLqq is an L-slice, where σ : L � OpLq Ñ OpLq

is defined by σpa, fq � fa, where fa : L Ñ L is defined by fapxq � fpxq [ a. Let

K � tf P OpLq : fpxq � x, @x P Lu. Then pσ,Kq is an L-subslice of the L-slice

pσ,OpLqq.

2. Let pσ, Jq be an L-slice and let x P pσ, Jq. Define xxy � tσpa, xq; a P Lu. Then

pσ, xxyq is an L-subslice of pσ, Jq and it is the smallest L-subslice of pσ, Jq containing

x.

62



Proposition 4.2.3. The intersection of any family of L-subslices of an L-slice (σ, J)

is again an L-subslice of (σ, J).

Proof. Let (σ, J) be an L-slice and let tpσ, Jαqu be any collection of L-subslices of

(σ, J). Then
�
Jα is a sub join semilattice of J .

Let a P L and x P
�
Jα. x P

�
Jα implies that x P Jα for every α.

Since each pσ, Jαq is an L-subslice of pσ, Jq, we have σpa, xq P Jα for every α.

Hence σpa, xq P
�
Jα. This shows that pσ,

�
Jαq is an L-subslice of pσ, Jq.

Remark. Union of two L-subslices of an L-slice pσ, Jq need not be an L-subslice of

pσ, Jq as union of two subjoin semilattices of J need not be a subjoin semilattice. If

pσ, J 1q and pσ, J2q be two L-subslices of the L-slice pσ, Jq, define

J 1
�
J2 � tx_y : x P J 1, y P J2u. Then we can show that pσ, J 1

�
J2q is an L-subslice

of pσ, Jq.

Proposition 4.2.4. Let pσ, J 1q and pσ, J2q be two L-subslices of the L-slice pσ, Jq of

a locale L, then pσ, J 1
�
J2q is an L-subslice of the L-slice pσ, Jq and it is the smallest

L-subslice of pσ, Jq containing both pσ, J 1q and pσ, J2q.

Proof. Since pσ, J 1q and pσ, J2q are L-subslices of the L-slice pσ, Jq, J 1 and J2 are

subjoin semilattices of J and so is J 1
�
J2. Let x_ y P J 1

�
J2 and a P L.

σpa, x_ yq � σpa, xq _ σpa, yq P J 1
�
J2.

Hence pσ, J 1
�
J2q is an L-subslice of the L-slice pσ, Jq.

For each x P pσ, J 1q, x � x_ 0 P pσ, J 1
�
J2q. Hence pσ, J 1q � pσ, J 1

�
J2q.

Similarly pσ, J2q � pσ, J 1
�
J2q.

Let pσ, J1q be any other L-subslice of the L-slice pσ, Jq such that

pσ, J 1q � pσ, J1q and pσ, J2q � pσ, J1q.

For any z P pσ, J 1
�
J2q, there exist x P pσ, J 1q and y P pσ, J2q such that z � x_ y.
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Since x, y P pσ, J1q, z � x_ y P pσ, J1q.

Hence pσ, J 1
�
J2q is the smallest L-subslice of pσ, Jq containing both pσ, J 1q and

pσ, J2q.

Proposition 4.2.5. Let pσ, J 1q be an L-subslice of the L-slice pσ, Jq for a locale L.

For any a P L, let σpa, J 1q � tσpa, xq : x P J 1u. Then pσ, σpa, J 1qq is an L-subslice of

pσ, Jq.

Proof. Since pσ, J 1q is an L-subslice of pσ, Jq, σpa, J 1q � J 1.

Let σpa, xq, σpa, yq P σpa, J 1q and b P L. Then x, y P pσ, J 1q. Since pσ, J 1q is an

L-subslice of pσ, Jq, x_ y, σpb, xq P pσ, J 1q.

Thus σpa, xq _ σpa, yq � σpa, x_ yq P σpa, J 1q and

σpb, σpa, xqq � σpa, σpb, xqq P σpa, J 1q.

Hence for any a P L, pσ, σpa, J 1qq is an L-subslice of pσ, Jq.

Lemma 4.2.6. Let pσ, J1q, pσ, J2q be two L-subslices of the L-slice pσ, Jq for a locale

L. Then for any a P L, σpa, J1
�
J2q � σpa, J1q

�
σpa, J2q.

Proof. Let x P σpa, J1
�
J2q. Then x � σpa, j1 _ j2q.

That is x � σpa, j1q _ σpa, j2q P σpa, J1q
�
σpa, J2q.

Hence σpa, J1
�
J2q � σpa, J1q

�
σpa, J2q.

y P σpa, J1q
�
σpa, J2q implies y � σpa, j1q _ σpa, j2q.

Thus y � σpa, j1 _ j2q P σpa, J1
�
J2q.

Hence σpa, J1q
�
σpa, J2q � σpa, J1

�
J2q. This completes the proof.

4.3. Factor Slice

Let pσ, J 1q be an L-subslice of the L-slice pσ, Jq for a locale L and let x P pσ, J 1q.

Define x_ J 1 � tx_ y; y P pσ, J 1qu. We will study various propertis of x_ J 1 and will
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make use of them to define the factor slice.

Lemma 4.3.1. Let pσ, J 1q be an L-subslice of the L-slice pσ, Jq and let x P pσ, Jq.

Then x_ J 1 � J 1 if and only if x P pσ, J 1q.

Proof. First let x_ J 1 � J 1. Since pσ, J 1q is an L-subslice of pσ, Jq, 0 P pσ, J 1q.

Hence x � x_ 0 P x_ J 1 � J 1. Thus x P pσ, J 1q.

Conversely let x P pσ, J 1q. Then for any y P pσ, J 1q, since x P J 1, x_y P pσ, J 1q. Hence

x_ J 1 � J 1.

Proposition 4.3.2. Let pσ, J1q, pσ, J2q be two L-subslices of the L-slice pσ, Jq such

that J1 � J2 and let x P pσ, Jq. Then x_ J1 � x_ J2.

Proof. Let x P pσ, Jq and J1 � J2. Let y P x _ J1, then y � x _ j for some j P J1.

Since J1 � J2, j P J2 and so y � x_ j P x_ J2. Hence x_ J1 � x_ J2.

Let pσ, J 1q be an L-subslice of the L-slice pσ, Jq for a locale L. Consider the set

J{J 1 � tx _ J 1 : x P pσ, Jqu. We will prove that pδ, J{J 1q is an L-slice, where the

action δ : L� J{J 1 Ñ J{J 1 is defined by δpa, x_ J 1q � σpa, xq _ J 1.

Proposition 4.3.3. Let pσ, J 1q be an L-subslice of the L-slice pσ, Jq. Then pδ, J{J 1q

is an L-slice.

Proof. Let px_ J 1qY py _ J 1q � px_ yq _ J 1. Then pJ{J 1,Y, J 1q is a join semilattice

with bottom element J 1. We will show that δ is an action on J{J 1.

i. δpa, px_ J 1qY py _ J 1qq � δpa, px_ yq _ J 1q � σpa, x_ yq _ J 1

� pσpa, xq _ σpa, yqq _ J 1 � pσpa, xq _ J 1qY pσpa, yq _ J 1q

� δpa, x_ J 1qY δpa, y _ J 1q

ii. δpa, J 1q � δpa, 0_ J 1q � σpa, 0Jq _ J 1 � 0J _ J 1 � J 1
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iii. δpa[ b, x_ J 1q � σpa[ b, xq _ J 1 � σpa, σpb, xqq _ J 1

� δpa, σpb, xq _ J 1q � δpa, δpb, x_ J 1qq

iv. δp1L, x_ J 1q � σp1L, xq _ J 1 � x_ J 1

δp0L, x_ J 1q � σp0L, xq _ J 1 � 0J _ J 1 � J 1

v. δpa\ b, x_ J 1q � σpa\ b, xq _ J 1 � pσpa, xq _ σpb, xqq _ J 1

� pσpa, xq _ J 1qY pσpb, xq _ J 1q � δpa, x_ J 1qY δpb, x_ J 1q

Hence pδ, J{J 1q is an L-slice.

Definition 4.3.4. The L-slice pδ, J{J 1q described in proposition 4.3.3 is called factor

of L-slice pσ, Jq with respect to the subslice pσ, J 1q.

Proposition 4.3.5. Let pσ, Jq be an L-slice of a locale L and pσ, J 1q be L-subslice of

pσ, Jq. Then the map φ : pσ, Jq Ñ pδ, J{J 1q defined by φpxq � x _ J 1 is an L-slice

homomorphism.

Proof. φpx_ yq � px_ yq _ J 1 � px_ J 1qY py _ J 1q � φpxqY φpyq and

φpσpa, xqq � σpa, xq _ J 1 � δpa, x_ J 1q � δpa, φpxqq.

Hence φ is an L-slice homomorphism.

The L-slice homomorphism φ : J Ñ J{J 1 of proposition 4.3.5 is called canonical

L-slice homomorphism from an L-slice to its factor slice.

4.4. L-slice congruence

In this section we define congruence R on L-slice for a locale L and discuss its various

properties. For each congruence R on an L-slice pσ, Jq of a locale, we prove that
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pγ, J{Rq is an L-slice, where J{R denotes the collection of all equivalence classes with

respect to the relation R and γ : L� J{RÑ J{R is defined by γpa, rxsq � rσpa, xqs.

Definition 4.4.1. Let pσ, Jq be an L-slice of a locale L. An equivalence relation R

on pσ, Jq is called an L-slice congruence if

i. xRy implies x_ zRy _ z for any x, y, z P pσ, Jq

ii. xRy implies σpa, xqRσpa, yq for all a P L, x, y P pσ, Jq.

Proposition 4.4.2. Let pσ, Jq, pµ,Kq be two L-slices of a locale L and let

f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then the relation R on pσ, Jq

defined by xRy if and only if fpxq � fpyq is a congruence on pσ, Jq.

Proof. Clearly, the relation R is an equivalence relation on pσ, Jq. Let xRy and

z P pσ, Jq. Then we have fpxq � fpyq.

fpx_ zq � fpxq _ fpzq � fpyq _ fpzq � fpy _ zq. Hence x_ zRy _ z.

For any a P L, fpσpa, xqq � µpa, fpxqq � µpa, fpyqq � fpσpa, yqq. So σpa, xqRσpa, yq.

Hence R is a congruence on pσ, Jq.

Definition 4.4.3. The L-slice congruence R discussed in proposition 4.4.2 is called

natural congruence associated with the L-slice homomorphism f : pσ, Jq Ñ pµ,Kq.

Definition 4.4.4. Let R,R1 be two L-slice congruences on an L-slice pσ, Jq of a locale

L. We say that the congruence R is weaker than the congruence R1, or R1 is stronger

than R, if for any x, y P pσ, Jq, xR1y whenever xRy and we write R � R1.

Two L-slice congruences R,R1 on an L-slice pσ, Jq are equivalent if R � R1 and

R1 � R.

Proposition 4.4.5. Let pσ, Jq, pµ,Kq be two L-slices of a locale L and let

f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then the relation R1 on pσ, Jq
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defined by xR1y if and only if µpa, fpxqq � µpa, fpyqq for some a P L is a congruence

on pσ, Jq and is stronger than the natural congruence R on pσ, Jq.

Proof. The relation R1 is clearly reflexive and symmetric.

For transitivity, let xR1y, yR1z. Then there exist a, b P L such that

µpa, fpxqq � µpa, fpyqq and µpb, fpyqq � µpb, fpzqq.

µpa[ b, fpxqq � µpb, µpa, fpxqqq � µpb, µpa, fpyqqq

� µpa, µpb, fpyqqq � µpa, µpb, fpzqqq

� µpa[ b, fpzqq

Hence xR1z. So the relation R1 is an equivalence relation.

Let xR1y, then there exist a P L such that µpa, fpxqq � µpa, fpyqq and let

z P pσ, Jq, b P L.

µpa, fpx_ zqq � µpa, fpxq _ fpzqq � µpa, fpxqq _ µpa, fpzqq

� µpa, fpyqq _ µpa, fpzqq � µpa, fpyq _ fpzqq

� µpa, fpy _ zqq

Hence x_ zR1y _ z.

µpa, fpσpb, xqqq � µpa, µpb, fpxqqq � µpb, µpa, fpxqqq

� µpb, µpa, fpyqqq � µpa, µpb, fpyqqq

� µpa, fpσpb, yqqq

So σpb, xqR1σpb, yq. Hence R1 is a congruence on pσ, Jq.
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Suppose x, y P pσ, Jq such that xRy where R is the natural congruence induced by

the L-slice homomorphism f : pσ, Jq Ñ pµ,Kq.

Then fpxq � fpyq or µp1, fpxqq � µp1, fpyqq. Hence xR1y.

So R1 is stronger than R.

Proposition 4.4.6. Let pσ, Jq be an L-slice of a locale L and let tRαu be an arbitrary

collection of congruences on pσ, Jq. Then XRα is a congruence on pσ, Jq.

Proof. xXRαy if and only if xRαy for all α. Clearly XRα is an equivalence relation.

Let xXRαy and let z P pσ, Jq, a P L. xXRαy implies xRαy for all α. Since each Rα is

a congruence on pσ, Jq, x_zRαy_z and σpa, xqRασpa, yq for all α. So x_zXRαy_z

and σpa, xq XRασpa, yq. Hence XRα is a congruence on pσ, Jq.

Proposition 4.4.7. Let R be a congruence on the L-slice pσ, Jq of a locale L. For each

a P L, the relation Ra defined by xRay if and only if σpa, xqRσpa, yq is a congruence

on the L-slice pσ, Jq and it is stronger than the congruence R.

Proof. For each a P L, the relation Ra is an equivalence relation. Let xRay and let

z P pσ, Jq, b P L. Since xRay, we have σpa, xqRσpa, yq.

Since R is a congruence on pσ, Jq, σpa, xq _ σpa, zqRσpa, yq _ σpa, zq and

σpb, σpa, xqqRσpb, σpa, yqq.

That is we have σpa, x_ zqRσpa, y _ zq and σpa, σpb, xqqRσpa, σpb, yqq.

So x_ zRay _ z and σpb, xqRaσpb, yq. Hence Ra is a congruence on pσ, Jq.

Let xRy, then by definition of congruence, σpa, xqRσpa, yq and so xRay. Hence the

congruence Ra is stronger than the congruence R.

Remark. The relation Φ on the L-slice pσ, Jq defined by xΦy for all x, y P pσ, Jq is a

congruence on the L-slice pσ, Jq.
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Proposition 4.4.8. Let R,R1,Φ be congruences on an L-slice pσ, Jq of a locale L and

let a, b P L.

i. pR XR1qa � Ra XR1
a.

ii. Φa � Φ for all a P L.

iii. Ra[b � pRaqb � pRbqa.

iv. R1 � R and R0 � Φ.

Proof. Let R,R1,Φ be congruences on an L-slice pσ, Jq and let a, b P L.

i. xpR XR1qay if and only if σpa, xqR XR1σpa, yq

if and only if σpa, xqRσpa, yq and σpa, xqR1σpa, yq

if and only if xRay and xR1
ay

if and only if xRa XR1
ay.

Hence pR XR1qa � Ra XR1
a.

ii. xΦay if and only if σpa, xqΦσpa, yq

if and only if xΦy.

Hence Φa � Φ for all a P L.

iii. xRa[by if and only if σpa[ b, xqRσpa[ b, yq

if and only if σpa, σpb, xqqRσpa, σpb, yqq

if and only if σpb, xqRaσpb, yq

if and only if xpRaqby

Hence Ra[b � pRaqb � pRbqa.

iv. xR1y if and only if σp1, xqRσp1, yq

if and only if xRy.
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Hence R1 � R.

All elements of pσ, Jq are related with the congruence R0 since σp0, xqRσp0, yq for all

x, y P pσ, Jq. Hence R0 � Φ.

Definition 4.4.9. A congruence R on an L-slice pσ, Jq of a locale L with the property

that σpa\ b, xqRσpa\ b, yq if and only if σpa, xqRσpa, yq and σpb, xqRσpb, yq is called

relative congruence.

Let ConpJq denotes the collection of all relative congruences on the L-slice

pσ, Jq of a locale L. We will show that ConpJq is an L-slice under the action

ψ : L� ConpJq Ñ ConpJq defined by ψpa,Rq � Ra.

Proposition 4.4.10. Let ConpJq denotes the collection of all relative congruences

on the L-slice pσ, Jq. Then pψ,ConpJqq is an L-slice.

Proof. Order ConpJq by R ¤ R1 if R1 � R. Then R_R1 � RXR1. Hence ConpJq is

a join semilattice with bottom element Φ.

Define ψ : L� ConpJq Ñ ConpJq by ψpa,Rq � Ra.

Then by proposition 4.4.8

i. ψpa,R _R1q � ψpa,Rq _ ψpa,R1q

ii. ψpa,Φq � Φ

iii. ψpa[ b, Rq � ψpa, ψpb, Rqq � ψpb, ψpa,Rqq

iv. ψp1, Rq � R,ψp0, Rq � Φ

Also since ConpJq is a collection of relative congruences, we have

Ra\b � Ra XRb � Ra _Rb. Hence

v. ψpa\ b, Rq � ψpa,Rq _ ψpb, Rq. Hence pψ,ConpJqq is an L-slice.

Let R be a congruence on pσ, Jq and let J{R denotes the collection

of all equivalence classes with respect to the relation R. Then J{R is a join semilattice
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with bottom element r0J s, where the partial order ¤ on J{R is defined by rxs ¤ rys

if and only if x ¤ y in pσ, Jq. In the next proposition, we will show that pγ, J{Rq is

an L-slice where the action γ : L� J{RÑ J{R is defined by γpa, rxsq � rσpa, xqs.

Proposition 4.4.11. If R is a congruence relation on pσ, Jq, then pγ, J{Rq is an

L-slice.

Proof. Clearly the mapping γ : L � J{R Ñ J{R defined by γpa, rxsq � rσpa, xqs is

well defined.

i. γpa, rxs _ rysq � γpa, rx_ ysq � rσpa, x_ yqs � rσpa, xq _ σpa, yqs

� rσpa, xqs _ rσpa, yqs � γpa, rxsq _ γpa, rysq.

ii. γpa, r0J sq � rσpa, 0Jqs � r0J s

iii. γpa[ b, rxsq � rσpa[ b, xqs � rσpa, σpb, xqqs

� γpa, rσpb, xqsq � γpa, γpb, rxsqq.

iv. γp1L, rxsq � rσp1L, xqs � rxs

γp0L, rxsq � rσp0L, xqs � r0J s

v. γpa\ b, rxsq � rσpa\ b, xqs � rσpa, xq _ σpb, xqs

� rσpa, xqs _ rσpb, xqs � γpa, rxsq _ γpb, rxsq.

Hence γ is an action of L on J{R and pγ, J{Rq is an L-slice.

Definition 4.4.12. Let pσ, Jq be an L-slice of a locale L and R be a congruence on

pσ, Jq. Then the L-slice pγ, J{Rq described in proposition 4.4.11 is called quotient

slice of L-slice pσ, Jq with respect to the congruence R.
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Proposition 4.4.13. Let R be an L-slice congruence on an L-slice pσ, Jq of a locale

L and let pγ, J{Rq be the corresponding quotient slice. Then the map

π : pσ, Jq Ñ pγ, J{Rq defined by πpxq � rxs is an onto L-slice homomorphism.

Proof. For x, y P pσ, Jq, a P L, πpx_ yq � rx_ ys � rxs _ rys � πpxq _ πpyq

πpσpa, xqq � rσpa, xqs � γpa, rxsq � γpa, πpxqq.

Also for each rxs P pγ, J{Rq, there is an x P pσ, Jq such that πpxq � rxs.

Thus π : pσ, Jq Ñ pγ, J{Rq is an onto L-slice homomorphism.

Definition 4.4.14. Let pσ, Jq be an L-slice of a locale L. For each a P L, the map

σa : pσ, Jq Ñ pσ, Jq defined by σapxq � σpa, xq is an L-slice homomorphism.

Remark. More about L-slice homomorphism σa are studied in chapter 5.

Proposition 4.4.15. Let R be a congruence on the L-slice pσ, Jq of a locale L such

that R and Ra are equivalent and let pγ, J{Rq be the quotient slice of pσ, Jq with

respect to R. Then the L-slice homomorphism γa : pγ, J{Rq Ñ pγ, J{Rq defined by

γaprxsq � γpa, rxsq is one-one.

Proof. Let rxs, rys P J{R such that γaprxsq � γaprysq.

Then rσpa, xqs � rσpa, yqs. Hence σpa, xqRσpa, yq.

But since congruences R and Ra are equivalent, xRy and hence rxs � rys.

Thus γa is one-one.

Proposition 4.4.16. Let R be a congruence on L-slice pσ, Jq for a locale L such that

R and Ra are equivalent and let pγ, J{Rq be the quotient slice of pσ, Jq with respect to

R. Then the natural congruence R1 induced by L-slice homomorphism σa is weaker

than the congruence R.
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Proof. Let R1 be the natural congruence induced by the L-slice homomorphism σa

and let xR1y. Then we have σapxq � σapyq.

Then rσpa, xqs � rσpa, yqs, where r sis the equivalence class determined by the con-

gruence R. Thus γarxs � γarys. But since γa is one-one rxs � rys. Hence xRy and so

R1 � R.

Proposition 4.4.17. Let R be a congruence on L-slice pσ, Jq for a locale L and

pγ, J{Rq be the corresponding quotient slice and let a P L. If σa : pσ, Jq Ñ pσ, Jq is

onto, then γa : pγ, J{Rq Ñ pγ, J{Rq is onto.

Proof. Suppose σa : pσ, Jq Ñ pσ, Jq is onto and let rys P J{R.

Then y P J , and since σa is onto, there exist x P pσ, Jq such that σapxq � y.

Then rσapxqs � rσpa, xqs � γpa, rxsq � γaprxsq � rys.

Hence γa : pγ, J{Rq Ñ pγ, J{Rq is onto.

Proposition 4.4.18. Let R be a congruence on L-slice pσ, Jq for a locale L and

pγ, J{Rq be the corresponding quotient slice and let a P L. Then

γa : pγ, J{Rq Ñ pγ, J{Rq is onto if and only if R has the property that for each

y P pσ, Jq, there exist some x P pσ, Jq such that σpa, xqRy.

Proof. First suppose γa : pγ, J{Rq Ñ pγ, J{Rq is onto and let y P pσ, Jq.

Then rys P pγ, J{Rq. Since γa : pγ, J{Rq Ñ pγ, J{Rq is onto, there exist rxs P pγ, J{Rq

such that γaprxsq � rys. That is rσpa, xqs � rys.

Hence σpa, xqRy.

For converse, let rys P pγ, J{Rq. Then y P pσ, Jq and by hypothesis there exist

x P pσ, Jq such that σpa, xqRy. Then rσpa, xqs � rys or γaprxsq � rys.

Hence γa : pγ, J{Rq Ñ pγ, J{Rq is onto.
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4.5. Ideal

Definition 4.5.1. A subslice pσ, Iq of an L-slice (σ, J) is said to be ideal of pσ, Jq if

x P pσ, Iq and y P pσ, Jq are such that y ¤ x, then y P pσ, Iq.

Proposition 4.5.2. Let (σ, J) be an L-slice of a locale L and tpσ, Iαq : α P ∆u be a

family of ideals of (σ, J) and let I �
�
Iα. Then pσ, Iq is an ideal of (σ, J).

Proof. By Proposition 4.2.3, pσ, Iq is a subslice of (σ, J). Let x P pσ, Iq and let

y P pσ, Jq such that y ¤ x. x P pσ, Iq implies that x P pσ, Iαq for all α. Since each

pσ, Iαq is an ideal of (σ, J), y P pσ, Iαq for all α. Hence y P pσ, Iq. Thus pσ, Iq is an

ideal of the L-slice (σ, J).

Definition 4.5.3. An ideal pσ, Iq of an L-slice (σ, J) is a prime ideal if it has the

following properties:

i. If a and b are any two elements of L such that σpa [ b, xq P pσ, Iq, then either

σpa, xq P pσ, Iq or σpb, xq P pσ, Iq.

ii. pσ, Iq is not equal to the whole slice (σ, J).

Definition 4.5.4. Let L be a locale and pσ, Jq be an L-slice. An ideal pσ, Iq of an

L-slice pσ, Jq is called minimal ideal if it properly contains no ideal other than the

zero ideal pσ, t0uq.

Proposition 4.5.5. Any two distinct minimal ideal of an L-slice pσ, Jq of a locale L

are disjoint.

Proof. Let pσ, Iq, pσ,Kq be any two distinct minimal ideals of the L-slice pσ, Jq. Since

intersection of two ideals in pσ, Jq is an ideal in pσ, Jq, pσ, I XKq is an ideal in pσ, Jq

and pσ, I X Kq � pσ, Iq and pσ, I X Kq � pσ,Kq. But since pσ, Iq and pσ,Kq are

minimal, pσ, I XKq is the zero ideal pσ, t0uq.
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4.6. Annihilator

Proposition 4.6.1. Let pσ, J 1q, pσ, J2q be two L-subslices of the L-slice pσ, Jq for a

locale L. Then xJ 1, J2y � ta P L : σpa, J2q � pσ, J 1qu is an ideal in L.

Proof. Since σp0, J2q � t0u � J 1, 0 P xJ 1, J2y. Let a, b P xJ 1, J2y.

Then σpa, J2q � pσ, J 1q and σpb, J2q � pσ, J 1q.

Let σpa_ b, xq P σpa_ b, J2q. Then σpa_ b, xq � σpa, xq _ σpb, xq.

But σpa, xq P σpa, J2q � pσ, J 1q and σpb, xq P σpb, J2q � pσ, J 1q.

Since pσ, J 1q is an L-subslice of pσ, Jq, σpa_ b, xq � σpa, xq _ σpb, xq P pσ, J 1q.

Thus σpa_ b, J2q � pσ, J 1q. Hence a_ b P xJ 1, J2y.

Let a P xJ 1, J2y and b P L such that b ¤ a.

σpb, xq � σpb [ a, xq � σpa, σpb, xqq P σpa, J2q � pσ, J 1q. Thus σpb, J2q � pσ, J 1q and

so b P xJ 1, J2y. Hence xJ 1, J2y is an ideal in L.

Definition 4.6.2. Let pσ, Jq be an L-slice. The ideal x0, Jy of L is called the annihi-

lator of the L-slice pσ, Jq and is denoted by AnnpJq.

Proposition 4.6.3. Let pσ, Jq be an L-slice of a locale L. Then

AnnpJq � ta P L : σa � 0u.

Proof. Let pσ, Jq be an L-slice of a locale L.

a P AnnpJq if and only if σpa, jq � 0 for all j P pσ, Jq

if and only if σapjq � 0 for all j P pσ, Jq

if and only if σa � 0.

Hence AnnpJq � ta P L : σa � 0u.
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Proposition 4.6.4. Let pσ, Jq be an L-slice of a locale L. If the action σ : L�J Ñ J

satisfies the property σpa, xq � 0 implies a � 0 or x � 0, then AnnpJq is a prime

ideal.

Proof. Let pσ, Jq be an L-slice of a locale L and the action σ : L � J Ñ J satisfies

the property σpa, xq � 0 implies a � 0 or x � 0. By Proposition 4.6.1 AnnpJq is an

ideal in L.

Let a[ b P AnnpJq. If a � 0, then a P AnnpJq and so AnnpJq is prime ideal.

Suppose a � 0. Then a[ b P AnnpJq implies that σpa[ b, Jq � 0.

That is σpa[ b, jq � σpa, σpb, jqq � 0 for all j P J .

Since a � 0, by the property of σ, we have σpb, jq � 0 for all j P J . Hence b P AnnpJq.

Thus AnnpJq is a prime ideal in L.

Definition 4.6.5. An L-slice pσ, Jq of a locale L is said to be faithful if AnnpJq � t0u.

Example 4.6.6. The L-slice p[, Lq is faithful.

Proposition 4.6.7. If pσ, J1q, pσ, J2q are two L-subslices of the L-slice pσ, Jq, then

AnnpJ1
�
J2q � AnnpJ1q X AnnpJ2q.

Proof. Let a P AnnpJ1
�
J2q. Then we have σpa, J1

�
J2q � t0u .

Then by lemma 4.2.6, σpa, J1q
�
σpa, J2q � t0u. Then we must have σpa, J1q � t0u

and σpa, J2q � t0u. Thus a P AnnpJ1
�
J2q implies a P AnnpJ1q X AnnpJ2q.

Hence AnnpJ1
�
J2q � AnnpJ1q X AnnpJ2q.

Let b P AnnpJ1q X AnnpJ2q implies σpb, J1q � t0u and σpb, J2q � t0u.

Thus σpb, J1q
�
σpb, J2q � σpb, J1

�
J2q � t0u. This implies b P AnnpJ1q

�
AnnpJ2q.

Hence AnnpJ1
�
J2q � AnnpJ1q X AnnpJ2q.
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4.7. Sublocale of a locale using its Slice

In this section we discuss a method of obtaining sublocale of a locale L from L-slice

of its ideals. In 2.1.9, M � tIa; a P Lu is a complete lattice under the partial order

�. Define σ : L�M ÑM by σpa, Ibq � pIbqa. In the next proposition, we will show

that pσ,Mq is an L-slice.

Lemma 4.7.1. Let L be a locale and I be any ideal of L. For a, b P L,

pIbqa � pIaqb � Ia[b.

Proof. Let a, b P L

x P pIaqb ô b[ x P Ia

ô a[ pb[ xq P I

ô pa[ bq [ x P I

ô x P Ia[b

Hence pIaqb � Ia[b.

Proposition 4.7.2. Let L be a locale and I be any ideal, which is closed under

arbitrary join, of L. Then pσ,Mq is an L-slice of L.

Proof. σ : L�M ÑM be defined by σpa, Ibq � pIbqa.

i. σpa\ b, Icq � pIcqa\b � Ic[pa\bq � Ipc[aq\pc[bq

� Ic[a X Ic[b � pIcqa _ pIcqb

� σpa, Icq _ σpb, Icq

ii. σpa, Ib _ Icq � σpa, Ib X Icq � σpa, Ib\cq � pIb\cqa � Ia[pb\cq

� Ipa[bq\pa[cq � Ia[b X Ia[c � pIbqa _ pIcqa

� σpa, Ibq _ σpa, Icq
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iii. σpa, I0q � pI0qa � Ia[0 � I0

iv. σpa[ b, Icq � pIcqa[b � Ic[pa[bq � pIc[aqb � σpb, Ic[aq

� σpb, σpa, Icqq � σpa, σpb, Icqq

v. σp1, Iaq � pIaq1 � Ia[1 � Ia

σp0, Iaq � pIaq0 � Ia[0 � I0

Hence pσ,Mq is an L-slice.

By 2.2.3, the sublocale L{RI is determined by the congruence aRb if and only

if Ia � Ib. But this is equivalent to the natural congruence associated with the L-

slice homomorphism σI1 � σI : p[, Lq Ñ pσ,Mq. Hence the sublocale L{RI can be

represented as a quotient L-slice of p[, Lq
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Chapter 5

L-slice Homomorphisms and their

properties

We have defined L-slice homomorphism between two L-slices of a locale L. It has

been proved that the collection pδ, L�HompJ,Kqq of all L-slice homomorphisms from

pσ, Jq to pµ,Kq is an L-slice with respect to the action δ and that every L-slice (σ, J)

is isomorphic to a subslice of pδ, L�HompL, Jqq.

5.1. Properties of L-slice Homomorphism

Definition 5.1.1. Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be L-slice homomorphism if

i. fpx1 _ x2q � fpx1q _ fpx2q for all x1, x2 P pσ, Jq.

ii. fpσpa, xqq � µpa, fpxqq for all a P L and all x P pσ, Jq.

Examples 5.1.2. i. Let pσ, Jq be an L-slice and pσ, J 1q be an L-subslice of pσ, Jq.

Then the inclusion map i : pσ, J 1q Ñ pσ, Jq is an L-slice homomorphism.
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ii. Let I �Ó paq, J �Ó pbq be principal ideals of the locale L. Then pσ, Iq, pσ, Jq are

L-slices. Then the map f : pσ, Iq Ñ pσ, Jq defined by fpxq � x [ b is an L-slice

homomorphism.

Proposition 5.1.3. If f : pσ, Jq Ñ pµ,Kq is a L-slice homomorphism, then

fp0Jq � 0K.

Proof. Let (σ, J), (µ,K) be L-slices of a locale L and f : pσ, Jq Ñ pµ,Kq be a L-slice

homomorphism.

fp0Jq � fpσp0, xqq � µp0, fpxqq � 0K .

Proposition 5.1.4. The composition of two L-slice homomorphisms is an L-slice

homomorphism.

Proof. Let pσ, J1q, pµ, J2q, pδ, J3q be L-slices of a locale L.

Let f : pσ, J1q Ñ pµ, J2q and g : pµ, J2q Ñ pδ, J3q be L-slice homomorphisms and let

x1, x2 P pσ, J1q.

pg � fqpx1 _ x2q � gpfpx1 _ x2qq � gpfpx1q _ fpx2qq

� gpfpx1qq _ gpfpx2qq � pg � fqpx1q _ pg � fqpx2q

Let a P L and x P pσ, J1q.

pg � fqpσpa, xqq � gpfpσpa, xqqq � gpµpa, fpxqqq � δpa, gpfpxqqq

� δpa, pg � fqpxqq

Thus g � f is an L-slice homomorphism.

Proposition 5.1.5. Let (σ, J),(µ,K) be L-slices of a locale L and let

f : pσ, Jq Ñ pµ,Kq be L-slice homomorphism. Let pσ, J 1q be an L-subslice of pσ, Jq

81



and pµ,K 1q be an L-subslice of pµ,Kq.

i. Let fpJ 1q � tfpxq;x P pσ, J 1qu. Then pµ, fpJ 1qq is an L-subslice of pµ,Kq.

ii. Let f�1pK 1q � tx P pσ, Jq : fpxq P pµ,K 1qu. Then pσ, f�1pK 1qq is an L-subslice of

pσ, Jq.

iii. For any x P pσ, Jq,fpxxyq � xfpxqy.

Proof. i. Let fpxq, fpyq P pµ, fpJ 1qq. Then x, y P pσ, J 1q. Since pσ, J 1q is an L-subslice

of pσ, Jq, x_ y P pσ, J 1q. Hence fpxq _ fpyq � fpx_ yq P pµ, fpJ 1qq.

Let a P L and fpxq P pµ, fpJ 1qq. Then µpa, fpxqq � fpσpa, xqq P pµ, fpJ 1qq. Hence

pµ, fpJ 1qq is an L-subslice of pµ,Kq.

ii. Let x, y P pσ, f�1pK 1qq. Then fpxq, fpyq P pµ,K 1q. Since pµ,K 1q is an L-subslice

of pµ,Kq, fpx _ yq � fpxq _ fpyq P pµ,K 1q and fpσpa, xqq � µpa, fpxqq P pµ,K 1q

for a P L. Hence x _ y, σpa, xq P pσ, f�1pK 1qq. Thus pσ, f�1pK 1qq is an L-subslice of

pσ, Jq.

iii. y P fpxxyq if and only if y � fpσpa, xqq � µpa, fpxqq

if and only if y P xfpxqy

Hence fpxxyq � xfpxqy.

Proposition 5.1.6. Let (σ, J),(µ,K) be L-slices of a locale L and f : pσ, Jq Ñ pµ,Kq

be L-slice homomorphism.

i. Let kerf � tx P J : fpxq � 0Ku. Then pσ, kerfq is an ideal of (σ, J).

ii. Let imf � ty P K : y � fpxq for some x P pσ, Jqu. Then pµ, imfq is an

L-subslice of (µ,K).

Proof. Let (σ, J), (µ,K) be L-slices of a locale L.

i. Let x1, x2 P kerf . Then we have fpx1q � fpx2q � 0K .
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fpx1 _ x2q � fpx1q _ fpx2q � 0K .

Thus x1_x2 P kerf . Hence kerf is subjoin semilattice of J with bottom element 0J .

Let x P kerf and a P L. We have to show that σpa, xq P pσ, kerfq.

We have fpσpa, xqq � µpa, fpxqq � µpa, 0Kq � 0K . Hence σpa, xq P pσ, kerfq.

Thus pσ, kerfq is a L-subslice of pσ, Jq.

Let x P pσ, kerfq and y P pσ, Jq such that y ¤ x. Since f preserves join, we have

fpyq ¤ fpxq. Thus fpyq ¤ 0K . So y P pσ, kerfq. Hence pσ, kerfq is an ideal of (σ, Jq.

ii. Since 0K � fp0Jq, 0K P imf .

Let y1, y2 P imf . Then fpx1q � y1, fpx2q � y2 for some x1, x2 P pσ, Jq.

y1 _ y2 � fpx1q _ fpx2q � fpx1 _ x2q. Hence y1 _ y2 P imf . Thus imf is a subjoin

semilattice of K with bottom element 0K .

Let a P L and y � fpxq P imf .

µpa, yq � µpa, fpxqq � fpσpa, xqq P pµ, imfq.

Thus pµ, imfq is an L-subslice of (µ,K).

Proposition 5.1.7. Let (σ, J)be an L-slice of a locale L, f : pσ, Jq Ñ pσ, Jq be an

L-slice homomorphism and Fixf � tx P pσ, Jq : fpxq � xu. Then pσ, F ixf q is an

L-subslice of (σ, J)

Proof. Since fp0Jq � 0J , 0J P Fixf . Thus Fixf is nonempty.

Let x1, x2 P Fixf . Then fpx1q � x1, fpx2q � x2.

fpx1 _ x2q � fpx1q _ fpx2q � x1 _ x2.

Hence x1_x2 P Fixf and Fixf is a subjoin semilattice of J with bottom element 0J .

Let a P L, x P pσ, F ixf q. Now fpσpa, xqq � σpa, fpxqq � σpa, xq.

Thus pσ, F ixf q is an L-subslice of (σ, J).

Proposition 5.1.8. Let (σ, J), (µ,K) be L-slices of a locale L and let

83



f : pσ, Jq Ñ pµ,Kq be L-slice homomorphism. If pµ, Iq be an ideal of (µ,K), then

pσ, f�1pIqq is an ideal of (σ, J). In particular if pµ, Iq is prime ideal, then pσ, f�1pIqq

is a prime ideal of (σ, J).

Proof. Let x, y P pσ, f�1pIqq. Then fpxq, fpyq P pµ, Iq.

Since pµ, Iq is an ideal, fpx_ yq � fpxq _ fpyq P pµ, Iq. Thus x_ y P f�1pIq. Hence

f�1pIq is a subjoin semilattice of J .

Also for each x P pσ, f�1pIqq and a P L, fpσpa, xqq � µpa, fpxqq P pµ, Iq.

Thus σpa, xq P pσ, f�1pIqq. Hence pσ, f�1pIqq is a L-subslice of (σ, J).

Let x P pσ, f�1pIqq and y P pσ, Jq such that y ¤ x.

Since f preserves join, f preserves order. Hence fpyq ¤ fpxq. Since fpxq P pµ, Iq and

pµ, Iq is an ideal of pµ,Kq, fpyq P pµ, Iq. Hence y P pσ, f�1pIqq. Thus pσ, f�1pIqq is

an ideal of pσ, Jq.

Now let pµ, Iq be prime ideal of (µ,K).

Suppose σpa[ b, xq P pσ, f�1pIqq, then fpσpa[ b, xqq � µpa[ b, fpxqq P pµ, Iq.

Since pµ, Iq is prime, either fpσpa, xqq � µpa, fpxqq P pµ, Iq or

fpσpb, xqq � µpb, fpxqq P pµ, Iq. So either σpa, xq P pσ, f�1pIqq or σpb, xq P pσ, f�1pIqq.

Hence pσ, f�1pIqq is a prime ideal of (σ, J).

Proposition 5.1.9. Let (σ, J), (µ,K) be L-slices and let f : pσ, Jq Ñ pµ,Kq be a

bijective L-slice homomorphism. Then the map f�1 : pµ,Kq Ñ pσ, Jq is an L-slice

homomorphism.

Proof. Since inverse of a lattice homomorphism is a lattice homomorphism,

f�1 : pµ,Kq Ñ pσ, Jq preserves finite join. Let y P pµ,Kq and a P L.

Then y � fpxq for some x P pσ, Jq.

f�1pµpa, yqq � f�1pµpa, fpxqqq � f�1pfpσpa, xqqq � σpa, xq � σpa, f�1pyqq.
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Hence the map f�1 : pµ,Kq Ñ pσ, Jq is an L-slice homomorphism.

Definition 5.1.10. Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be an L-slice isomorphism if

i. f is one-one

ii. f is onto

iii. f is an L-slice homomorphism.

Lemma 5.1.11. Let (σ, J), (µ,K) be two L-slices of a locale L.

i. The map 0:pσ, Jq Ñ pµ,Kq defined by 0(x)=0K for x P pσ, Jq is an L-slice homo-

morphism.

ii. If f, g : pσ, Jq Ñ pµ,Kq are L-slice homomorphism, then the map

f _ g : pσ, Jq Ñ pµ,Kq defined by pf _ gqpxq � fpxq_ gpxq for x P pσ, Jq is an L-slice

homomorphism.

Proof. Let x, y P pσ, Jq and a P L.

i. 0(x_ y)=0K �0pxq_0pyq.

0(σpa, xq)=0K � µpa, 0Kq � µpa,0pxqq.

Thus 0 is an L-slice homomorphism.

ii. Let the map f _ g : pσ, Jq Ñ pµ,Kq defined by pf _ gqpxq � fpxq _ gpxq.

pf _ gqpx_ yq � fpx_ yq _ gpx_ yq � fpxq _ fpyq _ gpxq _ gpyq

� pf _ gqpxq _ pf _ gqpyq

pf _ gqpσpa, xqq � fpσpa, xqq _ gpσpa, xqq � µpa, fpxqq _ µpa, gpxqq

� µpa, fpxq _ gpxqq � µpa, pf _ gqpxqq

Hence pf _ gq is an L-slice homomorphism.
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Proposition 5.1.12. Let (σ, J),(µ,K) be L-slices of a locale L and L- Hom(J,K)

denote the collection of all L-slice homomorphisms from pσ, Jq to pµ,Kq. Then

pδ, L�HompJ,Kqq is an L-slice, where the action,

δ : L�L�HompJ,Kq Ñ L�HompJ,Kq is defined by δpa, fqpxq � µpa, fpxqq for all

x P pσ, Jq.

Proof. The collection L�HompJ,Kq is a poset under the partial order relation f ¤ g

if and only if fpxq ¤ gpxq for all x P pσ, Jq. With respect to this partial order, the

map pf _ gq : pσ, Jq Ñ pµ,Kqdefined by pf _ gqpxq � fpxq _ gpxq for x P pσ, Jq is

the join for f, g P L �HompJ,Kq. By lemma 5.1.11, f _ g P L �HompJ,Kq. Thus

L�HompJ,Kq is a join semilattice with bottom element 0.

Define a map δ : L� L�HompJ,Kq Ñ L�HompJ,Kq as follows.

For each a P L and f P L�HompJ,Kq define δpa, fq : pσ, Jq Ñ pµ,Kq by

δpa, fqpxq � µpa, fpxqq.

δpa, fqpx1 _ x2q � µpa, fpx1 _ x2qq � µpa, fpx1q _ fpx2qq

� µpa, fpx1qq _ µpa, fpx2qq � δpa, fqpx1q _ δpa, fqpx2q

δpa, fqpσpa, xqq � µpa, fpσpa, xqqq � µpa, µpa, fpxqqq � µpa, δpa, fqpxqq

Hence δpa, fq is a L-slice homomorphism and hence δpa, fq P L�HompJ,Kq.

Also δ satisfies the following properties.

i. δpa, f1 _ f2qpxq � µpa, pf1 _ f2qpxqq � µpa, f1pxq _ f2pxqq

� µpa, f1pxqq _ µpa, f2pxqq � δpa, f1qpxq _ δpa, f2qpxq

� pδpa, f1q _ δpa, f2qqpxq
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That is δpa, f1 _ f2q � δpa, f1q _ δpa, f2q.

ii. δpa,0qpxq � µpa,0pxqq � µpa, 0Kq � 0K � 0pxq

That is δpa,0q � 0.

iii. δpa[ b, fqpxq � µpa[ b, fpxqq � µpa, µpb, fpxqqq

� µpa, δpb, fqpxqq � δpa, δpb, fqqpxq

That is δpa[ b, fq � δpa, δpb, fqq.

iv. δp1, fqpxq � µp1, fpxqq � fpxq

Thus δp1, fq � f and

δp0L, fqpxq � µp0L, fpxqq � 0K � 0pxq

Thus δp0L, fq � 0.

v. δpa1 _ a2, fqpxq � µpa1 _ a2, fpxqq � µpa1, fpxqq _ µpa2, fpxqq

� pδpa1, fq _ δpa2, fqqpxq

Thus δ is an action of the locale L on L �HompJ,Kq andpδ, L �HompJ,Kqq is an

L-slice.

Proposition 5.1.13. i. Any L-slice homomorphism v : pσ1, Jq Ñ pσ2, Kq induces

an L-slice homomorphism v1 : pδ1, L�HompK,Mqq Ñ pδ2, L�HompJ,Mqq for any

L-slicepσ3,Mq.

ii. Any L-slice homomorphism u : pσ1, Jq Ñ pσ2, Kq induces an L-slice homomor-

phism u1 : pµ1, L�HompM,Jqq Ñ pµ2, L�HompM,Kqq for any L-slice pσ3,Mq.

Proof. Let pσ1, Jq, pσ2, Kq, pσ3,Mq be L-slices.

i. Let pδ1, L�HompK,Mqq, pδ2, L�HompJ,Mqq be L-slices of L-slice homomorphisms

and v : pσ1, Jq Ñ pσ2, Kq be an L-slice homomorphism.
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Define v1 : pδ1, L � HompK,Mqq Ñ pδ2, L � HompJ,Mqq by v1pfq � f � v for all

f P L�HompK,Mq. Let f1, f2 P L�HompK,Mq, x P pσ2, Kq, a P L.

v1pf1 _ f2qpxq � ppf1 _ f2q � vqpxq � pf1 _ f2qpvpxqq

� f1pvpxqq _ f2pvpxqq � ppf1 � vq _ pf2 � vqqpxq

� pv1pf1q _ v1pf2qqpxq

v1pf1 _ f2q � v1pf1q _ v1pf2q

v1pδ1pa, fqqpxq � pδ1pa, fq � vqpxq � pδ1pa, fqqpvpxqq

� σ3pa, fpvpxqqq � σ3pa, v
1pfqpxqq

� δ2pa, v
1pfqqpxq

v1pδ1pa, fqq � δ2pa, v
1pfqq

Hence v1 is a L-slice homomorphism from pδ1, L�HompK,Mqqq to pδ2, L�HompJ,Mqq.

ii. Let pµ1, L�HompM,Jqq, pµ2, L�HompM,Kqq be L-slices of L-homomorphisms

and v : pσ1, Jq Ñ pσ2, Kq be an L-slice homomorphism.

Define u1 : pµ1, L�HompM,Jqq Ñ pµ2, L�HompM,Kqq by u1pgq � u � g.

u1pg1 _ g2qpxq � pu � pg1 _ g2qqpxq � uppg1 _ g2qpxqq

� upg1pxq _ g2pxqq � pu1pg1q _ u1pg2qqpxq

u1pg1 _ g2q � u1pg1q _ u1pg2q

u1pµ1pa, fqqpxq � pu � µ1pa, fqqpxq � uppµ1pa, fqqpxqq

� vpσ1pa, fpxqqq � σ2pa, upfpxqqq

� σ2pa, u
1pfqqpxq � µ2pa, u

1pfqqpxq

u1pµ1pa, fqq � µ2pa, u
1pfqq
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Hence u1 is a L-slice homomorphism from pµ1, L�HompM,Jqq to pµ2, L�HompM,Kqq.

Proposition 5.1.14. Let pσ, Jq, pµ,Kq, pδ,Mq be L-slices of a locale L.

u; pσ, Jq Ñ pµ,Kq be an L-slice homomorphism and

u1 : pµ1, L�HompM,Jqq Ñ pµ2, L�HompM,Kqq,

v1 : pδ1, L � HompK,Mqq Ñ pδ2, L � HompJ,Mqq be the induced L-slice homomor-

phism. If u is one-one, then u1 is also one-one. Conversely if u1 is one-one, then u

is a monomorphism.

Proof. Assume u is one-one. Let g, h P L�HompM,Jq such that u1pgq � u1phq. Then

we have u � g � u �h. That is upgpxqq � uphpxqq for all x P pσ, Jq. Since u is one-one,

we get gpxq � hpxq for all x P pσ, Jq. Hence g � h. Thus u1 is one-one.

Conversely assume u1 is one-one. Then we have u1pgq � u1phq implies g � h.

That is u � g � u � h implies g � h. Hence u is a monomorphism.

Proposition 5.1.15. Every L-slice pσ, Jq is isomorphic to a subslice of L-Hom(L,J).

Proof. Let pσ, Jq be an L-slice and let pδ, L � HompL, Jqq be the L-slice of L-slice

homomorphisms from p[, Lq to pσ, Jq.

Define a mapping ψ : pσ, Jq Ñ pδ, L�HompL, Jqq as follows.

For each x P pσ, Jq, let ψpxq : p[, Lq Ñ pσ, Jq be defined by ψpxqpaq � σpa, xq, for all

a P L.

ψpxqpa1 \ a2q � σpa1 \ a2, xq � σpa1, xq _ σpa2, xq

� ψpxqpa1q _ ψpxqpa2q

ψpxqpa[ bq � σpa[ b, xq � σpa, σpb, xqq

� σpa, ψpxqpbqq
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Thus ψpxq is an L-slice homomorphism from p[, Lq to pσ, Jq.

Hence ψpxq P L�HompL, Jq.

ψpx1 _ x2qpaq � σpa, x1 _ x2q � σpa, x1q _ σpa, x2q

� ψpx1qpaq _ ψpx2qpaq � pψpx1q _ ψpx2qqpaq

ψpσpa, xqqpbq � σpb, σpa, xqq � σpa, σpb, xqq

� σpa, ψpxqpbqq � δpa, ψpxqqpbq

Hence ψ is an L-slice homomorphism.

Also ψpxq � ψpyq implies that ψpxqpaq � ψpyqpaq for all a P L.

That is σpa, xq � σpa, yq for all a P L. In particular σp1, xq � σp1, yq which implies

x � y. Thus ψ is a one-one L-slice homomorphism from pσ, Jq onto pδ, imψq. Since

pδ, imψq is a subslice of pδ, L � HompL, Jqq, pσ, Jq is isomorphic to a subslice of

pδ, L�HompL, Jqq.

Proposition 5.1.16. Let pσ, Jq, pµ,Kq be L-slices. u; pσ, Jq Ñ pµ,Kq be an L-slice

homomorphism and u1 : pµ1, L�HompL, Jqq Ñ pµ2, L�HompL,Kqq be the induced

L-slice homomorphism. ψJ , ψK be the L-slice homomorphisms from pσ, Jq, pµ,Kq to

pµ1, L�HompL, Jqq, pµ2, L�HompL,Kqq. Then the following rectangle commutes.

90



Proof. For x P pσ, Jq, a P L,

pψK � uqpxqpaq � pψKpupxqqqpaq � µpa, upxqq

ppu1 � ψJqpxqqpaq � pu1pψJqpxqqpaq � pu � ψJpxqqpaq

� upψpxqpaqq � upσpa, xqq � µpa, upxqq

Hence ψK � u � u1 � ψJ

Proposition 5.1.17. L-slice Isomorphism theorem Let pσ, Jq, pµ,Kq be two

L-slices of a locale L and let f : pσ, Jq Ñ pµ,Kq be a L-slice homomorphism. Let

R be the natural congruence associated with the L-slice homomorphism f . Then the

quotient slice pγ, J{Rq of pσ, Jq is isomorphic to the subslice pµ, imfq of the L-slice

pµ,Kq.

Proof. Let pσ, Jq, pµ,Kq be two L-slices of a locale L and let f : pσ, Jq Ñ pµ,Kq be

an L-slice homomorphism. Define ψ : pγ, J{Rq Ñ pµ, imfq by ψprxsq � fpxq.

ψprxs _ rysq � ψprx_ ysq � fpx_ yq � fpxq _ fpyq � ψprxsq _ ψprysq

ψpγpa, rxsqq � ψprσpa, xqsq � fpσpa, xqq � µpa, fpxqq � µpa, ψprxsqq

Hence ψ is an L-slice homomorphism. Clearly ψ is one-one and onto.

Hence ψ : pγ, J{Rq Ñ pµ, imfq is an L-slice isomorphism.

5.2. Finitely Generated L-slice

The notion of finitely generated L-slice of a locale L is introduced and we have shown

that every finitely generated L-slice pσ, Jq of a locale L with n generators is isomorphic
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to the quotient slice of the L-slice p[, Lnq.

Definition 5.2.1. Let pσ, Jq be an L-slice of a locale L. A subset S of pσ, Jq is

said to be span of the set tx1, x2, .......xnu � pσ, Jq if each x P S can be written as

x �
nª
i�1

σpai, xiq, where ai P L.

Proposition 5.2.2. Let pσ, Jq be an L-slice of a locale L and tx1, x2, .......xnu � pσ, Jq.

Let S � Spanptx1, x2, .......xnuq. Then pσ, Sq is a subslice of pσ, Jq.

Proof. Let x, y P S. Then there is a1, a2, ....., an, b1, b2, ...bn P L such that

x �
nª
i�1

σpai, xiq, y �
nª
i�1

σpbi, xiq.

x_ y �
nª
i�1

σpai, xiq _
nª
i�1

σpbi, xiq �
nª
i�1

pσpai, xiq _ σpbi, xiqq

�
nª
i�1

σpai \ bi, xiq P S. Therefore S is a subjoin semilattice of pσ, Jq.

Let a P L. Then σpa, xq � σpa,
nª
i�1

σpai, xiqq �
nª
i�1

σpa, σpai, xiqq

�
nª
i�1

σpa[ ai, xiq P S.

Hence pσ, Sq is a subslice of pσ, Jq.

Definition 5.2.3. An L-slice pσ, Jq of a locale L is said to be finitely generated if

there is a finite subset S � pσ, Jq such that pσ, Jq � SpanpSq. Elements of S are

called generators of the L-slice pσ, Jq.

An L-slice pσ, Jq of a locale L is said to be generated by n elements if there is a

finite subset S � pσ, Jq having n elements such that pσ, Jq � SpanpSq and there is

no subset T � pσ, Jq having less than n elements which spans the L-slice pσ, Jq.

Example 5.2.4. If L is a locale, then p[, Lq is a finitely generated L-slice.

Definition 5.2.5. An L-slice pσ, Jq with a single generator x is called cyclic L-slice.

pσ, Jq is a cyclic L-slice if pσ, xxyq � pσ, Jq.
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Proposition 5.2.6. Let pσ, Jq be an L-slice of a locale L and let S be a finite subset

of pσ, Jq such that SpanpSq � pσ, Jq. Then SpanpT q � pσ, Jq for all subset T of

pσ, Jq such that S � T .

Proof. Let S � tx1, x2, ....xnu be such that SpanpSq � pσ, Jq.

Then for any x P pσ, Jq, x �
nª
i�1

σpai, xiq.

If zi P T ,then x �
�
σpbi, ziq, where bi � ai if zi P S and bi � 0L if zi P T � S. Hence

SpanpT q � pσ, Jq.

Proposition 5.2.7. Let pσ, Jq and pµ, J 1q be L-slices of a locale L, and let pσ, Jq be

finitely generated with generators tx1, x2, ....xnu. If f : pσ, Jq Ñ pµ, J 1q is an onto

L-slice homomorphism, then pµ, J 1q is finitely generated.

Proof. Let y P pµ, J 1q. There exist x P pσ, Jq such that y � fpxq.

Since pσ, Jq is finitely generated, there is a1, a2, ....an P L such that x �
nª
i�1

σpai, xiq.

y � fp
nª
i�1

σpai, xiqq

�
nª
i�1

fpσpai, xiqq

�
nª
i�1

µpai, fpxiqq

Therefore tfpx1q, fpx2q, ....., fpxnqu generates pµ, J 1q.

Proposition 5.2.8. Let pσ, Jq be a finitely generated L-slice of a locale L with genera-

tors tx1, x2, ....xnu. Then φ : p[, Lnq Ñ pσ, Jq defined by φpa1, a2, ....anq �
nª
j�1

σpaj, xjq

is an onto L-slice homomorphism.
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Proof. By Proposition 4.1.4, p[, Lnq is an L-slice of a locale L.

φp
nª
i�1

pa1i, a2i, ...aniqq � φp
nª
i�1

a1i,
nª
i�1

a2i, ....
nª
i�1

aniq

�
nª
j�1

σp
nª
i�1

aji, xjq

�
nª
j�1

nª
i�1

σpaji, xjq

�
nª
i�1

p
nª
j�1

σpaji, xjq

�
nª
i�1

pφpa1i, a2i, ...aniq

Thus φ preserves join.

φppa[ pa1, a2, ....anqqq � φpa[ a1, a[ a2, ....a[ anq

�
nª
i�1

σpa[ ai, xiq

�
nª
i�1

σpa, σpai, xiqq

� σpa,
nª
i�1

σpai, xiqq

� σpa, φpa1, a2, .....anqq

Hence φ is an L-slice homomorphism.

Let y P pσ, Jq. Then y �
nª
i�1

σpai, xiq.

So pa1, a2, ...anq P p[, L
nq such that φppa1, a2, ...anqq � y. Hence φ is onto.

Corollary 5.2.9. Let pσ, Jq be a finitely generated L-slice of a locale L with generators

tx1, x2, ....xnu. Then pσ, Jq is isomorphic to the quotient L-slice p[, Ln{Rq of the

product L-slice p[, Lnq.
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Proof. By proposition 5.2.8, φ : p[, Lnq Ñ pσ, Jq defined by φpa1, a2, ....anq �
�
σpai, xiq

is an onto L-slice homomorphism.

Let R be the congruence xRy if and only if φpxq � φpyq. Then by isomorphism

theorem for L-slices imφ � pσ, Jq is isomorphic to the quotient L-slice pγ, Ln{Rq.

5.3. Properties of L-slice homomorphism σa

Definition 5.3.1. Let pσ, Jq be an L-slice of a locale L. For each a P L, define

σa : pσ, Jq Ñ pσ, Jq by σapxq � σpa, xq.

Proposition 5.3.2. Let pσ, Jq be an L-slice. For each a P L, σa : pσ, Jq Ñ pσ, Jq is

an L-slice homomorphism.

Proof. Let x, y P pσ, Jq, b P L.

σapx_ yq � σpa, x_ yq � σpa, xq _ σpa, yq � σapxq _ σapyq

σapσpb, xqq � σpa, σpb, xqq � σpb, σpa, xqq � σpb, σapxqq

Hence σa is an L-slice homomorphism.

Proposition 5.3.3. Let pσ, Jq be an L-slice and a P L

i. σapxq ¤ x for all x P pσ, Jq.

ii. If I is an ideal in pσ, Jq, then σapIq � I.

Proof. i. x � σp1, xq � σpa\ 1, xq � σpa, xq _ σp1, xq � σapxq _ x.

Thus σapxq ¤ x for all x P pσ, Jq.

ii. Let I be any ideal in pσ, Jq. For each x P I, since σapxq ¤ x, σapxq P I. Hence

σapIq � I.

95



Proposition 5.3.4. Let pσ, Jq be an L-slice of a locale with top element 1 and bottom

element 0 and a, b P L

i. σ0 is the zero map and σ1 is the identity map on pσ, Jq.

ii. σa\b � σa _ σb and σa[b � σa � σb � σb � σa.

Proof. i. σ0pxq � σp0, xq � 0J for all x P J . Hence σ0 is the zero map on pσ, Jq.

σ1pxq � σp1, xq � x for all x P J . Hence σ1 is the identity map on pσ, Jq.

ii. σa\bpxq � σpa \ b, xq � σpa, xq _ σpb, xq � σapxq _ σbpxq � pσa _ σbqpxq for all

x P pσ, Jq.

Hence σa\b � σa _ σb.

σa[bpxq � σpa[ b, xq � σpa, σpb, xqq � σpa, σbpxqq � σapσbpxqq

� pσa � σbqpxq � pσb � σaqpxq for all x P pσ, Jq.

Hence σa[b � σa � σb � σb � σa.

Definition 5.3.5. Let pX,¤q be a poset.A map f : X Ñ X is called interior operator

if

i. f is order preserving

ii. fpxq ¤ x for all x P X

iii. f � f � f .

Proposition 5.3.6. Let pσ, Jq be an L-slice. Then for each a P L, σa is an interior

operator on pσ, Jq.

Proof. Since for each a P L, σa is an L-slice homomorphism, σa is order preserving.

By proposition 5.3.3, σapxq ¤ x for all x P L and by proposition 5.3.4, σa � σa � σa.

Hence σa is an interior operator on pσ, Jq.

Proposition 5.3.7. The collection M � tσa : a P Lu is a bounded distributive lattice

and a subslice of pδ, L�HompJ, Jqq.
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Proof. pM,_, σ0q is a join semilattice with bottom element σ0 and pM, �, σ1q is a meet

semilattice with top element σ1.

σa � pσa _ σbq � σa � σa\b � σa[pa\bq � σa and

σa _ pσa � σbq � σa _ σa[b � σa\pa[bq � σa

Thus absorption laws are satisfied and so M is a bounded lattice with top σ1 and

bottom σ0. Also

σa � pσb _ σcq � σa � pσb\cq � σa[pb\cq � σpa[bq\pa[cq

� σa[b _ σa[c � pσa � σbq _ pσa � σcq

σa _ pσb � σcq � σa _ σb[c � σa\pb[cq � σpa\bq[pa\cq

� σa\b � σa\c � pσa _ σbq � pσa _ σcq

Hence M is a bounded distributive lattice. Clearly M � L �HompJ, Jq. Let b P L

and σa PM . Then

δpb, σaqpxq � σpb, σapxqq � σpb, σpa, xqq � σpb[ a, xq � σb[apxq.

Thus M is closed under action by elements of L. Hence pδ,Mq is a L-subslice of

pδ, L�HompJ, Jqqq.

Proposition 5.3.8. There is an onto L-slice homomorphism from p[, Lq to pδ,Mq.

Proof. Define φ : p[, Lq Ñ pδ,Mq by φpaq � σa.

φpa\ bq � σa\b � σa _ σb � φpaq _ φpbq and

φpσpa, bqq � φpa[ bq � σa[b � σa � σb � σpa, σbq � σpa, φpbqq.

Surjection of φ is clear from the definition. Hence φ is an onto L-slice homomorphism

from p[, Lq to pδ,Mq.
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Let ψ be natural frame homomorphism from L to ΩpSppLqq and

φ : p[, Lq Ñ pδ,Mq is the L-slice homomorphism of proposition 5.3.8. Then there

is a lattice homomorphism f from M to ΩpSppLqq such that the following triangle

commutes. The map f is defined by fpσaq � Σa

If L is a spatial locale, then ψ is one-one and so φ is one-one. Thus if L is spatial

locale, L-slices pσ, Lq, pδ,Mq are isomorphic.

Since M is a distributive lattice, by Priestley duality, the distributive lattice M is

dual to a topological space P . Then there is a frame homomorphism f from ΩpSppLqq

to ΩpP q such that the following rectangle commutes. Then f� : ΩpP q Ñ ΩpSppLqq is

a localic map.
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5.4. Fixed points with respect to the L-slice

homomorphism σa

In this section we discuss some properties of the set Fixσa � tx P J : σapxq � xu. We

will show that N � tFixσa ; a P Lu together with an action γ is an L-slice.

Proposition 5.4.1. For each a P L, let Fixσa � tx P J : σapxq � xu. Then

pσ, F ixσaq is a subslice of the L-slice pσ, Jq.

Proof. Let x, y P Fixσa . Then σapxq � x, σapyq � y.

σapx_ yq � σpa, x_ yq � σpa, xq _ σpa, yq � σapxq _ σapyq � x_ y

So Fixσa is a subjoin semilattice of pσ, Jq. Let x P Fixσa and b P L.

σapσpb, xqq � σpa, σpb, xqq � σpb, σpa, xqq � σpb, xq

So σpb, xq P pσ, F ixσaq. Hence pσ, F ixσaq is an L-subslice of pσ, Jq

99



Proposition 5.4.2. Let pσ, Jq be an L-slice of a locale L and a P L. Then the

following statements are equivalent.

i. σa has the property that if x ¤ y ¤ z with σapxq � x and σapzq � z, then σapyq � y.

ii. pσ, F ixσaq is an ideal of pσ, Jq.

Proof. First assume statement i. By above theorem pσ, F ixσaq is a subslice of pσ, Jq.

Let x P pσ, F ixσaq and y P pσ, Jq such that y ¤ x. We have σapyq ¤ y ¤ x and

σapσapyqq � σapyq, σapxq � x. Then by assumption σapyq � y. So y P pσ, F ixσaq and

hence pσ, F ixσaq is an ideal in pσ, Jq.

ii implies i follows directly from the definition of ideal of an L-slice.

Proposition 5.4.3. Let pσ, F ixσaq is an ideal for some fixed a P L. If σb or σc is

one-one for all b, c with σpb[ c, xq P pσ, F ixσaq, then pσ, F ixσaq is a prime ideal.

Proof. Let pσ, F ixσaq is an ideal and σpb[ c, xq P pσ, F ixσaq.

Then σapσpb[ c, xqq � σpb[ c, xq or σapσb[cqpxq � σb[cpxq.

Equivalently pσa � σb � σcqpxq � pσb � σcqpxq.

Suppose σc is one-one and σpb, xq R pσ, F ixσaq. Then σapσpb, xqq � σpb, xq.

That is pσa � σbqpxq � σbpxq. Since σc is one-one, pσc � σa � σbqpxq � pσc � σbqpxq

pσa � σb � σcqpxq � pσb � σcqpxq, which is a contradiction. Hence σpb, xq P pσ, F ixσaq.

Similarly if σb is one-one, then σpc, xq P pσ, F ixσaq. Hence pσ, F ixσaq is a prime

ideal.

Proposition 5.4.4. Consider the L-slice p[, Lq. Then for each a P L, pσ, F ixσaq is

a principal ideal.

Proof. Fixσa � tx P L : σapxq � xu � tx P L : a[ x � xu

� tx P L : x � au �Ó a

Hence pσ, F ixσaq is a principal ideal.
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Proposition 5.4.5. Let R be a congruence on an L-slice pσ, Jq for a locale L and

pγ, J{Rq be the quotient L-slice of pσ, Jq with respect to the congruence R. Then

i. trxs : x P Fixσau � Fixγa

ii. Fixγa � trxs;σpa, xqRxu

iii. trxs : x P kerσau � kerγa

iv. kerγa � trxs;σpa, xqR0u.

Proof. i. Let x P Fixσa . Then σpa, xq � x.

γaprxsq � γpa, rxsq � rσpa, xqs � rxs. So rxs P Fixγa .

Hence trxs : x P Fixσau � Fixγa .

ii. Fixγa � trxs; γaprxsq � rxsu � trxs; rσpa, xqs � rxsu.

But rσpa, xqs � rxs if and only if σpa, xqRx. Hence Fixγa � trxs;σpa, xqRxu.

iii. Let x P kerσa . Then σapxq � 0J .

γaprxsq � γpa, rxsq � rσpa, xqs � r0J s � 0J{R. So rxs P kerγa .

Hence trxs : x P kerσau � kerγa .

iv. kerγa � trxs; rσpa, xqs � γarxs � r0su. But rσpa, xqs � r0s if and only if σpa, xqR0.

Hence kerγa � trxs;σpa, xqR0u.

Proposition 5.4.6. Let pσ, Jq be an L-slice and a, b P L

i. If a � b, then Fixσa � Fixσb.

ii. Fixσ0 � t0Ju and Fixσ1 � pσ, Jq.

iii. Fixσa[b � Fixσa X Fixσa.

Proof. pσ, Jq be an L-slice and a, b P L

i. Let a � b and x P Fixσa , then a[ b � a and σapxq � x.

σapxq � x implies that σpa, xq � σpa[ b, xq � x.

Then we have σpb, σpa, xqq � x. Equivalently σbpxq � x and so x P Fixσb .
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Thus Fixσa � Fixσb .

ii. Since σ0pxq � 0J for all x P J , Fixσ0 � t0Ju.

Fixσ1 � tx P pσ, Jq : σ1pxq � σp1, xq � xu � pσ, Jq.

iii. By part i, Fixσa[b � Fixσa X Fixσb .

Now let x P Fixσa X Fixσb . Then σapxq � σbpxq � x.

σa[bpxq � σpa [ b, xq � σpa, σpb, xqq � σpa, σbpxqq � σpa, xq � σapxq � x. Thus

x P Fixσa[b and hence Fixσa[b � Fixσa X Fixσa .

Proposition 5.4.7. Let pσ, Jq, pµ, Jq be two L-slices and let σa or µa is onto for some

a P L. Then σa � µa if and only if Fixσa � Fixµa.

Proof. Suppose σa is onto and Fixσa � Fixµa . Let y P pσ, Jq. Then there exist

x P pσ, Jq such that σapxq � y. Now

σapyq � σpa, yq � σpa, σapxqq

� σpa, σpa, xqq � σpa, xq � y

Hence y P Fixσa � Fixµa . So µapyq � y. Hence σapyq � µapyq. Converse is

simple.

Proposition 5.4.8. Let pσ, Jq be an L-slice of a locale L and N � tFixσa : a P Lu.

Define Fixσa _ Fixσb � Fixσa\b , F ixσa ^ Fixσb � Fixσa[b. Then pN,_,^q is a

distributive lattice and an L-slice.

Proof. It is easy to show that pN,_, F ixσ0q, pN,^, F ixσ1q are semilattices.

Also Fixσa _ pFixσa ^ Fixσbq � Fixσa _ Fixσa[b � Fixσa\pa[bq � Fixσa and

Fixσa ^pFixσa _Fixσbq � Fixσa ^Fixσa\b � Fixσa[pa\bq � Fixσa . Hence absorption
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laws are satisfied and so pN,_,^q is a lattice. Also we can verify distributive law

easily. Define γ : L�N Ñ N by γpb, F ixσaq � Fixσa[b .

i. γpb, F ixσa _ Fixσcq � γpb, F ixσa\cq � Fixσb[pa\cq � Fixσpb[aq\pb[cq

� Fixσb[a _ Fixσb[c � γpb, F ixσaq _ γpb, F ixσcq

ii. γpb, F ixσ0q � Fixσb[0
� Fixσ0

iii. γpb[ c, F ixσaq � Fixσpb[cq[a � Fixσb[pc[aq � γpb, F ixσc[aq � γpb, γpc, F ixσaqq

iv. γp1, F ixσaq � Fixσ1[a � Fixσa

γp0, F ixσaq � Fixσ0[a � Fixσ0

v. γpb\ c, F ixσaq � Fixσpb\cq[a � Fixσpb[aq\pc[aq � Fixσb[a _ Fixσc[a

� γpb, F ixσaq _ γpc, F ixσaq

Hence pγ,Nq is an L-slice.

Proposition 5.4.9. There is an onto L-slice homomorphism from the L-slices pδ,Mq

to pγ,Nq.

Proof. The map g : pδ,Mq Ñ pγ,Nq defined by gpσaq � Fixσa is an onto L-slice

homomorphism from pδ,Mq to pγ,Nq.

Since the composition of two L-slice homomorphism is again an L-slice homo-

morphism, g � φ is an L-slice homomorphism from p[, Lq to pγ,Nq.

5.5. Filters in L with respect to the slice pσ, Jq

Let pσ, Jq be an L-slice of a locale L and let x P pσ, Jq. In this section we discuss

about the map σx : p[, Lq Ñ pσ, Jq defined by σxpaq � σpa, xq. We will show that
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for each x P pσ, Jq, σx is an L-slice homomorphism. We look into various properties

of the collection Fx � ta P L;σxpaq � xu.

Proposition 5.5.1. Let pσ, Jq be an L-slice of a locale L. For each x P J,

σx : p[, Lq Ñ pσ, Jq is an L-slice homomorphism.

Proof. Let a, b P L

σxpa\ bq � σpa\ b, xq � σpa, xq _ σpb, xq � σxpaq _ σxpbq

σxpa[ bq � σpa[ b, xq � σpa, σpb, xqq � σpa, σxpbqq

Remark. Let I be any ideal in the L-slice p[, Lq. Since σx is an L-slice homomor-

rphism, σxpIq is a subslice of pσ, Jq

Proposition 5.5.2. Let I,K be ideals of the L-slice p[, Lq and let I � K. Then

σxpIq � σxpKq.

Proof. Let I,K be ideals of a locale L such that I � K. Let y P σxpIq. Then

y � σxpaq for some a P I � K. Hence y � σxpaq P σxpKq. Thus σxpIq � σxpKq.

Proposition 5.5.3. Let pσ, Jq be an L-slice of a locale L and let P � tσx : x P pσ, Jqu.

Then pδ, P q is an L- subslice of pδ, L�HompL, Jqq.

Proof. Let σx, σy P P .

pσx _ σyqpaq � σxpaq _ σypaq � σpa, xq _ σpa, yq

� σpa, x_ yq � σx_ypaq
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Thus σx _ σx � σx_y P P . Hence P is a subjoin semilattice of L�HompL, Jq.

Also σ0paq � σpa, 0q � 0 � 0paq. Hence σ0 is the bottom element of P .

Also for a, b P L and σx P P ,

δpb, σxqpaq � σpb, σxpaqq � σpa, σpb, xqq � σσpb,xqpaq

Thus δpb, σxq � σσpb,xq P P . Hence pδ, P q is an L-subslice of pδ, L�HompL, Jqq.

Proposition 5.5.4. Let pσ, Jq be an L-slice of a locale L and let P � tσx : x P pσ, Jqu.

Then the slices pσ, Jq and pδ, P q are isomorphic.

Proof. Define φ : pσ, Jq Ñ pδ, P q by φpxq � σx.

φpx_ yq � σx_y � σx _ σy � φpxq _ φpyq and

φpσpa, xqq � σσpa,xq � δpa, σxq � δpa, φpxqq.

Thus φ is an L-slice homomorphism.

From the definition of P , clearly φ is onto.

Now let φpxq � φpyq. Then σx � σy, which implies σxpaq � σypaq for all a P L.

In particular, σxp1q � σyp1q. Then σp1, xq � σp1, yq. So x � y and hence φ is one-one.

Thus φ : pσ, Jq Ñ pδ, P q is an isomorphism.

Proposition 5.5.5. Let pσ, Jq be an L-slice of a locale L. For each x P pσ, Jq, let

Fx � ta P L;σpa, xq � xu. Then Fx is a filter in L.

Proof. By Definition 4.1.1(iv), 1 P Fx. Hence Fx is nonempty.

Let a, b P Fx. Then σpa, xq � x, σpb, xq � x.

σpa[ b, xq � σpa, σpb, xqq � σpa, xq � x. Hence a[ b P Fx.

Let a P Fx and c P L such that a ¤ c.

σpa, xq � σpa[ c, xq � σpc[ a, xq � σpc, σpa, xqq � σpc, xq. Hence c P Fx.

Thus Fx is a filter in L.
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Proposition 5.5.6. Let pσ, Jq be an L-slice and x ¤ y P pσ, Jq. Then

i. x ¤ σpa, yq for all a P Fx.

ii. σpb, xq ¤ y for all b P Fy.

Proof. i. Let x ¤ y P pσ, Jq and a P Fx. Then σpa, xq � x.

σpa, yq � σpa, x_ yq � σpa, xq _ σpa, yq � x_ σpa, yq.

Hence x ¤ σpa, yq for all a P Fx.

ii. Let b P Fy. Then σpb, yq � y.

σpb, yq � σpb, x_ yq � σpb, xq _ σpb, yq � σpb, xq _ y.

Hence σpb, xq ¤ y for all b P Fy.

Proposition 5.5.7. The filter Fx is proper for x � 0J .

Proof. Suppose x � 0J . If 0L P Fx, then σxp0Lq � x, which implies 0J � σp0L, xq � x.

Hence if x � 0J , 0L R Fx and so Fx is proper.

Proposition 5.5.8. Consider the L-slice p[, Lq. Then for each b P p[, Lq, Fb is a

closed sublocale of L.

Proof. Fb � ta P L : σbpaq � bu � ta P L : a[ b � bu � ta P L : a � bu

�Ò b.

Hence Fb is a closed sublocale of L.

Proposition 5.5.9. Let x P pσ, Jq be join-irreducible element of pσ, Jq, then Fx is a

prime filter in L.

Proof. By proposition 5.5.5, Fx is a filter in L. Let a\ b P Fx.

Then σxpa \ bq � σpa \ b, xq � x. That is σpa, xq _ σpb, xq � x. Since x is join-

irreducible, x ¤ σpa, xq or x ¤ σpb, xq. But we have σpa, xq ¤ x for all a P L. Hence

σpa, xq � x or σpb, xq � x. Hence either a P Fx or b P Fx.

Thus Fx is a prime filter in L.
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Definition 5.5.10. An element x P pσ, Jq is said to be compact element of the L-slice

pσ, Jq, if for any collection taαu of L whenever σp\aα, xq � x, then there exist a finite

sub collection ta1, a2, ....anu of taαu such that σpa1, xq _ σpa2, xq _ ..._ σpan, xq � x.

A slice pσ, Jq is compact if each element x P pσ, Jq is compact.

From the definition of compact L-slice, it is clear that every L-subslice of a

compact L-slice is compact.

Example 5.5.11. Let pσ, Jq be any L-slice. Then 0J is a compact element.

Proposition 5.5.12. Let L be a locale. If the L-slice p[, Lq is compact, then the

locale L is compact.

Proof. Suppose the L-slice p[, Lqis compact and let taαu P L such that \aα � 1.

Then for any b P p[, Lq, p\aαq [ b � 1 [ b � b. Since p[, Lq is compact, there exist

a finite sub collection ta1, a2, ....anu of taαu such that pa1 \ a2 \ ... \ anq [ b � b.

In particular this is true for b � 1. Hence pa1 \ a2 \ ... \ anq [ 1 � 1. Then

pa1 \ a2 \ ...\ anq � 1 and hence the locale L is compact.

The above proposition shows that the notion of compactness in the L-slice is

stronger than the topological compactness and compactness in locale.

Proposition 5.5.13. Let L be a compact locale and pσ, Jq be an L-slice. Let x P pσ, Jq

be such that σx is one one. Then x is a compact element of the L-slice pσ, Jq.

Proof. Let L be a compact locale and x P pσ, Jq. Suppose σp\aα, xq � x.

That is σxp\aαq � x � σxp1q.

Since σx : LÑ J is one one, \aα � 1.

Since L is a compact locale, there exist a finite sub collection a1, a2, ....an of taαu such

that a1 \ a2 \ ...\ an � 1.
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Then σpa1 \ a2 \ ...\ an, xq � σp1, xq � x.

Hence x is a compact element of the L-slice pσ, Jq.

Corollary 5.5.14. Let L be a compact locale and pσ, Jq be an L-slice. If σx is one

one for every x P pσ, Jq, then pσ, Jq is a compact L-slice..

Corollary 5.5.15. Let L be a compact locale and let [x : LÑ L is one one for every

x P p[, Lq. Then the L-slice p[, Lq is compact.

Proposition 5.5.16. Let pσ, Jq, pµ,Kq be L-slices of a locale L and

f : pσ, Jq Ñ pµ,Kq be a one-one L-slice homomorphism. If x is a compact element of

the L-slice pσ, Jq, then fpxq is a compact element of the L-slice pµ,Kq.

Proof. Let f : pσ, Jq Ñ pµ,Kq be a one-one L-slice homomorphism and let x be a

compact element of the L-slice pσ, Jq. Let taαu P L such that µp\aα, fpxqq � fpxq.

Then we have fpσp\aα, xqq � fpxq.

Since f is a one-one L-slice homomorphism, σp\aα, xq � x.

Then by compactness of the element x P pσ, Jq, there exist a finite sub collection

a1, a2, ...an of taαu such that σpa1 \ a2 \ ....\ an, xq � x.

Then we have µpa1 \ a2 \ ....\ an, fpxqq � fpσpa1 \ a2 \ ....\ an, xqq � fpxq.

Hence fpxq is a compact element of the L-slice pµ,Kq.

Definition 5.5.17. A proper filter F in a locale L is partially completely prime

filter if for any indexing set I and ai P L,i P I,
�
ai P F ñ Da1, a2....an such that

a1 _ a2 _ ..._ an P F .

Proposition 5.5.18. Let pσ, Jq be an L-slice of a locale L and x P pσ, Jq. Then x is

a compact element of the slice pσ, Jq if and only if the filter Fx is partially completely

prime.
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Proof. Suppose x is a compact element of the L-slice pσ, Jq. By proposition 5.5.5, Fx

is a filter in L. Let \aα P Fx. Then we have σp\aα, xq � x.

Since x is a compact element, there is a finite collection ta1, a2, ....anu of taαu such

that σpa1, xq _ σpa2, xq _ ..._ σpan, xq � x.

That is σpa1 \ a2 \ ... \ an, xq � x. So a1 \ a2 \ ... \ an P Fx and hence Fx is a

partially completely prime filter.

Conversely assume Fx is partially completely prime. Let taαu P L such that

σp\aα, xq � x. Then we have \aα P Fx.

Since Fx is partially completely prime, there is a finite collection ta1, a2, ....anu of taαu

such that a1 \ a2 \ ...\ an P Fx.

Hence σpa1, xq _ σpa2, xq _ ..._ σpan, xq � x.

So x is a compact element of the L-slice pσ, Jq.

Proposition 5.5.19. Let x P pσ, Jq be join-irreducible compact element of pσ, Jq,

then Fx is a completely prime filter.

Proof. Let x P pσ, Jq be join-irreducible compact element of pσ, Jq and let \aα P Fx.

Since x is a compact element, by proposition 5.5.18, Fx is a partially completely prime

filter. Hence there is a1, a2, ....an P taαu such that a1 \ a2 \ ...\ an P Fx.

Since x is join-irreducible element of pσ, Jq, there is some ai such that ai P Fx. Hence

Fx is completely prime filter.

Definition 5.5.20. A compact element x of an L-slice pσ, Jq of a locale L is said

to be maximal compact element if the filter Fx associated with x P pσ, Jq has the

property that Fx � Fy for all compact elements y P pσ, Jq.
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Proposition 5.5.21. If the collection of all compact elements of a locale forms a

chain with maximal element x, then x is a maximal compact element of the L-slice

p[, Lq.

Proof. By Proposition 5.5.8, Fx �Ò x.

Let y P L be any other compact element of the L-slice p[, Lq.

Since y ¤ x, Fx �Ò x �Ò y � Fy. Hence x is a maximal compact element of the

L-slice p[, Lq.

Proposition 5.5.22. Let F � ta P L : σpa, xq � x @x P pσ, Jqu. Then F �
�
Fx

and F is a filter in L

Proof. Let a P F . Then σxpaq � σpa, xq for all x P pσ, Jq. So a P Fx for all x P pσ, Jq.

Hence F �
�
Fx. In a similar way we can show that

�
Fx � F . Hence F �

�
Fx.

Since the intersection of filters of L is a filter in L, F is a filter in L.

Construction of Sublocale of locale L with respect to L-slice pσ, Jq

Proposition 5.5.23. Let Y � tFx : x is join irreducible and compact in pσ, Jqu.

Then pY,ΩpSppLqq{Y q is a topological space.

Proof. If x P pσ, Jq is join-irreducible compact element, then by proposition 5.5.19,

Fx is completely prime filter and so Y � SppLq. Then ΩpSppLqq{Y is the subspace

topology on Y and pY,ΩpSppLqq{Y q is a topological space.

Examples 5.5.24. i. Let p[, Lq be an L-slice. By Proposition 5.5.8, we have Fb �Ò b,

a principal filter of L. Then Y � tÒ b : b P p[, Lqis join�irreducible compact elementu.

But b P p[, Lq is join-irreducible and compact element if and only Ò b is completely

prime filter in the locale L. Hence Y � SppLq.

ii. Let L be a locale and let I be an ideal of L.Consider the L-slice p[, Iq. As in the
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case of above example,

Y � tÒ b :Ò b is a completely prime filter in L, b P p[, Iqu � SppLq. Hence

pY,ΩpSppLqq{Y q is a proper subspace of SppLq.

iii. Let the L-slice pσ, Jq is the L-slice of example 4.2.2(ii). For x P pσ, Jq,

Fx � Lzt0Lu. Hence Y � Lzt0Lu. Let b P L be minimal element of L, then

Y � Lzt0Lu � Σb. So Y is an open subset of SppLq and ΩpSppLqq{Y is isomor-

phic to 2.

The subspace pY,ΩpSppLqq{Y q depends on the L-slice pσ, Jq. If Y is an open

set in SppLq, then ΩpSppLqq{Y is a sublocale of the locale ΩpSppLqq and hence a

sublocale of L. If Y � SppLq, the points of L is completely determined by the L-slice

pσ, Jq.

Proposition 5.5.25. If the L-slice pσ, Jq of a locale L has a maximal compact irre-

ducible element z, then

pY � tFx : x is join irreducible and compact in pσ, Jqu,ΩpSppLqq{Y q is a com-

pact subspace of spectrum SppLq of the locale L

Proof. Let tΣaα : α P Iu be an open cover for Y . Then Y �
�

Σaα � Σ\aα . Since

Fz P Y, Fz P Σ\aα or \aα P Fz. Since Fz is a completely prime filter, there is some

β P I such that aβ P Fz. Then Fz P Σaβ . Also for any Fx P Y , we have aβ P Fz � Fx.

Hence Y � Σaβ and so Y is compact.

5.6. Weak S -module

Given a complete semiring pS,�, ., 0S, 1Sq, where finite product � distribute over infi-

nite sum �, and a monoid pM, �, 0Mq, a weak S -module is introduced to be an action
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of S on pM, �, 0Mq. We have defined weak S -module homomorphism between two

weak S -modules pδ,Mq, pγ,Nq and it is proved that if pN, �1q is commutative, then

the collection of all weak S -module homomorphisms from pδ,Mq to pγ,Nq is a weak

S -module.

Definition 5.6.1. A semiring is a triple pS,�, �q, where S is a set and � and � are

binary operations, such that + is commutative, both pS,�q and pS, �q are semigroups

and the following distributive laws holds for all x, y, z P S.

i. x.py � zq � x.y � x.z.

ii. px� yq.z � px.zq � py.zq .

If pS, �q is a monoid, then pS,�, �q is a semiring with 1.

Definition 5.6.2. A complete semiring is a semiring for which the addition monoid

is a complete monoid and the following infinitary distributive laws hold

Σpa.aiq � a.Σai and Σpai.aq � pΣaiq.a.

Definition 5.6.3. A topological semiring is a semiring S togather with a topology

under which the semiring operations are continuous.

Definition 5.6.4. Let pS,�, ., 0S, 1Sq be a complete semiring where finite . distribute

over infinite � and let pM, �, 0Mq be a monoid. By an action of S on M , we mean a

function δ : S�M ÑM such that the following conditions are satisfied.

i. δpr � s, xq � δpr, xq � δps, xq for all r, s P S, x PM

ii. δpr, x � yq � δpr, xq � δpr, yq

iii. δpr, 0Mq � 0M

iv. δpr.s, xq � δpr, δps, xqq

v. δp0R, xq � 0M and δp1R, xq � x.

112



If δ is an action of S on M , we call pδ,Mq as a weak S -module.

Note If pS, �q is commutative, then δpr.s, xq � δpr, δps, xqq � δps, δpr, xqq.

Example 5.6.5. Every L-slice is an example for weak L-module.

Definition 5.6.6. Let pδ,Mq be a weak S -module, a submonoid M 1 of M is said to

be a weak S -submodule of pδ,Mq if M 1 is closed under action by elements of S.

Definition 5.6.7. A weak S -module homomorphism between weak S -modules pδ,Mq, pγ,Nq

is a map g : pδ,Mq Ñ pγ,Nq such that

i. gpx � yq � gpxq �1 gpyq

ii. gpδpr, xqq � γpr, gpxqq for all x, y PM, r P S.

Proposition 5.6.8. Composition of two weak S-module homomorphisms is a weak

S-module homomorphism.

Proof. Let g : pδ,Mq Ñ pδ1,M 1q, h : pδ1,M 1q Ñ pδ2,M2q be two weak S -module

homomorphisms.

ph � gqpx � yq � hpgpx � yqq � hpgpxq �1 gpyqq � hpgpxqq �2 hpgpyqq

ph � gqpδpr, xqq � hpgpδpr, xqqq � hpδ1pr, gpxqqq

� δ2pr, hpgpxqqq � δ2pr, ph � gqpxqq

Hence h � g is a weak S -module homomorphism.

Proposition 5.6.9. Let pδ,Mq, pγ,Nq be two weak S-modules.Then

i. The map 0: pδ,Mq Ñ pγ,Nq defined by 0pxq � 0N for all x P pδ,Mq is a weak

S-module homomorphism.

ii. If f, g : pδ,Mq Ñ pγ,Nq are two weak S-module homomorphisms and pN, �1q is
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commutative, then f � g : pδ,Mq Ñ pγ,Nq defined by f � gpxq � fpxq �1 gpxq is a weak

S-module homomorphism.

iii. If f : pδ,Mq Ñ pγ,Nq be a weak S-module homomorphism. Then for any r P S,

the map ηpr, fq : pδ,Mq Ñ pγ,Nq defined by ηpr, fqpxq � γpr, fpxqq is a weak S-

module homomorphism.

Proof. Let pδ,Mq, pγ,Nq be two weak S -modules.

i. Let x, y P pδ,Mq, r P S

0px � yq � 0N � 0pxq �1 0pyq

0pδpr, xqq � 0N � γpr, 0Nq � γpr,0pxqq

Hence 0 is a weak S -module homomorphism.

ii. Let f, g : pδ,Mq Ñ pγ,Nq be two weak S -module homomorphism.

pf � gqpx � yq � fpx � yq �1 gpx � yq � fpxq �1 fpyq �1 gpxq �1 gpyq

� fpxq �1 gpxq �1 fpyq �1 gpyq � pf � gqpxq �1 pf � gqpyq

pf � gqpδpr, xqq � fpδpr, xqq �1 gpδpr, xqq � γpr, fpxqq �1 γpr, gpxqq

� γpr, fpxq �1 gpxqq � γpr, pf � gpxqqq

Hence f � g is a weak S -module homomorphism.
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iii. Let r P S

ηpr, fqpx � yq � γpr, fpx � yqq � γpr, fpxq �1 fpyqq

� γpr, fpxqq �1 γpr, fpyqq � ηpa, fqpxq �1 ηpa, gqpxq

ηpr, fqpδps, xqq � γpr, fpδps, xqqq � γpr, γps, fpxqqq

� γps, γpr, fpxqqq � γps, ηpr, fqpxq

Hence ηpr, fq is a weak S -module homomorphism.

Proposition 5.6.10. Let pδ,Mq, pγ,Nq be two weak S-modules, where pN, �1q is com-

mutative. Then the collection ∆ of all weak S-module homomorphisms from pδ,Mq

to pγ,Nq is weak S-module.

Proof. For any f, g P ∆ define f � g : pδ,Mq Ñ pγ,Nq by f � gpxq � fpxq �1 gpxq.

Then p∆, �q is a monoid. Define η : S � ∆ Ñ ∆ as a map ηpr, fq : pδ,Mq Ñ pγ,Nq

by ηpr, fqpxq � γpr, fpxqq. Then η is an action of S on ∆.

Let r, s P S, x P pδ,Mq

i. ηpr � s, fqpxq � γpr � s, fpxqq � γpr � s, fpxqq � γpr, fpxqq �1 γps, fpxqq

� ηpr, fqpxq �1 ηps, fqpxq � ηpr, fq � ηps, fqpxq

ii. ηpr, f � gqpxq � γpr, f � gpxqq � γpr, fpxq �1 gpxq

� γpr, fpxqq �1 γpr, gpxqq � pηpr, fq � ηpr, gqqpxq

iii. ηpr,0qpxq � γpr,0pxqq � γpr, 0Nq � 0N � 0pxq

iv. ηpr.s, fqpxq � γpr.s, fpxqq � γpr, γps, fpxqqq

� γpr, ηps, fqpxq � ηpr, ηps, fqqpxq

v. ηp0S, fqpxq � γp0S, fpxqq � 0N � 0pxq
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Hence pη,∆q is a weak S -module homomorphism.

Proposition 5.6.11. Let f : pδ,Mq Ñ pγ,Nq be a weak S-module homomorphism.

i. kerf � tx P pδ,Mq : fpxq � 0Nu is a weak S-submodule of pδ,Mq.

ii. imf � ty P pγ,Nq : y � fpxqfor some x P pδ,Mqu is a weak S-submodule of

pγ,Nq.

Proof. Let f : pδ,Mq Ñ pγ,Nq be a weak S -module homomorphism.

i. Since fp0Mq � 0N , 0M P kerf . Let x, y P kerf . Then fpxq � fpyq � 0N .

fpx � yq � fpxq �1 fpyq � 0N �
1 0N � 0N

fpδpr, xqq � γpr, fpxqq � γpr, 0Nq � 0N

So kerf is a a weak S -submodule of pδ,Mq.

ii. Since fp0Mq � 0N , 0N P imf . Let x1, y1 P imf . Then x, y P pδ,Mq such that

fpxq � x1, fpyq � y1.

x1 �1 y1 � fpxq �1 fpyq � fpx � yq P imf

γpr, x1q � γpr, fpxqq � fpγpr, xqq P imf

Hence imf is a weak S -submodule of pγ,Nq.

Proposition 5.6.12. Let f : pδ,Mq Ñ pδ,Mq be a weak S-module homomorphism.

Then F � tx P pδ,Mq : fpxq � xu is a weak S-submodule.

Proof. Let f : pδ,Mq Ñ pδ,Mq be a weak S -module homomorphism. Since

fp0Mq � 0M , 0M P F . Let x, y P F . Then fpx � yq � fpxq � fpyq � x � y. Hence

x � y P F . Thus pF, �q is a submonoid of pM, �q.
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Let r P S, x P F . Then fpδpr, xqq � δpr, fpxqq � δpr, xq. Thus δpr, xq P F . Hence

pδ, F q is a weak S -submodule of pδ,Mq.

Definition 5.6.13. A weak S -module pδ,M, �q, is said to be finitely generated if

there exist x1, x2, ....xn P pδ,Mq such that each x P pδ,Mq can be written as

x � δpr1, x1q � δpr2, x2q � .... � δprn, xnq, where r1, r2, ...rn P S.

Definition 5.6.14. A topological weak S -module is a pδ,M, τq, where τ is a topology

on pδ,Mq such that

i. � : M �M ÑM is continuous

ii. δa : M ÑM defined by δapxq � δpa, xq is continuous for every a P S.

Definition 5.6.15. A morphism between topological weak S -module pδ,M, τ1q, pγ,M, τ2q

is a map h : pδ,M, τ1q Ñ pγ,M, τ2q such that

i. hpx � yq � hpxq � hpyq

ii. hpδpa, xqq � γpa, hpxqq for all x, y PM,a P S.

iii. h is continuous.

5.7. Relation between the categories L-slice and

TopWMod

Let L-slice denotes the category of L-slices and L-slice homomorphisms.

Proposition 5.7.1. Let f : pσ, Jq Ñ pµ,Kq be an injective L-slice homomorphism.

If image imf �Ó z, where z P pµ,Kq is a maximal element of pµ,Kq, then f is a

section in the category L-slice.

Proof. Define g : pµ,Kq Ñ pσ, Jq as follows.

Let y P pµ,Kq. If y P imf , then y � fpxq for a unique x P pσ, Jq. Then define
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gpyq � x. If y R imf , define gpyq � 0J . Then g : pµ,Kq Ñ pσ, Jq is an L-slice

homomorphism and pg � fqpxq � x, for all x P pσ, Jq. Hence f is a section in the

category L-slice.

Proposition 5.7.2. Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then f is

a retraction in the category L-slice if and only if f is onto.

Proof. Let f : pσ, Jq Ñ pµ,Kq be a retraction in the category L-slice.

Let y P pµ,Kq. Since f : pσ, Jq Ñ pµ,Kq is a retraction, there is an L-slice homomor-

phism g : pµ,Kq Ñ pσ, Jq such that pf � gq � I. Hence fpgpyqq � y and so f is onto.

Conversely let f : pσ, Jq Ñ pµ,Kq be on onto L-slice homomorphism. For each

y P pµ,Kq, there is some x P pσ, Jq such that y � fpxq. Define g : pµ,Kq Ñ pσ, Jq by

gpfpxqq � x. Then we have g is an L-slice homomorphism and pf � gqpyq � y, for all

y P pµ,Kq. Hence f is a retraction in the category L-slice.

In a similar manner we can show the following propositions.

Proposition 5.7.3. Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then f is

a monomorphism in the category L-slice if and only if f is injective.

Proposition 5.7.4. Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then f is

an epimorphism in the category L-slice if and only if f is surjective.

Topological weak L-module associated with a L-slice

Let pσ, Jq be an L-slice with bottom element 0. Let PtpJq � tÓ x : x P pσ, Jqu.

Define the binary operation � on PtpJq by Ó x� Ó y �Ó x_ y. Then pPtpJq, �,0q is a

commutative monoid. Define δ : L � PtpJq Ñ PtpJq by δpa, Ó xq �Ó σpa, xq. In the

next proposition, we will show that δ is an action of the semiring L on the monoid

pPtpJq, �,0q.
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Proposition 5.7.5. pδ, P tpJqq is a weak L-module.

Proof. δ : L� PtpJq Ñ PtpJq is defined by δpa, Ó xq �Ó σpa, xq.

i. δpa� b, Ó xq � δpa\ b, Ó xq �Ó σpa\ b, xq �Ó pσpa, xq _ σpb, xqq

�Ó σpa, xq� Ó σpb, xq � δpa, Ó xq � δpb, Ó xq

ii. δpa, Ó x� Ó yq � δpa, Ó x_ yq �Ó σpa, x_ yq �Ó pσpa, xq _ σpa, yqq

�Ó σpa, xq� Ó σpa, yq � δpa, Ó xq � δpa, Ó yq

iii. δpa,0q �Ó σpa, 0q �Ó 0 � 0

iv. δpa.b, Ó xq � δpa[ b, xq �Ó σpa[ b, xq �Ó σpa, σpb, xqq

� δpa, Ó σpb, xqq � δpa, δpb, Ó xqq

v. δp0, Ó xq �Ó σp0, xq �Ó 0 � 0

δp1, Ó xq �Ó σp1, xq �Ó x

Hence pδ, P tpJqq is a weak L-module.

For each x P pσ, Jq define λx � tÓ y P PtpJq : x PÓ yu.

Proposition 5.7.6. Let pσ, Jq be an L-slice and x, y P pσ, Jq.Then

i. λ0 � PtpJq

ii. λx X λy � λx_y.

Proof. i. λ0 � tÓ y P PtpJq : 0 PÓ yu. Since ideal of a slice is closed under taking

lower elements, 0 PÓ y, for every Ó y P PtpJq. Hence λ0 � PtpJq.

ii. Ó z P λx X λy ñÓ z P λx and Ó z P λy

ñ x PÓ z and y PÓ z

ñ x ¤ z and y ¤ z
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ñ x_ y ¤ z

ñÓ z P λx_y

Hence λx X λy � λx_y.

Ó z P λx_y ñ x_ y ¤ z

ñ x, y ¤ x_ y ¤ z

ñÓ z P λx and Ó z P λy

ñÓ z P λx X λy

Thus λx_y � λx X λy. Hence λx X λy � λx_y.

By above proposition B � tλx : x P Ju is closed under finite intersection and

hence B is a base for a unique topology τ on Pt(J).

Proposition 5.7.7. pδ, P tpJq, τq is a topological weak L-module.

Proof. We have pδ, P tpJqq is a weak L-module.

Let f : PtpJq�PtpJq Ñ PtpJq be defined by fpÓ x, Ó yq �Ó x� Ó y �Ó x_ y. We will

show that f is continuous with respect to the topology τ .

Let U be any open set containing fpÓ x, Ó yq �Ó x� Ó y �Ó x_ y. Then there exist a

basic open set λz such that Ó x_ y P λz and λz � U .

Ó x _ y P λz implies that x _ y ¥ z. By construction λx, λy are open set containing

Ó x, Ó y respectively. Now we will show that fpλx � λyq � U .

Let Ó a P λx, Ó b P λy. Then x ¤ a, y ¤ b. fpÓ a, Ó bq �Ó a� Ó b �Ó a_ b.

But x ¤ a, y ¤ b implies that x _ y ¤ a _ b. Hence z ¤ x _ y ¤ a _ b or z ¤ a _ b.

Hence Ó a_ b P λz. Thus fpλx � λyq � λz � U . Hence f : PtpJq � PtpJq Ñ PtpJq is

continuous with respect to the topology τ .
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Now we will show that for every a P L the map δa : PtpJq Ñ PtpJq defined by

δapÓ xq � δpa, Ó xq �Ó σpa, xq is continuous. For any basic open set λx,

δ�1
a pλxq � tÓ z P PtpJq : δapÓ zq � δpa, Ó zq P λxu

� tÓ z P PtpJq :Ó σpa, zq P λxu

� tÓ z P PtpJq : x ¤ σpa, zq ¤ zu

� λx

Thus δa is continuous with respect to the topology τ . Hence pδ, P tpJq, τq is a topo-

logical weak L-module.

Proposition 5.7.8. If f : pσ, Jq Ñ pµ,Kq is an L-slice homomorphism, then there

is a morphism φ : pρ, P tpKq, τ2q Ñ pδ, P tpJq, τ1q in the category TopWMod of

topological weak L-modules.

Proof. Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism.

Define φ : pρ, P tpKq, τ2q Ñ pδ, P tpJq, τ1q by φpÓ yq �Ó f�1pyq.

φpÓ y�1 Ó zq � φpÓ y _1 zq �Ó f�1py _1 zq �Ó f�1pyq _ f�1pzq

� Ó f�1pyq� Ó f�1pzq � φpÓ yq � φpÓ zq

φpρpa, Ó xqq � φpÓ µpa, xqq �Ó f�1pµpa, xqq �Ó σpa, f�1pxqq

� δpa, Ó f�1pxqq � δpa, φpÓ xqq

Now we will show that the map φ is continuous. Let λz be an open set containing

φpÓ xq �Ó f�1pxq. Then Ó f�1pxq P λz and so z ¤ f�1pxq. Thus fpzq ¤ x and so

Ó x P λfpzq. Thus λfpzq is an open set containing Ó x. We will show that φpλfpzqq � λz.

Let Ó a P λfpzq. Then fpzq ¤ a. Now φpÓ aq �Ó f�1paq. fpzq ¤ a implies that
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z ¤ f�1paq. Hence Ó f�1paq P λz. Thus φpλfpzqq � λz. Hence φ is continuous. Thus

φ is a morphism in the category TopWMod.

Proposition 5.7.9. There is contravariant functor from the category L-slice to the

category TopWMod.

Proof. Define Ψ : ObpL-sliceq Ñ ObpTopWModq by ΨpJq � PtpJq.

Also define Ψ : MorpL-sliceq ÑMorpTopWModq as follows.

Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism.

Define Ψpfq : pρ, P tpKq, τ2q Ñ pδ, P tpJq, τ1q by ΨpfqpÓ xq �Ó f�1pxq. Then by above

proposition Ψpfq PMorpTopWModq.

If f : pσ, Jq Ñ pµ,Kq and g : pµ,Kq Ñ pυ,K 1q be L-slice homomorphisms.

Ψpg � fqpÓ xq � Ó pg � fq�1pxq �Ó f�1pg�1pxqq � ΨpfqpÓ g�1pxqq

� ΨpfqpΨpgqpÓ xqq � Ψpgq �ΨpfqpÓ xq

Let id : pσ, Jq Ñ pσ, Jq be an identity morphism in L-slice.

Then ΨpidqpÓ xq �Ó id�1pxq �Ó x. Hence Ψpidq is an identity morphism in

TopWMod. This shows that Ψ is a contravariant functor from the category L-slice

to the category TopWMod.

Proposition 5.7.10. The functor Ψ maps the subcategory FinL-slice of finitely

generated L-slices of L-slice into the subcategory FinTopWMod of finitely generated

topological weak modules of TopWMon.

Proof. If the L-slice pσ, Jq is finitely generated, then the weak L-module pδ, P tpJqq is

finitely generated. Hence Ψ maps the subcategory FinL-slice into the subcategory

FinTopWMod.
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Chapter 6

Extended Diffie Hellman Key

Exchange Protocol Using L-Slices

of a Locale L

A basic principle of cryptography is formulated by Auguste Kerckhoffs [38] in 1883

and is reformulated by Claude Shannon [44]. In a cryptosystem, the only unknown

to an attacker is the key used. The cryptosystem is constituted with attacker model

in mind in order to make the system more secure, but depends on changing keys on

regular basis. The problem of providing both parties with secret key beforehand for

any secured communication, had its first solution provided by Whitfield Diffie and

Martin Hellman [7].

In this chapter we have developed a key exchange protocol that utilizes the con-

cept of L-slices for the generation of secret and public keys. The L-slice and its

properties are utilized to extend the existing Diffie Hellman key exchange protocol

that uses groups in algebra to the background of L-slices of a locale L. A modifica-
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tion is given to the extended Diffie Hellman key exchange protocol using L-slices of a

locale L inorder to give optimum security to the system.

6.1. Key Exchange Protocol based on L-slice

In this section, we present an extension of Diffie-Hellman key exchange protocol[7] to

the back ground of L-slices of a locale L.

Key Exchange Protocol based on L-slice

0. Setup:

Alice and Bob concur on the protocol specifies and these involve the L-slice pσ, Jq,

x P pσ, Jq.

1. Generation of secret and public keys

Both parties select iA � a P L, iB � b P L as their secret keys. Their public keys are

the maps

cA � σpa, xq

cB � σpb, xq

2. Interchange public keys

Alice and Bob interchange their public keys cA, cB.

3. Computing the shared key

After getting cB from Bob, Alice computes

KA � σpa, cBq � σpa, σpb, xqq � σpa[ b, xq
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Bob similarly computes,

KB � σpb, cAq � σpb, σpa, xqq � σpa[ b, xq

The correctness of protocol follows as KA � KB.

Mathematical aspects of above protocol

From Proposition 5.5.5 for each x P pσ, Jq, Fx � tl P L;σpl, xq � xu is a filter in L.

Thus it is hard to find a particular l P L such that σpl, xq � x. In the same way,

given x, y P pσ, Jq, it is hard to find l P L with σpl, xq � y. Hence recovering secret

keys iA, iB from public keys cA, cB is very hard, as the action σ : L � J Ñ J is not

an invertible function.

The task of recovering the secret key from public key is equivalent to the following

problem.

Problem

Given an L-slice pσ, Jq and two elements y, z P pσ, Jq, find an element l P L such that

σpl, yq � z.

The solution of this problem is not necessarily unique and we define the set of

all solutions as Lσy � tl P L : σyplq � zu � tl P L : σpl, yq � zu. The solution set Lσy

represents the level set of the L-slice homomorphism σy : p[, Lq Ñ pσ, Jq.

If the attacker Eve get some α P L such that σpa, xq � σpα, xq, then Eve can

calculate the shared secret Ka � Kb from it as follows. Using the public key of Bob,

Eve calculates,

σpα, σpb, xqq � σpb, σpα, xqq � σpb, σpa, xqq � σpa[ b, xq � Ka
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If the level set Lσx contains more elements, then the probability of getting α P L

such that σpa, xq � σpα, xq is high. Thus the security of the system depends on the

cardinality of Lσx .

If cardinality of Lσx ¡ n, where n is a small integer, we can increase the security

by adopting the following method for generation of keys.

Let R be the natural congruence associated with the L-slice homomorphism

σx : p[, Lq Ñ pσ, Jq and let p[, L{Rq be the corresponding quotient L-slice of the

L-slice p[, Lq. Then pδ, Jq is an L/R-slice, where δ : L{R � J Ñ J is defined by

δpras, xq � σpa, xq.

If cardinality of Lσx ¡ n, where n is a small integer, we use modified form of Key

Exchange Protocol based on L-slice of a locale L.

6.2. Modified key exchange protocol

i. Setup:

Alice and Bob concur on the protocol specifies, these involve the L/R-slice pδ, Jq,

x P pδ, Jq.

ii. Generation of Public/Private keys

Both parties select iA � ras, iB � rbs P L{R as their secret keys. Their public keys

are the maps

cA � δpras, xq � σpa, xq

cB � δprbs, xq � σpb, xq
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iii. Interchange of public keys

Alice and Bob interchange their common keys cA, cB.

iv. Computinging the shared key

After getting cB from Bob, Alice computes

KA � δpras, cBq � σpa, cBq � σpa, δprbs, xqq � σpa, σpb, xqq � σpa[ b, xq

Bob similarly computes,

KB � δprbs, cAq � σpb, cAq � σpb, δpras, xqq � σpb, σpa, xqq � σpa[ b, xq

In this case the problem of retrieving secret keys from common key is equivalent

to the problem.

Problem

Given an L/R-slice pδ, Jq and two elements x, z P pσ, Jq, find an element l P L such

that σpl, xq � z. The solution set of this problem is

L{Rδx � trls P L{R : σxprlsq � zu � trls P L{R : σpl, xq � zu and this set contains

a unique element of L{R. Hence the probability of getting rαs P L{R such that

σpα, xq � σpa, xq is very small and so it is very hard to find shared secret from

common keys.

We can extend ElGamal encryption [14] procedure into L-slice background as

follows.

Extension of ElGamal Encryption

Let pσ, Jq be an L-slice,where J is a vector lattice. Then we can extend ElGamal

encryption [14] to the background of L-slice as follows.
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i. The secret and common keys are generated and exchanged using the key exchange

protocol discussed in 3.1.

ii. For every message mi, Bob calculates the pair pσpb, xq,mi � σpa[ b, xqq

iii. Alice can decrypt the message using mi � mi � σpa[ b, xq � σpa[ b, xq
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Conclusion

In the existing context of theory of topological semigroups, topological groups,

topological lattices, topological vector spaces and so on, the development of these

theories pertain to points, their neighbourhoods and their local behaviour, where as

in the set up of the theory of locales which are also called generalized topological

spaces, we have the background of point free topology. This framework is used, in

the study in our thesis, to develop the notion of an action σ of a locale L on a join

semilattice J with bottom element 0J to form the entity pσ, Jq, which we call L-slice,

that has properties which could be studied algebraically as well as topologically.

Various properties of an L-slice pσ, Jq of a locale L are investigated. The action

σ of the locale L on the join semilattice J is utilized to construct sublocales of L.

An L-slice congruence R is defined and a quotient L-slice pγ, J{Rq with respect to

the congruence R is obtained. An Isomorphism theorem for L-slices of the locale L is

derived and as an application, it is proved that every finitely generated L-slice with

n generators is isomorphic to the quotient slice of p[, Lnq.

For a P L, x P J , various properties of the L-slice homomorphisms

σa : pσ, Jq Ñ pσ, Jq, σx : p[, Lq Ñ pσ, Jq have been studied. Properties of the fixed

set of σa : pσ, Jq Ñ pσ, Jq are discussed. The property of compactness in the L-slice

pσ, Jq is defined and is characterized in terms of the filter Fx � ta P L : σxpaq � xu.
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It has been shown that L-slice compactness is stronger than topological compactness

and localic compactness.

It is known that there is a contravariant functor from the category JSLat of join

semilattice with 0, and semilattice homomorphism to the category iTopMon of idem-

potent topological monoids, and continuous monoid homomorphisms. In this study,

the existence of a contravariant functor from the category L-slice of L-slices and L-

slice homomorphisms to the category TopWMod of topological weak modules and

continuous weak module homomorphisms has been established.

Several intermediary results were obtained during the above studies.

As an application, a key exchange protocol that uses the concept of L-slice for

generation of secret and public keys are developed. As the action σ of a locale L on a

join semilattice J is not an invertible function, it is very hard to find secret keys from

publicly known common keys. Hence this method gives a more secure cryptosystem.

There is ample scope for further studies in the background of above investigations.

The topological properties such as separation axioms, countable compactness, con-

nectedness etc. are to be analyzed in the context of L-slice. Viewing topology as

theory of information, the properties of L-slice could be used as an effective tool in

image processing and mathematical morphology. The connection between the concept

of L-slice and semantics of programming language could be developed.

130



Research Papers

1. Sabna K.S, Mangalambal N.R, An Embedding Theorem for Locales, Global Jour-

nal of Pure and Applied Mathematics, Vol 13, Number 7 (2017) , Research India

Publication, 35193530 .

2. Sabna K.S, Mangalambal N.R, Vietoris Locale-Using Spectrum, IOSR Journal of

Mathematics, Vol 12, Issue 6, Ver 1, Nov-Dec.2016, 1-3.

3. Sabna K.S, Mangalambal N.R, New ideals containing the kernel of a frame ho-

momorphism, International Journal of Theoretical and Computational Mathematics,

Vol 2, No.2, November 2016, ISSN:2395-6607, 29-33.

4. Mary Elizabeth Antony, Sabna K.S, Mangalambal N.R, Some notes on Second

countability in Frames, IOSR Journal of Mathematics, Vol 9, Issue 2, Nov-Dec.2013,

29-32.

5. Sabna K.S, Mangalambal N.R, Compact Subspace of Spectrum of O(L) from spec-

trum of a locale L, accepted to be published as a chapter in the book titled Advanced

Mathematics : Theory and Applications (AMTA), Research India Publication.

6. Sabna K.S, Mangalambal N.R, Unique Sublocales from Ideals of a Locale, Com-

municated.

7. Sabna K.S, Mangalambal N.R, Fixed points with respect to the L-slice homomor-

phism σa, Communicated.

131



8. Sabna K.S, Mangalambal N.R, A Subspace of Spectrum of L with respect to L-slice

for a locale L, Communicated.

9. Sabna K.S, Mangalambal N.R, An Isomorphism theorem for L-Slice of a locale L,

Communicated.

10. Sabna K.S, Mangalambal N.R, Relation between the categories L-slice and Top-

WMod, Communicated.

11. Sabna K.S, Mangalambal N.R, Extended Diffie Hellman Key Exchange Protocol

Using L-Slices of a Locale L, Communicated.

12. Sabna K.S, Mangalambal N.R, Compact, Connected, T0 Subspace of Spectrum of

OpLq from spectrum of a locale L, Communicated.

132



Bibliography

[1] S Abramsky, Achim Jung (1994), Domain Theory, Handbook of Logic in Com-

puter Science, 1-168.

[2] M.F Atiyah, I.G Macdonald (1994), Introduction to commutative algebra,

Addison-Wesley Publishing Company.

[3] B Banaschewski, C.J Mulvey (1984), Stone cech Compactification of locales-II,

Journal of pure and applied Algebra, 33, 107-122.

[4] B Banaschewski, C.J Mulvey (2003), Stone cech Compactification of locales-III,

Journal of pure and applied Algebra, 185, 25-33.

[5] G Birkhoff (1940), Lattice Theory, American Mathematical Society.

[6] Ciro Russo (2007), Quantale Modules with applications to Logic and Image pro-

cessing, Ph.D thesis, Universita degli Studi di Salerno.

[7] W Diffie, M.E Hellman (1976), New directions in cryptography, Information

Theory, IEEE Transaction, 22, 644-654.

[8] C.H Dowker, Dona Papert (1966), Quotient frames and subspaces, Proc.London

Math.Soc., 16, 275-296.

133



[9] C.H Dowker, Dona Papert (1966), On Urysohn’s Lemma, General topology and

its relation to Modern Analysis and Algebra, Proc.Prague Symposium, Academia,

Prague, 111-114.

[10] C.H Dowker, D Strauss (1974), Separation axioms for frames, Colloquia Mathe-

matica Societatis Janos Bolyai, 8, 223-240.

[11] C.H Dowker, D Strauss (1975), Paracompact frames and closed maps, Sym-

pos.Math., 16, 93-116.

[12] C.H Dowker, D Strauss (1977), Sums in the category of frames, Hous-

ton.J.Math., 3, 7-15.

[13] C Ehresmann (1957), Gattungen von lokalen Strukturen, Jber.Deutsch. Math.-

Verein, 60, 59-77.

[14] T ElGamal (1985), A public key cryptosystem and a signature scheme based on

discrete logarithms, IEEE Transactions on Information Theory, Lecture Notes

in Computer Science,31.4, 469-472.

[15] G Gierz, K.H Hofmann, K Keimel, J.D Lawson, M Mislove, D.S Scott (2003),

Continuous lattices and Domains, Cambridge University press.

[16] George Gratzer (2003), General lattice theory, Birkhauser.

[17] F Hausdorff (1914), Grundzuge der Mengenlehre , Viet and Co., Leipzig.

[18] H Herrlich, G.E Strecker (1973), Category Theory:An Introduction, Allyn and

Bacon.

[19] J.R Isbell (1964), Uniform spaces, Math.Surveys, Amer.Math.Soc., Providence.

134



[20] J.R Isbell (1972), Atomless parts of spaces, Math.Scand., 31, 5-32.

[21] J.R Isbell (1975), Functions spaces and adjoints, Math.Scand., 36, 317-339.

[22] J.R Isbell (1981), Product spaces on locales, Proc.Amer.Math.Soc., 81, 116-118.

[23] J.R Isbell (1982), Direct limit of meet-continuous lattices, J.Pure and Applied

Algebra, 23, 33-35.

[24] P.T Johnstone (1982), StoneSpaces, Cambridge University Press.

[25] P.T Johnstone (1983), The point of pointless topology, Bulletin of American

Mathematical society, 8, 41-53.

[26] P.T Johnstone, S.H Sun (1988), Weak products and Hausdorff locales, Categori-

cal algebra and its Applications, Lecture Notes in Math, Springer, 1348, 173-193.

[27] K.D Joshi (1983), Introduction to general topology, New Age International.

[28] McKinsey, J.C.C, A Tarski (1944), The algebra of topology, Ann.of Math. 2, 39,

141-191.

[29] McKinsey, J.C.C and A Tarski (1946), On closed elements in closure algebras,

Ann.of Math., 2, 47, 122-162 .

[30] H Matsumara (1970), Commutative algebra, Addison Wesley Longman.

[31] J.R Munkres (2000), Topology, Pearson.

[32] C Musli (1994), Introduction to Rings and Modules, Narosa Publishing House.

[33] Nobeling (1954), Grundlagen der analytischen topologie, Die Grundlehren der

Math. Wissen-schaften, bBand 72, Springer-Verlag, Berlin and Newyork.

135



[34] Oliver Wilhelm Gnilke (2014), The semigroup action problem in Cryptography,

Ph.D thesis, University College Dublin.

[35] D Papert (1958), Lattices of functions,measures and pointsets, Ph.D thesis, Uni-

versity of Cambridge.

[36] S Papert (1959), The lattices of logic and topology, Ph.D thesis, University of

Cambridge.

[37] J Paseka (1987), T2 Separation Axioms on frames, Acta Univ.carolin.Math.Phys,

28, 95-98.

[38] F Peticolas, Electronic version and English translation of ”La cryptographie

militaire” by Auguste Kerckhoffs, url: http://petitcolas.net/ fabien/kerckhoffs/

(updated Jan. 12, 2014).

[39] J Picado, Pultr (2012), Frames and locales:Topology without points, Front.Math.,

Springer, Basel.

[40] L Pontrjagin (1986), Topological groups, Princeton University Press, London.

[41] H.H Schaefer (1971), Topological vector spaces, Springer-Verlag.

[42] Scott and C Strachey (1971), Towards a mathematical semantics for computer

languages, Poceedings of the Symposium on Computers and Automata, Polytech-

nic Institute of Brooklyn Press, New York.

[43] C.E Shannon (1948), A mathematical theory of communication (Part 1), Bell

Syst. Tech. J., 27, 379-423.

[44] C.E Shannon (1948), A mathematical theory of communication (Part 2), Bell

Syst. Tech. J., 27, 623-656 .

136



[45] H Simmons (1978), The lattices theoretic part of topological separation proper-

ties, Proc.Edinburgh Math.Soc, 22, 41-48.

[46] M Smyth (1983), Power domains and predicate transformers:a topological view,

Lecture notes in Computer Science, Springer-Verlag, Berlin.

[47] M.H Stone (1934), Boolean algebras and their applications to topology,

Proc.Nat.Acad.Sci., 20, 197-202.

[48] M.H Stone (1936), The theory of representations of Boolean algebras,

Trans.Amer.Math.Soc., 40, 37-111.

[49] M.H Stone (1937), Topological representations of distributive lattices and Brouw-

erian logics, Casopis pest.mat.fys, 67, 1-125.

[50] S Vickers (1985), Topology via Logic, Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge.

[51] H Wallman (1938), Lattice and topological spaces, Ann.of Math. 2, 39,112-126.

[52] S Willard (1970), General topology , Addison-Wesley Pub. Co.

137


