	2226
U	4440

(Pages: 3)

Reg	No

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Physics/Applied Physics

PHY 4B 04/APY 4B 04—ELECTRODYNAMICS—I

Time : Three	Hours	Maximum	: 80	M	[ark
IIIIC . III			- T W - 2		

Section A

Answer in a word or phrase.

Answer all questions; each question carries 1 mark.

- 1. $\nabla XB = ----$
- 2. The Curl of vector field is ————
- 3. A particle is released from rest in to a region in which E is perpendicular B. The particle will undergo ———— motion.
- 4. The electric field inside a charged spherical shell is———.
- 5. For paramagnetic material, the value of χ is———.

Questions 6 to 10 write True or False.

- 6. Electrostatic energy obeys superposition principle.
- 7. No work is done in moving a charge from one point to another point on the surface of a conductor.
- 8. Continuity equation gives the local conservation of charges.
- 9. Surface current density is the current per unit area.
- 10. Polarization is the dipole moment per unit volume.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer in two or three sentences.

Answer all questions.

Each question carries 2 marks.

- 11. Show that electricfield is the negative gradient of potential
- 12. State first uniqueness theorem.

Turn over

- 13. Show that the energy of an ideal dipole in an electric field is-p.E.
- 14. What is a polarizability tensor?
- 15. Find the expression relating dielectric constant and electric susceptibility.
- 16. What is a linear magnetic material?
- 17. State Ampere's law in magnetostatics.

 $(7 \times 2 = 14 \text{ marks})$

Section C

(Answer in a paragraph of about half a page to one page.

Answer any five questions.

Each question carries 4 marks.

- 18. Derive the boundary conditions for electric displacement D.
- 19. Differentiate between paramagnetism and diamagnetism.
- 20. What do you mean by method of images? Explain.
- 21. Find the electric field due to an infinite plane carrying a uniform surface charge σ and comment on the result.
- 22. Find the work needed to form an assembly of four point charges.
- 23. Show that the normal derivative of vector potential is discontinuous across a boundary.
- 24. What is the effect of magnetic field on atomic orbits?

 $(5 \times 4 = 20 \text{ marks})$

Section D

Problems-write all relevant formulas.

All important steps carry separate marks.

Answer any four questions.

Each question carries 4 marks.

- 25. Find the capacitance per unit length of two coaxial metal cylindrical tube of radii 'a' and 'b'.
- 26. A spherical conductor of radius 'a' carries a charge Q. It is surrounded by a linear dielectric material of susceptibility χ_e , out to radius 'b'. Find the energy of this configuration.
- 27. Find the electric field due to a uniformly polarized sphere?

- 28. At the interface between two linear dielectrics the electric field lines bend. Show that $\frac{\tan\theta_2}{\tan\theta_1} = \frac{\epsilon_2}{\epsilon_1}$, where θ_1 and θ_2 are the angle made by the electric field of the two media with the normal. There is no free charge at the boundary.
- 29. A long copper rod of radius R carries a uniformly distributed free current I. Find auxiliary field H inside and outside the rod.
- 30. Find the vector potential of an infinite solenoid with 'n' turns per unit length, radius R and current I.
- 31. Find the capacitance of a parallel plate capacitor containing two dielectrics with $K_1=1.5$ and $K_2=3.5$, each occupying one half of the space between the plates with interface parallel to the plates. Given area of the plates equal to 2 m² and distance between the plates is equal to 10^{-3} m.

 $(4 \times 4 = 16 \text{ marks})$

Section E (Essays)

Answer in about two pages.

Answer any two questions.

Each question carries 10 marks.

- 32. State Biot-Savart law. Find the magnetic field due to a circular coil carrying a current I.
- 33. State and prove Gauss's law in electrostatics. Find the electric field due to a uniformly charged solid sphere. Represent the variation of electric field with distance graphically.
- 34. What do you mean by ferromagnetism? Explain the hysteresis curve.
- 35. What are dielectrics? Find the expression for force experienced by a dielectric system placed between the plates of a parallel plate capacitor.

 $(2 \times 10 = 20 \text{ marks})$

C 22	227	(Pages: 2)	Name
			Reg. No
FOU	RTH SEMESTER (CUCBCSS—	-UG) DEGREE EX	AMINATION, APRIL 2021
		s/Applied Physics	
	PHY 4C 04—ELECTRICITY 1	MAGNETISM AND 1	NUCLEAR PHYSICS
Time	: Three Hours		Maximum: 80 Marks
		Section A	
	Each que	ver all questions. estion carries 1 mark. in a word or phrase.	CAL
1.	Betatron is used to accelerate	— particle.	
2.	The particle emitted in β decay togeth	er with electron is ——	() `
3.	Superconductivity was discovered by -		
4.	The combination of one u quark and to	wo d quarks is called —	
5.	Range of nuclear force in the order of		
6.	An example for paramagnetic substant	ce is ———	
7.	Nuclear fission can be explained by —		
8.	The susceptibility of paramagnetic ma	terial is ———.	
9.	Charge of u quark is ———.	7/	
10.	The principle of ——— used in the	construction of atom b	omb.
			$(10 \times 1 = 10 \text{ marks})$
	2	Section B	
	Ansu	ver all questions.	

Answer all questions.

Each question carries 2 marks.

Answer in two or three sentences.

- 11. State Coulomb's theorem.
- 12. State Gauss Law.
- 13. Explain nuclear fission.
- 14. Explain critical temperature in superconductivity.
- 15. Explain the properties of electric lines of force.

 $(5 \times 2 = 10 \text{ marks})$

Turn over

Section C

Answer any four questions. Each question carries 5 marks. Answer in one paragraph.

- 16. Differentiate between nuclear fission and fusion with example.
- 17. Explain the terms: binding energy of the nucleu, packing fraction mass defect.
- 18. Distinguish between Para, Dia and ferromagnetic materials.
- 19. Explain the terms, decay constant, half life and average life as applied to a radioactive substance. Find the relation between them.
- 20. Discuss with the neat diagram the working of a semiconductor detector.
- 21. Explain latitude effect in cosmic rays

 $(4 \times 5 = 20 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 5 marks.

- 22. A horizontal overhead power line caries a current of 50A from the south to north. Calculate the magnitude and direction of the magnetic field due to the current at a point 2m above the line.
- 23. Given the following isotopic masses $_3\text{Li}^7 = 7.016004$, $_3\text{Li}^6 = 6.015125$ and $_0\text{n}^1 = 1.008665$. Calculate the binding energy of neutron in $_2\text{Li}^7$ nucleus. Express the result in u, MeV and Joules.
- 24. A metallic wire 1 mm in diameter carries a charge of 100C in one hour. The metal contains 6×10^{22} free electrons per cubic centimetre. Calculate the current in the wire and the drift velocity of electrons.
- 25. Calculate the force and acceleration of an α particle when it is at a distance of 6.9×10^{-15} from the surface of the gold nucleus. Nuclear radius = 6.9×10^{-15} m Mass of the α particle = 6.7×10^{-27} Kg Charge of the electron = 1.6×10^{-19} C Atomic No. of gold = 79.
- 26. How many kilowatt energy will be released by complete fission of one kg of U^{235} . Given that the energy released per fission is 200 MeV?

 $(2 \times 5 = 10 \text{ marks})$

Section E

Answer any two questions. Each question carries 15 marks.

- 27. Explain nuclear fission and fusion and also explain the working of hydrogen bomb.
- 28. Write an essay on Elementary Particles.
- 29. With the help of neat diagram and necessary theory, explain how the temperature coefficient of the material of a resistor can be determined using Carey Foster's Bridge.

 $(2 \times 15 = 30 \text{ marks})$

C 2228	(Pages : 3)	Name
C 2228	(Pages : 3)	Name

Reg	No
rug.	110

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Physics/Applied Physics

APY 4C 04—DIGITAL INTEGRATED CIRCUITS

Time : Three Hours	Maximum : 64 Marks

iiic	. Three	Hours		
		Se	ction	ı A
		Answer	all qu	uestions.
		$Each\ question$	n car	ries 1 mark.
1.	The A	ND gate performs which of the follo	wing	operations.
	(a)	Multiplication.	(b)	Inversion.
	(c)	Addition.	(d)	Subtraction.
2.	A + AE	B is equal to :		,23
	(a)	0.	(b)	1.
	(c)	A.	(d)	A + B.
3.	TTL te	chnology uses ———— transistors f	or th	e input devices.
	(a)	Multiple emitter.	(b)	Single emitter.
	(c)	Multiple collector.	(d)	Multiple base.
4.	A TTL	inverter is with :		
	(a)	Open emitter.	(b)	Open collector.
	(c)	Open base.	(d)	None of these.
5.	In an ed	dge triggered SR flip flop the invalid	d con	dition is:
•	(a)	S high, R low.	(b)	S low, R high.
	(c)	Both low.	(d)	Both high.

6.	The di	fference between a latch and a flip-flop is:		
	(a)	Method used for changing state.		
	(b)	Method of giving input.		
	(c)	Method of giving output.		
	(d)	All the above.		
7.	If n is t	the number of flip-flops in a counte	r ther	n the maximum possible number of states is:
	(a)	n.	(b)	2n.
	(c)	2^n .	(d)	None of the above.
8.	A regis	ter is used for :		
	(a)	Storing data.	(b)	Shifting data.
	(c)	Both.	(d)	Either.
9.	Sum ou	itput of a half adder is generated b	y	gate
	(a)	AND.	(b)	OR.
	(c)	Exclusive OR.	(d)	NOR.
10.	The bit	for detecting error is called ———	– bit.	
	(a)	Parity.	(b)	Encoder.
	(c)	Decoder.	(d)	None of the above.
				$(10 \times 1 = 10 \text{ marks})$
		Sec	etion	В
		Answer a	all qu	estions.

Each question carries 2 marks.

- Give the basic idea of analog to digital conversion.
- Discuss the basic function of a decoder. 12.
- Explain serial in parallel out shift register.
- 14. Explain the term edge triggered in the case of flip-flop.
- 15. Explain about ECL circuits.

- 16. Discuss logical operation of OR gate
- 17. Explain commutative law of Boolean algebra.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer any three questions. Each question carries 4 marks.

- 18. Discuss the operation of CMOS NAND gate.
- 19. Explain the operation of SR latch.
- 20. Distinguish between synchronous and asynchronous counters.
- 21. Explain the basic function of a multiplexer.
- 22. Discuss the binary weighted input DA converter.

 $(3 \times 4 = 12 \text{ marks})$

Section D

Answer any three questions. Each question carries 4 marks.

- 23. Explain the binary to BCD conversion.
- 24. Explain why asynchronous counters are called ripple counters.
- 25 Explain the method of edge triggering in a SR flip flop.
- 26. Explain the working of a TTL inverter.
- 27. Explain SOP and POS forms of logic function.

 $(3 \times 4 = 12 \text{ marks})$

Section E

Answer any **two** questions. Each question carries 8 marks.

- 28. Discuss the simplification of Boolean expression using a Karnaugh map.
- 29. Explain the basic binary decoder and discuss four bit binary decoder and BCD to decimal decoder.
- 30. Explain the types of shift registers.
- 31. List out the specification of TTL logic family. Compare the features of TTL & CMOS logic families.

 $(2 \times 8 = 16 \text{ marks})$

C 3561	(Pages : 3)	Name

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Physics/Applied Physics PHY 4B 04/APH 4B 04—ELECTRODYNAMICS—II

Time: Two Hours Maximum: 60 Marks

The symbols used in question paper have their usual meanings.

Section A (Short Answer Type)

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Explain Joule heating law.
- 2. Comment on the statement "nature abhors a change in flux".
- 3. Illustrate the symmetry in Maxwell's equations for E and B in free space.
- 4. Write down the general wave equation. Give its solution.
- 5. Draw a monochromatic plane wave travelling in the z direction indicating the E and B vectors.
- 6. Give expressions for the electric and magnetic field vectors E and B in terms of the potentials.
- 7. Show that the Coulomb gauge leads to Poisson's equation.
- 8. List the origin of transient currents in circuits.
- 9. Write down an expression for the DC transient current in a series R-L circuit. Explain the terms involved.
- 10. Plot the growth and decay of DC transient currents in an RC series circuit.
- 11. Compare series and parallel resonant circuits.
- 12. Write down the Kirchhoff's voltage law.

 $(8 \times 3 = 24 \text{ marks})$

Reg. No.....

Section B (Paragraph/Problem Type)

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Explain the boundary conditions for the electric and magnetic vectors E and B at an interface separating two linear media of permittivities ε_1 and ε_1 and permeabilities μ_1 and μ_2 .
- 14. Show that, for a plane monochromatic wave, the momentum density stored in the field is the energy density divided by the velocity of the wave.
- 15. A ballistic galvanometer has a free period of 10 seconds and gives a steady deflection of 200 divisions with a steady current of 0.1 milli-amperes. A charge of 121 micro-coulombs is instantaneously discharged through the galvanometer giving rise to a first maximum deflection of 100 divisions. Calculate the decrement of the resulting oscillations.
- 16. A coil having an inductance of 50 mH and resistance 10 Ω is connected in series with a 25 μF capacitor across a 200 V AC supply. Determine: (i) The resonance frequency of the circuit;
 (ii) Current flowing at resonance; and (iii) Q-factor.
- 17. Obtain an expression for the power consumed in a series LCR circuit.
- 18. Use Thevenin's theorem to determine the current flowing through the 4 Ω resistance of the following circuit.

19. Find the current through the 8 Ω resistor of the following circuit using Norton's theorem.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type)

Answer any one question.

The question carries 11 marks.

- 20. Obtain Maxwell's equations in matter.
- 21. Obtain the wave equation for the electric and magnetic field vectors E and B in free space. Explain the term polarization and show that electromagnetic waves are transverse in behavior.

 $(1 \times 11 = 11 \text{ marks})$

C 3562	(Pages : 2)	Name
U 3562	(Pages : 2)	Name

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Physics/Applied Physics

PHY 4C 04—ELECTRICITY MAGNETISM AND NUCLEAR PHYSICS

Time: Two Hours

Maximum: 60 Marks

The symbols used in question paper have their usual meanings.

Section A (Short Answers)

Answer at least eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Give the differential form of Gauss's law in electrostatics. What are the terms involved in the expression?
- 2. What are the properties of equipotential surfaces?
- 3. What do you mean by the capacitance of a capacitor? Give the basic expression for the same.
- 4. Give the vector statement of Ohm's law. What are the terms involved?
- 5. Give the value of the angle of dip at the magnetic pole and magnetic equator.
- 6. Give any four properties of ferromagnetic materials.
- 7. What is the use of a deflection magnetometer? How will you arrange a deflection magnetometer in tan C position?
- 8. What is nuclear fusion? Give an example.
- 9. What are cosmic ray showers?
- 10. What are the fundamental interactions in nature?
- 11. What do you mean by hypercharge? What is the hypercharge of π^+ particle?
- 12. Name the different leptons.

 $(8 \times 3 = 24 \text{ marks})$

Reg. No.....

Section B (Paragraph/Problem Type)

Answer at least **five** questions.

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 25.

- 13. How much electric flux will come out through a surface S = 10 j kept in an electrostatic field E = 2i + 4j + 7k?
- 14. Determine the capacitance of a sphere of 20 cm diameter inside which there is an earth-connected sphere of 10 cm diameter, the medium between the spheres being air.
- 15. A galvanometer of resistance 15 ohms gives full scale deflection for a current of 2 milli-ampere. Calculate the shunt resistance needed to convert it to an ammeter of range 5 A.
- 16. What is the origin for a hysteresis loop in ferromagnetic materials? Use a typical hysteresis loop indicating retentivity and coercivity.
- 17. Discuss the working principle of a tangent galvanometer. What do you mean by the reduction factor of a tangent galvanometer?
- 18. How long will it take for 60 % of a sample of radon to decay? Given, the half-life of radon = 3.82 days.
- 19. Explain the distinction between particles and antiparticles. Illustrate using two examples.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type)

Answer any one question.

The question carries 11 marks.

- 20. Explain the working principle of a potentiometer. How will you determine the resistance of a wire using a potentiometer?
- 21. Using a suitable figure, explain the working principle of a linear accelerator.

 $(1 \times 11 = 11 \text{ marks})$

C 3563	(Pages : 2)	Name
		Reg. No

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Physics/Applied Physics

APH 4C 04—OP-AMP AND APPLICATIONS

Time: Two Hours

Maximum: 60 Marks

The symbols used in this question paper have their usual meanings.

Section A (Short Answer Type)

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Why an op-amp is considered as a versatile device?
- 2. Define slew rate of an op-amp.
- 3. What is gain-bandwidth product?
- 4. What are the features of an ideal op-amp?
- 5. Explain the principle of an open loop differential amplifier.
- 6. How can you construct a summing amplifier in non-inverting configuration?
- 7. With a schematic, compare the frequency responses of a basic and practical integrator using op-amp.
- 8. Mention two applications of differentiators.
- 9. What are the two basic criteria to be fulfilled while designing an oscillator?
- 10. What is meant by frequency stability of an oscillator? How is it related to the figure of merit Q of the circuit?
- 11. What are the limitations of an op-amp zero-crossing detector?
- 12. What is meant by hysterisis of a comparator?

 $(8 \times 3 = 24 \text{ marks})$

Section B (Paragraph/Problem Type)

Answer at least **five** questions.

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 25.

- 13. Draw the equivalent circuit of an op-amp and explain the features.
- 14. An open loop differential amplifier circuit with op-amp IC 741 has the following specifications.

$$A = 2,00,000 R_i = 2M\Omega, R_o = 75\Omega, + V_{CC} = +15V, -V_{EE} = -15V$$

Output voltage swing - ± 14 V

Determine the output voltage in each of the following cases for the open loop differential amplifier.

- (i) $v_{\text{in }1} = 5\mu \text{V dc}, v_{\text{in }2} = -7\mu \text{V dc}$
- (ii) $v_{\text{in }1} = 10 \text{ mV r.m.s.} v_{\text{in }2} = 20 \text{ m V r.m.s.}$
- 15. Explain the principle of an op-amp voltage follower.
- 16. An IC 741 op-amp having following parameters is connected as a non-inverting amplifier with R_1 = 1 K Ω , R_F = 10 K Ω . Open loop voltage gain, A = 2,00,000. Supply voltages = + 15V. Compute the values of gain of the feedback circuit (B) and closed loop voltage gain(A_F).
- 17. Design a first order low pass filter with cut-off frequency of 1 kHz with pass band gain of 2. Give the circuit diagram.
- 18. How shall you construct a zero crossing detector from an inverting comparator? Give the circuit and waveforms.
- 19. Describe the principle of a square wave generator using an op-amp based circuit.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question.

The question carries 11 marks.

- 20. With a schematic, illustrate the principle of a voltage shunt feedback amplifier using op-amp. Explain the concept of virtual ground.
- 21. What are active filters? Explain the principle and working of a wide band-pass filter.

 $(1 \times 11 = 11 \text{ marks})$