(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Applied Chemistry

ACH 1C 04—PHYSICAL CHEMISTRY—I

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Choose the correct answer:

1. Which of the following Maxwell relations is incorrect:

(a)
$$\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P$$
.

(b)
$$\left(\frac{\partial \mathbf{T}}{\partial \mathbf{V}}\right)_{\mathbf{S}} = -\left(\frac{\partial \mathbf{P}}{\partial \mathbf{S}}\right)_{\mathbf{V}}$$

(c)
$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$
.

(d)
$$\left(\frac{\partial \mathbf{S}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{V}}$$

2. Which of the following is not a definition of chemical potential of component i $(i \neq j)$:

(a)
$$\left(\frac{\partial u}{\partial n_i}\right)_{s,v,n_i}$$

(b)
$$\left(\frac{\partial H}{\partial n_i}\right)_{s, p, n_i}$$

(c)
$$\left(\frac{\partial \mathbf{A}}{\partial n_i}\right)_{v, \mathbf{T}, n_j}$$

(d)
$$\left(\frac{\partial G}{\partial n_i}\right)_{p,v,n_i}$$

3. Which of the following is not true for onsager reciprocal relation:

- (a) L-matrix is symmetric.
- (b) $L_{12} = L_{21}$.
- (c) $L_{11} = L_{22}$.
- (d) The indirect effect of a force X_1 on another flux J_2 is the same on the indirect effect of the force X_2 on flux J_1 .

4.	Flow of current due to temperature difference is called ———— effect.				
	(a)	Soret.	(b)	Seebeck.	
	(c)	Peltier.	(d)	Electrokinetic.	
5.	Debye-l	Hückel onsager relation is associate	ed wit	:h :	
	(a)	Variation of conductance with cond	centr	ation of electrolyte.	
	(b)	Variation of conductance with squ	are ro	oot of concentration of electrolyte.	
	(c)	Variation of activity co-efficient wi	th co	ncentration of electrolyte.	
	(d)	Variation of activity with concentr	ation	of electrolyte.	
6.	The ion	ic strength of 0.01 LaCl_3 is :		, O'	
	(a)	0.01.	(b)	0.03.	
	(c)	0.04.	(d)	0.06.	
7.	The sol	ubility of a sparingly soluble salt ca	n be	determined by :	
	(a)	Conductometry.	(b)	Potentiometry.	
	(c)	Both (a) and (b).	(d)	None of these.	
8.	The nu	mber of electrons transferred in me	thand	ol fuel cell is :	
	(a)	1.	(b)	2.	
	(c)	4.	(d)	6.	
9.	Overvo	ltage depends on :			
	(a)	Rate of electron transfer.	(b)	Electrode material.	
	(c)	Both (a) and (b).	(d)	None of these.	
10.	A micro	pelectrode is used in polarography to	o:		
	(a)	Minimize concentration polarization	on.		
	(b)	Maximise concentration polarization	on.		
	(c)	Minimize iR drop.			
	(d)	Minimise activation over potential	•		

- 11. A plane cuts the x, y and z axes at 2a, 3b and 1c respectively. The Miller indices of the plane is:
 - (a) 2 3 1.

(b) 1 2 3.

(c) 3 2 6.

- (d) 3 2 1.
- 12. In XRD pattern of a cubic crystal interplanar spacing corresponding to ———— distance is missing.
 - (a) $\frac{\dot{a}}{\sqrt{3}}$

(b) $\frac{a}{\sqrt{5}}$

(c) $\frac{a}{\sqrt{6}}$

(d) $\frac{a}{\sqrt{7}}$.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer all questions.

Each question carries 2 marks.

- 13. One mole of toluene is mixed with 0.5 mole of benzene at 300 K. Calculate enthalpy and entropy of mixing assuming ideal behaviour.
- 14. Derive an equation for the rate of entropy production for one component system with heat transport only.
- 15. Write Debye-Hückel limiting law. How is it verified? Explain.
- 16. Write cell reactions for a fuel cell under: (a) Acidic medium; and (b) Alkaline medium.
- 17. Explain the term 'concentration polarization.
- 18. Draw stereographic projection for (222) plane.

 $(6 \times 2 = 12 \text{ marks})$

Section C

Answer any six questions.

Each question carries 6 marks.

- 19. Define partial molal volume. How is it determined? Discuss.
- 20. Define phenomenological co-efficients. Show that direct co-efficients always dominate indirect co-efficients.
- 21. Rationalise electro-osmosis using irreversible thermodynamics.
- 22. Calculate the thickness of ion atmosphere around K⁺ in 0.01 KCl at 25°C in water Dielectric constant of water is 78.5.

23. Calculate the voltage of the cell at 25°C

$$Zn \left| Zn^{2+} \right|_{a = 0.0004} \quad \left\| Cd^{2+} \right|_{a = 0.2} Cd$$

Write the electrode reaction. Find the equilibrium constant of the reaction. The standard electrode potentials of Zn^{2+} Zn and Cd^{2+} Cd are -0.763 and -0.403 V respectively.

- 24. Discuss principle and applications of polarography.
- 25. Define Overvoltage. What are the contributing factors towards overvoltage? Discuss.
- 26. Briefly discuss powder XRD.
- 27. What do you mean by electron density maps? Discuss.

 $(6 \times 6 = 36 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 10 marks.

- 28. Derive Debye-Hückel Onsager equation. Discuss.
- 29. Briefly discuss theories of hydrogen overvoltage.
- 30. Briefly discuss Fourier Synthesis.
- 31. Discuss briefly:
 - (a) Excess thermodynamic functions.
 - (b) Thermal diffusion.
 - (c) Determination of liquid junction potential.

 $(2 \times 10 = 20 \text{ marks})$

D 93543	(Pages : 4)	Name
		Reg. No

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Applied Chemistry

ACH 1C 03—ORGANIC CHEMISTRY-I

(2019 Admissions)

Time •	Three	Hours	Maximum	. 20	Morle
TIME .	THICC	Tiours	Maximum	. 00	waik

ше	. Ime	e Hours			Maxi	mum : 80 .	warks
		S	Section	n A			
			_	ruestions. rries 1 mark.	Ο,		
1.	Phenyl	nitrene can be obtained by the pl	notolys	sis of ———.			
	(a)	$\mathrm{C_6H_5NH_2}.$	(b)	$\mathrm{C_6H_5N_3}.$			
	(c)	C_6H_5 -N=N- C_6H_5 .	(d)	$\mathrm{C_6H_5N_2Cl.}$			
2.	Trans-	1,1 -dichloro-2,3-diphenylcyclopro	pane	arises from ———	— by reaction	with ——	—.
	(a)	Z-PhCH=CHPh; CHCl ₃ /NaOH.	7)				
	(b)	Z-PhCH=CHPh ; Cl ₂ .					
	(c)	E-PhCH=CHPh; CHCl ₃ /Aq. Na	OH.				
	(d)	E-PhCH=CHPh; Cl radical.					
3.	The cor	nversion of benzyltrimethylammois a	nium	halide to N,N-dim	ethyl-N-(2-me	ethylbenzyl)	amine
	(a)	conc. aq. NaOH ; Sommelet-Hau	ser re	arrangement.			
	(b)	NaOH-EtOH ; Stevens rearrang	ement	/•			
	(c)	NaNH ₂ /liq.NH ₃ ; Stevens rearra	ngeme	ent.			
	(d)	$NaNH_2/liq.NH_3$; Sommelet-Hau	ser rea	arrangement.			
4.	U	Ph-CO-CO-Ph (A), Me-CO-CO-N			one (C) and P	h-CO-CH ₂ -0	CO-Ph
	(a)	Only A	(h)	A and B			

(d) A, B, C and D.

Turn over

(c) A, B and C.

		2, 3-	dichlorobutane. The two chlorine atoms in it will
(a)	Syn. (b)	Anti.
(c)	Gauche.	d)	Partially eclipsed.
Conform	nationally biased t -butylcyclohexane	has	s — in one chair form.
(a)	Unfavourable 1, 3-diaxial interaction	ns.	
(b)	Unfavourable 1, 4-diaxial interaction	ns.	
(c)	Unfavourable 1, 2-diaxial interaction	ns.	, G ¹
(d)	All the three above unfavourable int	era	ctions.
One of be—	the reactants in a Barbier coupl —.	ing	leading to C_6H_5 - $CH(OH)$ - CH_2 - CH = CH_2 can
(a)	Benzyl bromide.	b)	Vinyl bromide.
(c)	C_6H_5 -CH(OH)-CH $_2$ -Br.	d)	Allyl bromide.
C ₆ H ₅ -0	$C \equiv C-CH_3$ can best be obtained ———	(using ———.
(a)	By Castro-Stephens coupling ; $\mathrm{CH_3}$ l	an	$d C_6 H_5 - C \equiv C - Cu.$
(b)	By Castro-Stephens coupling ; C_6H_6	₅ -I a	and CH_3 - $C \equiv C$ - Cu .
(c)	By dehydrohalogenation ; C_6H_5 -CH	₂ CE	$\mathrm{Br}_2 ext{-}\mathrm{CH}_3.$
(d)	From baezaldehyde and acetaldehyd	de;	TiCl ₄ /Zn.
Photoly	vsis of a mixture of MeCH=CMe $_2$ and	Me	₂ CO gives ———.
(a)	2, 2, 3, 3, 4-pentamethyloxetane on	ly.	
(b)	2, 2, 3, 4, 4-pentamethyloxetane onl	ly.	
(c)	2, 2, 3, 3, 4-pentamethyloxetane and	d 2,	2, 3, 4, 4-pentamethyloxetane.
(d)	1, 1, 2, 2, 3-pentamethylcyclopropar	ıe.	
The ma	nufacture of — from —	is a	n example of industrial photochemistry.
(a)	Benzyl chloride ; toluene.	b)	p-chlorotolune; toluene.
(c)	o-and p-chlorotoluene; toluene. (d)	Chlorobenzene; benzene.
	be orient (a) (c) Conform (a) (b) (c) (d) One of be ——— (a) (c) C ₆ H ₅ -C (a) (b) (c) (d) Photoly (a) (b) (c) (d) The material (a)	to be oriented———————————————————————————————————	be oriented ————————————————————————————————————

- 11. Styrene can be obtained from------ by reduction in presence of ------
 - (a) Phenylacetylene; Ru catalyst.
- (b) Phenylacetylene; Pd-BaSO₄/Quinoline.
- (c) Stilbene; Pd-BaSO₄/Quinoline.
- (d) Phenylacetylene; Pd-BaSO₄/Pyridine.
- 12. 1, 1'-Bi-2-naphthol can be obtained from ——— by ———.
 - (a) 2-naphthol; oxidative coupling.
 - (b) 1-naphthol; oxidative coupling.
 - (c) 1,1'-binaphthalene; hydroxylation.
 - (d) 1,1'-binaphthalene; reaction with singlet oxygen.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer all questions.

Each question carries 2 marks.

- 13. Identify the product arising from the reaction of *trans*-2-butene with (i) Singlet carbene; and (ii) triplet carbene respectively.
- 14. Write the starting materials and reagents used in (i) Dakin; and (ii) Baeyer-Villiger reactions?
- 15. Between α -and β -D-glucopyranose, the latter is more stable whereas between α -and β -D-mannopyranose, the former is more stable. Explain your answer in a conformational point of view.
- 16. Cyclopent-2-en-1-one can be obtained by Pauson-Khand reaction. What are the reactants and catalyst needed?
- 17. 3, 4-Dimethylphenol can be obtained by the photochemical rearrangement of a non-aromatic starting material. Which is the starting material and what is the mechanism?
- 18. Illustrate with an example the oxidative cleavage of alkynes.

 $(6 \times 2 = 12 \text{ marks})$

Section C

Answer any **six** questions.

Each question carries 6 marks.

- 19. Write a brief account of the formation, structure and reactivity of benzyne.
- 20. Describe the mechanism and application of (i) Skattebol rearrangement; and (ii) Wolff rearrangement.

- 21. Discuss the mechanism of any two named reactions in which an isocyanate is an intermediate.
- 22. Explain with an example each the use of (i) Favorskii rearrangement in ring contraction; and (ii) Tiffeneau-Demjanov rearrangement in ring expansion. Write the mechanism.
- 23. Discuss the optival activity of allenes and explain with examples how their configuration can be specified by the CIP system.
- 24. Explain, with mechanisms:
 - (i) Cyclization of divinylketones to cyclopentenones using Lewis acid catalysts
 - (ii) α -Methylnylation of ketones using $Me_2N = CH_2^{\oplus}I \ominus$.
- 25. What are (i) Barton; (ii) Norrish Type I; and (iii) Norrish Type II photochemical reactions? Explain their mechanisms with examples.
- 26. Write an account of reductions using LAH.
- 27. Discuss the reduction of α , β -unsaturated ketones with NaBH₄ (i) In the absence ; and (ii) In the presence of CeCl₃.

 $(6 \times 6 = 36 \text{ marks})$

Section D

Answer any two questions.

Each question carries 10 marks.

- 28. Discuss the major reactions of carbon free radicals.
- 29. (a) Write an account of optically active non-carbon chiral centers. Illustrate your answer with specific examples.
 - (b) Write a brief note on conformations of fused ring and bridged systems.
- 30. Discuss briefly:
 - (i) Bio and chemiluminescence reactions;
 - (ii) $Di-\pi$ methane rearrangement; and
 - (iii) Sun light induced photoreactions in the atmosphere. (4 + 3 + 3 = 10 marks)
- 31. Describe (i) The hydroxylation of alkenes; (ii) Swern oxidation; and (iii) Muffat oxidation.

$$(4 + 3 + 3 = 10 \text{ marks})$$

$$[2 \times 10 = 20 \text{ marks}]$$

D 93	542	(Pa _j	ges :	4) N	Name
				F	Reg. No
]	FIRST	SEMESTER P.G. DEGREE	EX	KAMINATION,	NOVEMBER 2020
		(C	css)	
		Applied	Che	emistry	
		ACH 1C 02—INORG	AN]	IC CHEMISTRY	_I
		(2019 A	dmi	ssions)	
Time	: Three	Hours			Maximum: 80 Marks
		Sec	tion	A	
		Answer a Ea ch question	_		9.
1.	Which	of the following +3 ion has half-filled	l sub	o-shell?	
	a)	La.	b)	Lu.	
	c)	Ac.	d)	Gd.	
2.	Which a	among the following hydroxides, sho ?	ws h	ighest solubility in	n hot and concentrated aqueous
	a)	Lu(OH) ₃ .	b)	La(OH) ₃ .	
	c)	$Sm(OH)_3$.	d)	$Nd(OH)_3$.	
3.	How motern	any bridging and terminal carbonylature?	gro	ups respectively a	re present in $\mathrm{Co_4(CO)}_{12}$ at low
	a)	3 and 9.	b)	4 and 6.	
	c)	4 and 8.	d)	0 and 12.	
4.	Total el	ectron count in $[{ m Fe}_4{ m C(CO)}_{12}]^{2-}$ is —		 .	

b) 60.

d) 64.

b) Boric acid.

d) Boron nitride.

On hydrolysis, borazine gives -

Tetraborane(10).

Diborane.

Turn over

6.	The correct classification of $[B_2H_5]^{2-}$, B_5H_9 and B_5H_{11} respectively is —————.						
	a)	Closo, arachno, nido.	b)	Arachno, closo, nido.			
	c)	Closo, nido, arachno.	d)	Nido, arachno, closo.			
7.	Carbon	nanotube is composed entirely by -		bonds.			
	a)	sp.	b)	sp^2 .			
	c)	sp and sp^2 .	d)	sp, sp^2 and sp^3 .			
8.	The me	thod of synthesis of nanomaterial is					
	a)	Sol-gel process.	b)	Electrodeposition.			
	c)	Sputtering technique.	d)	All the above.			
9.	Conjug	ate acids of NH ₂ ⁻ is ————	- .				
	a)	NH ₃ .	b)	NH ₄ OH.			
	c)	NH ₄ ⁺ .	d)	N_2H_4 .			
10.	How m	any geometrical isomers are possible	e for	a square planar complex with formula $[\mathrm{M_{abcd}}]$?			
	a)	2.	b)	3			
	c)	4.	d)	Geometrical isomerism not possible.			
11.	Accord	ing to crystal field theory, Ni ²⁺ has t	wo u	npaired electron in ————.			
	a)	Octahedral geometry.	b)	Square planar geometry.			
	c)	Tetrahedral geometry.	d)	Both octahedral and tetrahedral geometry.			
12.	2. Among the following complex species, which one shows optical isomerism?						
	a)	[Ni(CN) ₄] ²⁻ .	b)	$[Pt(NH_3)_4]^{2+}$.			
	c)	$[Ni(CO)_4].$	d)	$[\mathrm{Co(en)}_3]^{3+}$ (en=ethylenediamine).			
	. 1			$(12 \times 1 = 12 \text{ marks})$			
	Section B						
		,					

Answer **all** questions.

Each question carries 2 marks.

- 13. What is NMR shift reagent?
- 14. What are the factors that favour the formation of metal-metal bonds?

- 15. How is polythiazyl prepared? Why it is called 'one dimensional' metal?
- 16. How do fullerenes differ from carbon nanotubes?
- 17. Differentiate between kinetic stability and thermodynamic stability of metal complexes.
- 18. Which is more stable; $[Cu(en)_2(H_2O)_2]^{2+}$ or $[Cu(en)_3]^{2+}$? Substantiate your answer, (en = ethylenediamine).

 $(6 \times 2 = 12 \text{ marks})$

Section C

Answer any **six** questions.

Each question carries 6 marks.

- 19. Compare the differences between 4f and 5f orbitals and the consequences of these on the properties of lanthanides and actinides.
- 20. Explain isolobal concept with suitable examples.
- 21. Discuss the application of styx numbers in the structural investigation of boron hydrides.
- 22. Give a brief account of the optical properties of nanomaterials.
- 23. Describe the spectrophotometric method for the determination of stability constant of a metal complex. How the overall stability constant of a metal complex is related to the step-wise stability constants?
- 24. Differentiate between spectrochemical series and nephelauxetic series.
- 25. Give an account of the isopoly and heteropoly anions of Mo and W.
- 26. Give a brief account of the biomedical applications of magnetic nanoparticles.
- 27. Write a note on the geometrical and optical isomerism exhibited by octahedral transition metal complexes.

 $(6 \times 6 = 36 \text{ marks})$

Section D

Answer any two questions.

Each question carries 10 marks.

- 28. a) Describe ion-exchange method for the separation of lanthanides from monazite.
 - b) What is lanthanide contraction? Discuss its consequences.

(5 + 5 = 10 marks)

- 29. a) Describe the synthesis, properties and structure of (PNCl₂)₃.
 - b) How do chain silicates differ from sheet silicates? Discuss the consequences of isomorphous substitution on silicates.

$$(6 + 4 = 10 \text{ marks})$$

30. a) Discuss the HSAB concept of acids and bases. How it is useful in the study of co-ordination compounds?

4

b) Explain Jahn-Teller distortion with suitable examples.

$$(6 + 4 = 10 \text{ marks})$$

31. What is CFSE? Discuss the consequences of crystal field splitting on the ionic radii, heat of hydration and lattice energies of bivalent 3d metal ions.

$$[2 \times 10 = 20 \text{ marks}]$$

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Applied Chemistry

ACH 1C 01—QUANTUM CHEMISTRY

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Choose the correct answer:

- 1. Which of the following is *not* true for photo-electric effect?
 - (a) Kinetic energy of photo electron is independent of the intensity of incident photon.
 - (b) Kinetic energy of photo electron depends on the work function of electron in metals.
 - (c) Kinetic energy of photo electron is independent of the frequency of incident photon.
 - (d) Photo electric effect is observed only if the frequency of incident photon exceeds the frequency corresponding to threshold energy.
- 2. Which of the following matter waves have highest wavelength?
 - (a) Electron.

(b) Proton.

(c) H₂.

- (d) Alpha particles.
- 3. Which of the following are well behaved functions?
 - (a) $A \sin kx$.

(b) e^x .

(c) e^{x^2}

- (d) $\sin^{-1}x$.
- 4. Choose a function that is eigen function of both $\frac{d}{dx}$ and $\frac{d^2}{dx^2}$.
 - (a) $A \sin kx$.

(b) e^{ix} .

(c) e^{x^2}

- (d) $\log x$.
- 5. The energy of a particle in a cubical box of length a is $\frac{14h^2}{8ma^2}$. The degeneracy of the level is :
 - (a) 1.

(b) 3.

(c) 6.

(d) 8.

				<u> </u>
6.	A part	icle is confined to one dimensiona	l box	of length a. The wave function is $\sqrt{\frac{2}{a}}\sin(\pi/a)x$.
		erage value of momentum is:		
	(a)	Zero.	(b)	h.
	(c)	$rac{h}{2\pi}$.	(d)	$\frac{a}{2}$.
7.	The He	ermite polynomial $H_x(v=1)$ is:		
	(a)	1.	(b)	x. (1)
	(c)	$4x^2-1$.	(d)	$8x^3-12x$.
8.	Degene	eracy of a rotor with $l = 3$ is:		, 0,
	(a)	3.	(b)	5.
	(c)	7.	(d)	9.
9.	The 1s	wave function for H atom is Ne^{-r/a_0} .	The p	probability density for finding electron is maximum
	at:			
	(a)	r=0.	(b)	$r=a_0$.
	(c)	$\frac{2r}{a_0}$.	(d)	Infinity.
10.	Accord	ing to Pauli principle the total wave	e func	tion is :
	(a)	Symmetric.	(b)	Asymmetric.
	(c)	Antisymmetric.	(d)	Cyclic.
11.		energy levels converge.		
	(a)	Electronic.	(b)	Simple harmonic oscillator.
	(c)	Rotation.	(d)	Translation.
12.	The spe	ectroscopic term symbol for the gro	und st	
	(a)	³ P ₃ .	(b)	³ P ₀ .
	(c)	${}^{3}S_{0}$.	(d)	³ D ₀ .
	-			$(12 \times 1 = 12 \text{ marks})$

Section B

3

Answer all questions. Each question carries 2 marks.

- 13. Calculate the uncertainty in momentum for electron confined to one dimensional box of length 10 nm.
- 14. Find the commutator of \hat{x} and \hat{p}_r .
- 15. Write recursion formula. Explain its significance.
- 16. Define spherical harmonics. Write one example.
- 17. What do you mean by Polar plots?
- 18. State and explain independent particle model.

 $(6 \times 2 = 12 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 6 marks.

- 19. (a) Define Hermitian operator. Show that they have real eigen functions.
 - (b) Show that eigen functions of Hermitian operators are mutually orthogonal.
- 20. Apply Schrödinger wave equation for one dimensional box of length 'a'. Find eigen functions and eigen values.
- 21. Find Hermite polynomial $H_x(v=4)$.
- 22. Apply Schrödinger wave equation for a planar rotor. Find eigen functions and eigen values.
- 23. Find commutator of \hat{L}_x and \hat{L}_y .
- 24. Explain the term 'radial probability distribution. Draw radial probability distribution for 1s and 2s atomic orbitals. Discuss.
- 25. How do you account for the fine structure of hydrogen spectrum? Discuss structure of hydrogen spectrum? Discuss.
- 26. State and prove variation theorem.
- 27. What is meant by Slater orbitals. Discuss Slater's rules with one example.

 $(6 \times 6 = 36 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 10 marks.

- 28. Discuss postulates of quantum mechanics.
- 29. Apply Schrödinger wave equation for a simple harmonic oscillator. Find eigen functions and eigen values.
- 30. (a) Apply Schrödinger wave equation for H atom. Transform into spherical polar coordinates. Separate the variables.
 - (b) Discuss shapes of *d* atomic orbitals.
- 31. Briefly discuss Hartree Fock self consistent field method of solving many electron atoms.

 $(2 \times 10 = 20 \text{ marks})$