D 93389	(Pages : 2)	Name
5 00000	(= ug = 0 + = /	

Reg	No	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Chemistry

CHE 1C 04—THERMODYNAMICS, KINETICS AND CATALYSIS

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. Explain with examples 'residual entropy'.
- 2. Define 'excess thermodynamic functions'. Explain its significance.
- 3. Explain terms 'forces and fluxes' with reference to irreversible process.
- 4. State and explain Glansdorf Pregogine theorem.
- 5. State and explain steady state approximation.
- 6. Explain pressure jump method of relaxation spectroscopy.
- 7. Distinguish between Diffusion Controlled and Activation Controlled reactions.
- 8. Distinguish between Collision Cross Section and Reaction Cross Section.
- 9. Define isosteric heat of adsorption. Explain its significance.
- 10. Unimolecular gas phase reactions follow first order kinetics at low pressures and zero order kinetics at high pressures. Why?

Answer any six questions.

Each question carries a weightage of 2.

- 11. Define Fugacity. How is it determined? Discuss.
- 12. Write Duhern Margules equation. Use the equation to show that solvent obeys Rault's law in the limit of solute obeying Henry's law.
- 13. Define phenomenological co-efficient. Show that direct co-efficient always dominate indirect co-efficients.
- 14. An organic decomposition reaction follow the mechanism.

$$\begin{aligned} & M_{1} \xrightarrow{k_{1}} R_{1} + M_{2}(E_{1}) \\ & R_{1} + M_{1} \xrightarrow{k_{2}} M_{3} + R_{2}(E_{2}) \\ & R_{2} \xrightarrow{k_{3}} R_{1} + M_{4}(E_{3}) \\ & 2R_{2} \xrightarrow{k_{4}} (R_{2})_{2}(E_{4}) \end{aligned}$$

Assuming steady state approximation for R_1 and R_2 derive the rate law. E_1 , E_2 , E_3 , E_4 are the activation energies for the elementary steps. Find the apparent activation energy.

- 15. Derive an equation to show the effect of dielectric constant of the medium on the rate of ionic reaction in solution.
- 16. Briefly discuss a crossed molecular beam experiment.
- 17. How would you determine surface acidity of the solid using TPD of ammonia? Discuss.
- 18. Discuss Lotka Volterra model of oscillating chemical reactions.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 5.

- 19. Rationalise:
 - (a) Thermal Osmosis. (b) Thermal Diffusion using irreversible thermodynamic.
- 20. What are the methods of studying fast reaction? Discuss.
- 21. Discuss briefly. 'Activated Complex theory' of reaction rates.
- 22. What are the methods for the determination of surface area of solids? Discuss.

 $(2 \times 5 = 10 \text{ marks})$

D 93388	(Pages : 2)	Name
D 00000	(1 ages : 2)	144IIIE

Reg.	No	 	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Chemistry

CHE 1C 03—STRUCTURE AND REACTIVITY OF ORGANIC COMPOUNDS (2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any eight questions.

Each question carries a weight of 1.

- 1. Cyclopentadiene has a pka value 15 which is quite high (for a H bonded to sp3 carbon). Account for this observation.
- 2. Instead of adopting a planar structure assisting complete overlap of its p orbitals, cyclooctatetraene exists as a tub shaped molecule. Explain.
- 3. Differentiate between classical and non-classical carbocations.
- 4. What are coformationally biased molecules? Give examples.
- 5. Draw the preferred conformation of trans- and cis-1-methyl-3-isopropylcyclohexane.
- 6. What are the destabilizing interactions present in axially substituted cyclohexanes?
- Write down the structure of a prochiral compound and assign the stereodescriptor for the prochiral center.
- 8. Draw all 1, 3-dimethyl cyclohexanes. Which of these are chiral?
- 9. What are chiral auxiliaries? Give an example of one used in asymmetric Diels-Alder reactions.
- Illustrate Sharpless asymmetric epoxidation reaction and specify the reagents and conditions employed.

Answer any **six** questions. Each question carries a weight of 2.

- 11. Discuss the effect of resonance on the acidity of carboxylic acids. Give examples.
- 12. Explain the aromaticity of cyclopentadienyl anion and [18] annulene, based on Huckel's rule.
- 13. State Hammond postulate and apply it to predict the relative rates of solvolysis of 2-bromopropane and 2-methyl-2-bromopropane.
- 14. Illustrate the terms kinetic and thermodynamic control with appropriate examples.
- 15. Explain the origin of optical isomerism in certain cummulenes and biphenyls.
- 16. What is the basic principle involved in resolution of racemates? Explain the application of S-brucine in resolution?
- 17. Explain the stereochemistry of reduction with CBS reagent with any suitable example.
- 18. With a suitable example, explain an asymmetric aldol reaction by Zimmerman-Traxler model.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any two questions.

Each question carries a weight of 5.

- 19. Discuss the effect of hydrogen bonding on the physical and chemical properties (including reactivity) of organic compounds. How does hydrogen bonding affect conformation of 1, 2-, 1, 3- and 1, 4-cyclohexanediols?
- 20. (a) Write a detailed note on the application of isotope effects in the study of reactions mechanisms. Discuss with suitable examples.
 - (b) Write a brief note on Bredt's rule.
- 21. Discuss the effect of conformation on the course and rate of reactions in cyclohexane systems citing sufficient example.
- 22. (a) Explain the concept of asymmetric induction and illustrate the prediction of stereochemical outcome with Felkin-Ahn model, in an appropriate example.
 - (b) Write a note on symmetric hydroboration reactions.

(Pages: 2)

Name	•••
------	-----

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Chemistry

CHE 1C 02—ELEMENTARY INORGANIC CHEMISTRY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any eight questions.

Each question carries a weightage of 1.

- The electrical conductivity of liquid ammonia is increased when ammonium chloride is dissolved in it; why?
- 2. What is symbiosis? Explain.
- 3. Classify the following into closo/nido/arachno structures:
 - a) B_5H_9 b) $(B_8H_8)^{2-}$ c) $C_2B_3H_5$ d) B_4H_{10}
- 4. Discuss the consequences of isomorphous substitution in silicates.
- 5. Explain, why $P_4N_4Cl_8$ is puckered while $P_4N_4F_8$ is planar?
- 6. What are interstitial carbides? Give examples.
- 7. What are Ellingham diagrams? Account for the abrupt changes in these diagrams.
- 8. What is the significance of 'Q' values in nuclear reactions?
- How is uranyl sulphate prepared? Give the equation.
- 10. Comment on the size-dependent properties of cadmium selenide.

Answer any **six** questions. Each question carries a weightage of 2.

- 11. Explain Lux-Flood theory of acids and bases.
- 12. What are Frost diagrams? Discuss their applications.
- 13. How do substituted borazines are prepared? Give a brief account of the structure and bonding in borazine.
- 14. Give a brief account of the synthesis, structure and properties of (SN)_X, S₂N₂ and S₄N₄.
- 15. Discuss the principle involved in neutron activation analysis.
- 16. Write a note on trans-actinide elements.
- 17. How do graphenes differ from fullerenes?
- 18. Write briefly on diagnostic and therapeutic applications of nanomaterials.

 $(6 \times 2 = 12 \text{ weightage})$

f.

Section C

Answer any two questions.

Each question carries a weightage of 5.

- 19. Give the important characteristics of ammonia as a solvent. Discuss briefly, the precipitation reaction that occur in ammonia.
- 20. How is 1, 2-dicarba-closo-dodecaborane(12) prepared? Write a note on its isomerism. Compare the acidity of the different types of hydrogen atoms present in carboranes.
- 21. a) Write an account on the synthesis, structure and uses of silicones.
 - b) Write briefly on the classification of carbides.
- 22. Write an account on heteropoly and isopoly anions of W and Mo.

 $(2 \times 5 = 10 \text{ weightage})$

D 20000	D	93386
---------	---	-------

(Pages: 2)

ľ	Name	•••••	 	
-			 	

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Chemistry

CHE 1C 01—QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Write time dependent Schrödinger wave equation. Mention one application.
- 2. Which of the following are eigen functions of $\frac{d^2}{dx^2}$? Find the corresponding eigen values:
 - (a) $A \sin kx$.

(b) e^{x^2}

(c) log x.

- (d) e^{-ax}
- 3. A particle is confined to one dimensional box of length 'a'. What is the degeneracy associated with the level having energy $\frac{14\ h^2}{8\ ma^2}$.
- 4. Write recursion formula for a simple harmonic oscillator. Explain its significance.
- 5. Represent $\hat{\mathbf{L}}_z$ in (a) Cartesian co-ordinates; (b) Spherical polar co-ordinates.
- 6. Explain with example 'spin orbital'.
- 7. State and explain independent particle model.
- 8. What is STO? Write one example.
- 9. Explain the concept of force field in computational chemistry.
- 10. Write Z-matrix for H_2O .

Answer any **six** questions. Each question carries a weightage of 2.

- 11. Define Hermitian operator. Show that Hermitian operators always have real eigen values.
- 12. A particle in one-dimensional box of length a is given by the state function $\sqrt{\frac{2}{a}} \sin(\frac{\pi}{a})x$. Find the average value of momentum along x direction. Justify your answer.
- 13. Find eigen functions and eigen values for a planar rotor.
- 14. Is wave function for H atom is Ne^{-r/a_0} . Show that the maximum probability of finding the electron is at $r = a_0$.
- 15. State and prove variation theorem.
- 16. Briefly discuss Hartree Fock self consistent field method of solving many electron atoms.
- 17. Write a brief account of semi empirical methods of computational Chemistry.
- 18. Briefly discuss structure of a Gaussian input file.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries a weightage of 5.

- 19. Briefly discuss postulates of quantum mechanics.
- 20. Apply Schrödinger equation for one dimensional simple harmonic oscillator. Find eigen functions and eigen values.
- 21. Apply Schrödinger wave equation for H atom transform into spherical polar co-ordinates. Separate the variables. Solve the $\oint (phi)$ equation.
- 22. Use perturbation method to find the ground state energy for a particle in one dimensional box with slanted bottom.

 $(2 \times 5 = 10 \text{ weightage})$

_			
Reg.	No	•••••	 •••••

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION . NOVEMBER 2020

(CUCSS)

Chemistry

CH 1C 04—THERMODYNAMICS, KINETICS AND CATALYSIS

(2015 Admissions)

Time: Three Hours Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries a weight of 1

- 1. "Entropy of the universe in always increasing" explain.
- 2. Give the expression for collision frequency and explain the terms.
- 3. Write a short note on TEM
- 4. Represent London equation and explain its significance.
- 5. What are phenomenological Laws?
- 6. Explain the term residual entropy.
- 7. Explain the basic assumptions of Langmuir-Hinshelwood mechanism of surface catalyzed reactions.
- 8. What are primary and secondary salt effects?
- 9. What is acid base catalysis explain with the help of examples?
- 10. Explain the principle of flash photolysis.
- 11. Represent BET isotherm. Explain the condition under which BET isotherm approximates to Langmuir adsorption isotherm?
- 12. What is meant by thermal diffusion?

Answer any eight questions.

Each question carries a weightage of 2.

- 13. What is meant by thermodynamics of mixing?
- 14. Derive the rate equation for thermal decomposition of ethane.
- 15. Discuss Oregonator model of oscillating reactions.
- 16. B-Galactosidase enzyme catalyzed hydrolysis of lactose at 298K has Michealis constant of 0.065 mol L^{-1} . At a substrate concentration of 0.75 mol L^{-1} , the reaction rate is found to be 3.15 mol L^{-1} s^{-1} . Calculate the maximum velocity.
- 17. Discuss briefly the different factors affecting the kinetics of reaction in solution phase.
- 18. Derive Langmuir adsorption isotherm.
- 19. A gas obeys the equation of state $P(V_m b) = RT$. For this gas $b = 0.0391 \text{ dm}^3 \text{ mol}^{-1}$. Calculate fugacity and fugacity coefficient for the gas at 1000°C and 1000 atm.
- 20. What is the surface area of the solid if 118 ml of H_2 formed a monolayer on silica gel at STP? The cross sectional area of H_2 is 0.192 nm².
- 21. Explain Hinshelwood modification for Lindemann's hypothesis
- 22. Give the rate of entropy production. Show that $\sum J_i X_i > 0$, for an irreversible system where a temperature gradient exists.
- 23. Explain the determination of partial molar volume of a binary mixture.
- 24. Write a note on electrokinetic effects.

 $(8 \times 2 = 16 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries a weightage of 4.

- 25. Discuss the salient features of conventional transition state theory (CTST). Derive the equation for the rate constant
- 26. Prove Onsager reciprocal relationship applying the principle of microscopic reversibility
- 27. Derive the kinetics of $H_2 O_2$ reaction
- 28. Derive Michaelis-Menton equation and explain the pH and temperature dependence

D	93217	
	<i>7</i> 041 <i>1</i>	

(Pages: 3)

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Chemistry

CH 1C 03—STRUCTURE AND REACTIVITY OF ORGANIC COMPOUNDS

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all **twelve** questions.

Each question carries 1 weightage.

- 1. Explain inter and intra molecular hydrogen bonding with suitable examples. How does it effect the volatility of compounds?
- 2. Explain bonding in ylides.
- 3. Vinyl halides are less reactive than alkyl halides. Why?
- 4. Explain Marcus theory of electron transfer.
- 5. Comment on the conformation of cis-1, 4-dit.butyl cyclohexane.
- 6. Comment on the conformation and chirality of decalin.
- 7. What do you mean by dihedral angle?
- $8. \ \ Which is the most favourable conformation of methyl cyclohexane ? Why?$
- 9. Draw the stereo isomers of benzaldoxime and name them.
- 10. Propanoic acid undergoes HVZ reaction and gives 2- bromopropanoic acid. Sketch the optical isomers of the product.
- 11. Explain cyclopropanation of styrene in presence of a chiral ligand?
- 12. Write down the structures of (i) DIP AMP; and (ii) BINAP.

Answer any eight questions.

Each question carries 2 weightage.

- 13. Represent themolecular orbitals of 1, 3-butadiene and indicate the HOMO and LUMO under thermal and Photochemical conditions.
- 14. Explain the terms aromaticity, antiarmaticity and homoaromaticity with suitable examples.
- 15. What do you mean by Hard and Soft electrophiles and nucleophiles?
- 16. Explain kinetic and thermodynamic control of reactions.
- 17. Represent the conversion of one chair form of cyclohexane to its alternate form through different conformations.
- 18. What do you mean by dihedral angle? Explain the variation of energy against dihedral angle of conformations of ethane.
- 19. Give the mechanism of deamination of different conformations of 2-aminocyclohexanol with nitrous acid.
- 20. Optically active 2-methyl-1, 2-Butandiol undergoes Wagner-Meerwein rearrangement to give a racemic mixture of products. Explain?
- 21. Write the structures of all the possible monochloro pentanes. Which are enantiomers? Specify them as R and S.
- 22. Write a note on 1, 3- diaxial interactions in Cyclohexane and its derivatives.
- 23. Explain Felkin model of asymmetric induction?
- 24. Write a note on asymmetric Diels'Alder reactions.

 $(8 \times 2 = 16 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries 4 weightage.

25. Explain:

- i) Enantioselective catalytic hydrogenation developed by Noyori and Knowels.
- ii) Asymetric aldol condensation pioneered by Evans.
- 26. a) What is meant by resolution?
 - b) Explain two methods for the resolution of racemic mixture.
 - c) Briefly explain the rules for assigning E and Z configuration for geometrical isomers.

- 27. a) Elimination of HBr from 2-bromobutane gives both cis and trans 2-butane. Why?
 - b) Explain the dehalogenation of stereomers of 2, 3-dibromobutanes.
- 28. a) When optically active threo-3-bromo-2-butanol is treated with HBr, we get a racemic mixture of threo-dibromide. Explain?
 - b) When 2-bromo propanoic acid is treated with dilute alkali, a lactate ion with retention of configurataion is obtained. Explain?
 - c) Complete the reaction:

Reg.	No

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Chemistry

CH 1C 02—ELEMENTARY INORGANIC CHEMISTRY

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries 1 weightage.

1. Why H_2O is liquid and H_2S is gas at normal temperature?

2. Describe the change in hybridisation of aluminium atom during the reaction:

$$AlCl_3 + Cl^- \rightarrow AlCl_{4^-}$$

- 3. Define Acid and Base according to Usanovich concept.
- 4. Write Drago-Wayland equation and explain the terms
- 5. Calculate the "styx" numbers of B_5H_{10} .
- 6. What is Graphene?
- 7. What is meant by molecular sieves?
- 8. List the applications of silicones.
- 9. What is Uranates?
- 10. Write down the names of four elements which are accepted by IUPAC in 2016.
- 11. What is critical size in nuclear chemistry?
- 12. Write an example of photonuclear reactions.

Answer any **eight** questions. Each question carries 2 weightage.

13. Explain the following:

- Ammonia is more easily liquefiable than HCl; and
- Boiling point of H_2O is higher than that of H_2S .
- What is meant by Walsh diagram? Explain with example.
- 15. Comment of the statement, "All Arrhenius acids are also Bronsted acids but all Arrhenius bases are not Bronsted bases".
- Identify the conjugate acid base pair in HF dissolved in H_2SO_4
- Discuss briefly on the structure and method of preparation of P-S cage compounds.
- How is sulphur nitrides prepared? Explain one dimensional metallic character of (SN)_x.
- Give the structural classification of B_4H_{10} , B_5H_9 and 1, $2 B_{10}C_2H_{12}$.
- What are the products of the following reactions: 20.

a)
$$B_4H_{10} + 2EtO$$
 \rightarrow

b)
$$B_4H_{10} + 4OH^- \rightarrow$$

b)
$$B_4H_{10} + 4OH^- \rightarrow$$

c) $B_2H_6 + 2NH_3 \rightarrow$

- What are Frost diagrams? To what use are they put? Explain giving examples.
- Explain the preparation and structure of isopoly acids of Mo and W. 22.
- Write a note on neutron activation analysis? 23.
- Discuss the importance of radiation dosimetry.

 $(8 \times 2 = 16 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Briefly discuss the following:
 - Determination of molecular structure by X-ray diffraction; and
 - (b) Applications of HSAB concept.

- 26. (a) Explain the synthesis structure and used of silicones.
 - (b) Discuss the synthesis, mechanism of formation and uses of chlorocyclophosphazenes
- 27. Compare the properties of lanthanides and actinides with special reference to magnetic and Spectral properties.
- 28. Explain the different models of nucleus.

\mathbf{D}	93215

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Chemistry

CH 1C 01—QUANTUM CHEMISTRY AND GROUP THEORY

(2015 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1

- What do you mean by stationary state in quantum mechanics?
- 2. Choose the acceptable and non acceptable wave functions with the indicated intervals from the list. Justify your answer in each case.
 - a) $e^{-x}(0,\infty)$.
 - b) $e^{-x}(-\infty,\infty)$.
 - c) $\sin^{-1} x(-1,1)$.
 - d) $(\sin x)/x(0,\infty)$.
 - e) $e^{-|x|}(-\infty,\infty)$
- 3. Zero point energy of a rigid rotator is zero. Is this against the uncertainty principle?
- 4. Show that $\langle p \rangle = 0$ for all states of a one-dimensional box of length 'a'.
- 5. Write the Schrodinger equation and Hamiltonian for a particle on a sphere in spherical polar coordinates.
- 6. Write a note on Kronecker Delta related to wavefunctions.
- 7. Calculate the energy of an electron in the ground state and first excited state of H atom.
- 8. Define spin orbital. Write one example.
- 9. Show that 120° rotation and 240° rotation are conjugate elements of C_{3v} point group?
- 10. Define cyclic groups. Give an example.

11. Any two irreducible representations are orthogonal. Demonstrate using the character table for C_{2v} point group.

2

12. What is the relation between S_2 and i. Illustrate using an example.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions.

Each question carries a weightage of 2.

- 13. Show that Schrodinger wave equation is an Eigenvalue equation.
- 14. Evaluate the commutator $[\hat{x}, P\hat{x}]$. What is the physical significance of a commutator?
- 15. Explain the postulate of quantum mechanics that consider the average of measurements of an experiment.
- 16. Show that the radial distribution of 2p orbital of hydrogen atom exhibits are maximum at $r = 4a_0$.
- 17. β -carotene is a linear polyene in which 10 single and 11 double bonds are in conjugation along a chain of 22 carbon atoms. If we take each C-C bond length to be about 140 pm, then the length of the molecular box in β -carotene is 2.94 nm. Estimate the wavelength of light absorbed by this molecule from its ground state to next higher excited state.
- 18. Using the first Hermite polynomial expressions show that the vibrational transition from v = 0 to v = 1 is allowed and from v = 0 to v = 2 is forbidden.
- 19. The bond length of $^{12}C^{14}N$ is 117 pm and its force constant is 1630 Nm⁻¹. Predict the rotation vibration spectrum of $^{12}C^{14}N$.
- 20. Elaborate on the significance of various quantum numbers. Explain the electron spin postulate and angular momentum with the help of Stern Gerlach experiment.
- 21. Construct the group multiplication table of $\mathrm{C_3V}$ Point Group.
- 22. Apply reduction formula to derive a linear combination of irreducible representations from one of the reducible representation of water.
- 23. What do you mean by a group. What are the fundamental properties of a group. Illustrate the fundamental properties using the multiplication of elements of a point group.
- 24. What are the transformation matrices of ${\rm C_{2V}}$ point group with a set of 3 vectors as basis (Given a vector has 3 components).

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 4.

25. (a) Show that the variables in the Schrödinger equation for a cubic box may be separated and the overall wave functions expressed as X(x). Y(y). Z(z).

- (b) Deduce the energy levels and wave functions,
- (c) Show that the wavefunctions are orthonormal
- (d) What is the degeneracy of the level with $E = 14h^2/8ml^2$.
- 26. Describe the postulates of quantum mechanics with necessary explanations for each postulates.
- 27. Explain the principles of Great Orthogonality Theorem and apply the theorem to derive the character table for C_{4V} point group.
- 28. Explain the systematic determination of the point group of a molecule. Draw the flow chart for the systematic determination of point groups of molecules. Give the differences between cyclic and dihedral point groups with examples.