\boldsymbol{C}	9	5	5	7	-A
U	O	IJ	บ	•	-77

(Pages : 4)

lam	e	 ••••	••••	••••	••••	•••	•••	•
	No	 	••••	••••	••••	••••	•••	

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MEC 4C 04—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MEC 4C 04—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

1.	Regres	ssion analysis is concerned with the	e stud	y of the dependence of :				
	(A)	Explanatory variables on one or	more	dependent variables.				
	(B)	Dependent variable on one or mo	Dependent variable on one or more explanatory variables.					
	(C)	Both explanatory and dependent	varia	bles on other known variables.				
	(D)	Two known variables.						
2.	Stocha	stic variables are :						
	(A)	Deterministic values.	(B)	Non-random variables.				
	(C)	Imply causation.	(D)	Have probability distribution.				
3.	Firm d	ata collected for top 10 companies c	lassifi	ed based on profitability for 10 years is an example				
	of:			O_{k}				
	(A)	Cross-sectional data.	(B)	Time series data.				
	(C)	Pooled data.	(D)	Panel data.				
4.	The da	ta on GDP, unemployment, housel	nold e	xpenditure are examples of :				
	(A)	Experimental data.	(B)	Non-experimental data.				
	(C)	Cross-section data.	(D)	Time series data.				
5.		les such as grades in mathematics, r amples of :	esults	of horse race, degree of satisfaction at a restaurant				
	(A)	Ratio scale.	(B)	Interval scale.				
	(C)	Ordinal scale.	(D)	Nominal scale.				
6.	The sat		appro	eximation of the true population regression. The				
	(A)	Is always true.						
	(B)	Is always false.						
	(C)	May sometimes be true sometimes	s false					
	(D)	Non-sense statement.						
7.	$\mathbf{Y}_i = \hat{\boldsymbol{\beta}}_1$	$+\hat{\beta}_2 X_i X + \hat{u}_i$:						
	(A)	Sample regression function.	(B)	Population regression function.				
	(C)	Non-linear regression function.	(D)	Estimate of regression function.				

8.	In $Y_i =$	$\hat{\beta}_1 + \hat{\beta}_2 X_i X + \hat{u}_i, \hat{u}_i$ represent:		
	(A)	Fixed component.	(B)	Residual component.
	(C)	Estimates.	(D)	Estimators.
9.	The reg	ression model includes a random en ollowing is NOT one of them ?	rror o	r disturbance term for a variety of reasons. Which
	(A)	Individual Y observations are intr	insica	ally random even if they are measured correctly.
	(B)	Influence of variables other than		
	(C)	Unavailability of measurable data	a base	ed on theory.
	(D)	Approximation errors in the calcu	lation	of the least squares estimates.
10.	In the	simple linear regression model, the	regre	ession slope :
	(A)	Indicates by how many percent Y	incre	ases, given a one percent increase in X.
	(B)	When multiplied with the explana	atory	variable will give you the predicted Y.
	(C)	Indicates by how many units Y in	creas	es, given a one unit increase in X.
	(D)	Represents the elasticity of Y on X	ζ.	23
11.	The sta	atement that -There can be more than	n one	SRF representing a population regression function
	is:	1/	7,	
	(A)	Always true.	(B)	Always false.
	(C)	$Sometimes\ true, sometimes\ false.$	(D)	Non-sense statement.
12.	The po	pulation regression function is not	direct	ly observable. This is a :
	(A)	True statement.		
	(B)	False statement.		
	(C)	Mostly true statement depending	on th	e population.
	(D)	Mostly false statement depending	on th	ne observation capacity of researcher.
13.	In Y _i =	$=\hat{eta}_1+\hat{eta}_2m{\mathrm{X}}_im{\mathrm{X}}+\hat{u}_i,\hat{u}_i\mathrm{gives}\mathrm{the}\mathrm{diffe}$	erence	es between :

(A) The actual and estimated Y values.

- The actual and estimated X values. (B)
- The actual and estimated beta values. (C)
- The actual and estimated \boldsymbol{u} values. (D)

14.	Under	the least square procedure, larger t	the \hat{u}_i	(in absolute terms), the larger the :
	(A)	Standard error.		
	(B)	Regression error.		
	(C)	Squared sum of residuals.		
	(D)	Difference between true paramete	er and	estimated parameter.
15.	Under	normality assumption of u_i the OLS	S estir	mator are :
	(A)	Minimum variance unbiased.	(B)	Consistent.
	(C)	$\hat{\beta}_1$ is normally distributed.	(D)	All the above.
16.	Rejecti	ng a true hypothesis results in this	type	of error :
	(A)	Type I error.	(B)	Type II error.
	(C)	Structural error.	(D)	Hypothesis error.
17.	Accept	ing a false hypothesis results in this	s type	of error:
	(A)	Type I error.	(B)	Type II error.
	(C)	Structural error.	(D)	Hypothesis error.
18.	The α i	in a confidence interval given by Pr	$r(\hat{eta}_2$ -	$-\delta \le \beta_2 \le \hat{\beta}_2 + \delta$ = 1 - \alpha is known as:
	(A)	Confidence coefficient.	(B)	Level of confidence.
	(C)	Level of significance.	(D)	Significance coefficient.
19.	The α i	in a confidence interval given by Pa	$r\left(\hat{eta}_2 - ight)$	$-\delta \le \beta_2 \le \hat{\beta}_2 + \delta = 1 - \alpha$ should be:
	(A)	< 0.	(B)	> 0.
	(C)	< 1.	(D)	> 0 and < 1.
20.	In conf	idence interval estimation, $\alpha = 5 \%$ ility of :	, this	means that this interval includes the true $oldsymbol{eta}$ with
	(A)	5 %.	(B)	50 %.
	(C)	95 %.	(D)	45 %.

C 3557	(Pages : 2)	Name

	N1 .
KCOU.	Nemman

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MEC 4C 04—MATHEMATICAL ECONOMICS

Time: Two Hours Maximum (10 Marku

Section A

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Distinguish between theoretical econometrics and applied econometries
- 2. What are the goals of Econometrics?
- 3. Distinguish between two variable regression and multiple regression analysis
- 4. Define Stochastic Disturbance term with stochastic specification of a model
- 5. What do you mean by standard error test?
- 6. What are the properties of \mathbb{R}^2 ?
- 7. Give a Ballentine view of $R^2 = 0$ and $R^2 = 1$.
- 8. What is Autocorrelation?
- 9. What is confidence interval?
- 10. Define reciprocal models with its functional form.
- 11. What do you mean by regression through the origin?
- 12. What is forecasting or prediction?

12/2-1/2 11/11/2012

Section B

2

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Explain different measurement scales of variables?
- 14. Explain briefly statistical properties of OLS estimators.
- 15. Distinguish between PRF and SRF.
- 16. What is Maximum Likelihood Method (ML)?
- 17. Explain Type I Error and Type II Error.
- 18. Why do we adjust R^2 ?
- 19. What do you mean by regression on standardized variables?

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any **one** question.

The question carries 11 marks.

- 20. What do you mean by regression? Explain the method of Ordinary Least Squares.
- 21. Prove that OLS estimators are the best linear unbiased estimators (BLUE).

 $(1 \times 11 = 11 \text{ marks})$

\mathbf{C}	9	K	K	5	- /	١
$oldsymbol{ol}}}}}}}}}}}}}}}$	o	U	U	U		7

(Pages: 4)

Nam	
Reg.	No

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MTS 4B 04—LINEAR ALGEBRA

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTS 4B 04—LINEAR ALGEBRA

(Multiple Choice Questions for SDE Candidates)

1. If A and B are square matrices of the same order, then tr(AB) = :

	(A)	tr(A+B).	(B)	tr(A)tr(B).
	(C)	tr (BA).	(D)	tr(A) + tr(B).
2.	If A an	d B are symmetric matrices of sam	ie orde	er, then:
	(A)	AB is always symmetric.	(B)	AB is never symmetric.
	(C)	AB is skew-symmetric.	(D)	AB is symmetric if and only if AB = BA.
3.	A mat	rix that is both symmetric and upp	er tria	ingular must be a :
	(A)	Diagonal matrix.	(B)	Non-diagonal but symmetric.
	(C)	Both (A) and (B).	(D)	None of the above.
4.		ix E is called ————if it e elementary row operation.	can b	e obtained from an identity matrix by performing
	(A)	Equivalent matrix.	(B)	Echelon matrix.
	(C)	Elementary matrix.	(D)	Row reduced matrix.
5.		ogeneous linear system in n unknownelon form with r leading 1 's has :	ns who	ose corresponding augmented matrix has a reduced
	(A)	n free variables.	(B)	n-r free variables.
	(C)	r free variables.	(D)	Cannot be determined.
6.	If A is a	an $n \times n$ matrix that is not invertib	ole, the	en the linear system $Ax = 0$ has :
	(A)	Infinitely many solutions.	(B)	Exactly one solution.
	(C)	Not possible to find solution.	(D)	Finitely many solutions.
7.	If A is	an $m \times n$ matrix, then the codomai	n of th	e transformation T_A is :
	(A)	\mathbb{R}^n .	(B)	R^{m+n} .
	(C)	R^{mn} .	(D)	R^m .

Turn over

8.	If T _A :	$\mathbb{R}^n \to \mathbb{R}^n$ and if $T_A(x) = 0$ for every	vecto	or x in \mathbb{R}^n , then A is:
	(A)	The $n \times n$ zero matrix.	(B)	The $n \times n$ identity matrix.
	(C)	An elementary matrix.	(D)	Cannot be determined.
9.	Which	of the following is false?		
	(A)	Every subspace of a vector space is	itse	If a vector space.
	(B)	Every vector space is a subspace of	itse	lf.
	(C)	The intersection of any two subspa	ces c	of a vector space V is a subspace of V.
	(D)	The union of any two subspaces of	a ve	ctor space V is a subspace of V.
10.	The po	lynomials $x - 1, (x - 1)^2, (x - 1)^3$ spa	ın P ³	
	(A)	True.	(B)	False.
	(C)	Data not complete.	(D)	Span P ⁴ .
11.	The ke	rnel of a matrix transformation $T_{ m A}$:	\mathbb{R}^n -	$\rightarrow \mathbb{R}^m$ is a subspace of :
	(A)	\mathbb{R}^n .	(B)	\mathbb{R}^m .
	(C)	\mathbb{R}^{n+m} .	(D)	R^{nm} .
12.	The dir	mension of zero vector space is :		
	(A)	Not defined.	(B)	1.
	(C)	0.	(D)	Infinite.
13.	Which	of the following is true?		
	(A)	Every linearly independent set of	five v	vectors in ${ m R}^5$ is a basis for ${ m R}^5$.
	(B)	Every set of five vectors that spans		
	(C)	Every set of vectors that spans R ⁵	conta	ains a basis for R^5 .
		All are true.		
14.	Which	of the following is not a vector space		
	(A)	The set of all 2×2 invertible manultiplication.	itrice	es with the standard matrix addition and scalar
	(B)	The set of all 2×2 matrices of the	e form	$\begin{bmatrix} a & 0 \ 0 & b \end{bmatrix}$ with the standard matrix addition and
		scalar multiplication.		
	(C)	The set of all 2×2 matrices with rescalar multiplication.	eal ei	ntries with the standard matrix addition and
	(D)	None of these.		

15. Let A be any matrix. Then:

$$(A) \quad \ rank\left(A\right) = rank\left(A^T\right).$$

(B),
$$\operatorname{rank}(A) \neq \operatorname{rank}(A^T)$$
.

$$(C) \quad \ rank\left(A\right)\!<\! rank\left(A^T\right)\!.$$

(D)
$$\operatorname{rank}(A) > \operatorname{rank}(A^T)$$
.

16. If W is a subspace of \mathbb{R}^n , then which of the following statement is false.

- (A) W^{\perp} is a subspace of \mathbb{R}^n .
- (B) The only vector common to W and W^{\perp} is 0.
- (C) The orthogonal complement of W^{\perp} is W.
- (D) None of these.

17. If A is an $m \times n$ matrix, then:

- (A) The null space of A and the row space of A are orthogonal complements in \mathbb{R}^n .
- (B) The null space of A^T and the column space of A are orthogonal complements in R^m .
- (C) Both (A) and (B) are correct.
- (D) Neither (A) nor (B) are correct.

18. If A is a 3×5 matrix, then the rank of A^T is at most:

19. If A is a 3×5 matrix, then the nullity of A^T is at most :

20. The values of r and s for which $\begin{bmatrix} 1 & 0 & 0 \\ 0 & r-2 & 2 \\ 0 & s-1 & r+2 \\ 0 & 0 & 3 \end{bmatrix}$ has rank 2?

(A)
$$r = 2, s = 2.$$

(B)
$$r = 2, s = 1.$$

(C)
$$r = -2, s = 1.$$

~	3555	~
\mathbf{C}	ひひひじ	,

(Pages: 4)

Name.....

Reg. No.....

Maximum: 80 Marks

FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION **APRIL 2021**

Mathematics

MTS 4B 04—LINEAR ALGEBRA

Time: Two Hours and a Half

Section A (Short Answer Type Questions)

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Describe different possibilities for solution (x, y) of a system linear equations in the xy plane. What are consistent system?
- 2. Suppose that the augmented matrix for a linear system has been reduced to the row echelon form as $\begin{vmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{vmatrix}$ solve the system.
- 3. Define trace of a square matric. Find the trace of the matrix $A = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \end{bmatrix}$.
- 4. Show that the standard unit vectors

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0, 0), e_n = (0, 0, 1) \operatorname{span} \mathbb{R}^n.$$

- $e_1 = (1, 0,0), e_2 = (0, 1, 0....0), e_3 = (0, 0, 1, 0....0).....e_n = (0, 0.....1) \operatorname{span} \mathbb{R}^n.$ Find the co-ordinate vector of w = (1, 0) relative the basis $s = [\overline{u}_1, \overline{u}_2]$ of \mathbb{R}^2 , where $\overline{u}_1 = (1, -1)$ and $\overline{u}_2 = (1, 1)$.
- 6. Write two important facts about the vectors in a finite dimensional vector space V.

7. Consider the bases $B = [\overline{u}_1, \overline{u}_2]$ and $B' = [\overline{u}_1', \overline{u}_2']$ where

$$\overline{u}_1=\big(1,0\big), \overline{u}_2=\big(0,1\big), \overline{u_1}'=\big(1,1\big), \overline{u_1}'=\big(2,1\big). \text{ Find the transition matrix } P_{B'\to B} \text{ from } B' \text{ to } B.$$

- 8. Define row spaces and null spaces an $m \times n$ matrix.
- 9. If $R = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the row reduced echelon form of a 3 × 3 matrix A, then verify the rank-

nullity formula.

- 10. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates vectors through an angle θ is one-one.
- 11. Find the image of the line y = 4x under multiplication by the matrix $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$.
- 12. Confirm by multiplication that x is an eigen vector of A and find the corresponding eigen value if $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
- 13. Let A be an $n \times n$ matrix. Define inner product on \mathbb{R}^n generated by A. Also write the generating matrix of the weighted Euclidear inner product $\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$.
- 14. If u, v are vectors in a real inner product space V, then show that $||u+v|| \le ||u|| + ||v||$.
- 15. If A is an $n \times n$ orthogonal matrix, then show that ||Ax|| = ||x|| for all x in \mathbb{R}^n .

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph/Problem Type Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Describe Column Row Expansion method for finding the product AB for two matrices A and B. Use this to find the product $AB = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 5 & 1 \end{bmatrix}$.
- 17. If A is an invertible matrix, then show that A^{T} is also invertible and $(AT)^{-1} = (A^{-1})^{T}$
- 18. Consider the vectors u = (1, 2, -1) and v = (6, 4, 2) in \mathbb{R}^3 . Show that w = (9, 2, 7) is a linear combination of u and v and that w' = (4, -1, 8) is not a linear combination of u and v.
- 19. If $s = \{v_1, v_2, \dots, v_n\}$ is a basis for a vector space V, then show that every vector v in V can be expressed in form $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$ in exactly one way. What are the co-ordinates of v relative to the basis s.
- 20. If A is a matrix with n columns, then detine rank of A and show that rank (A) + nullity (A) = n.
- 21. Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ that first rotates a vector counter clockwise about z-axis through an angle θ , then reflects the resulting vector about yz plane and then projects that vector orthogonally onto the xy plane.
- 22. Define eigen space corresponding to an eigen value λ of a square matrix A. Also find eigen value and bases for the eigen space of the matrix $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$.
- 23. If w is a sub-space of real inner product space v, then show that:
 - (a) w^{\perp} is subspace of v.
 - (b) $w \cap w^{\perp} = \{0\}.$

 $(5 \times 6 = 30 \text{ marks})$

Section C (Essay Type Questions)

Answer any **two** questions.

Each question carries 10 marks.

- 24. (a) Show that every elementary matrix is invertible and the inverse is also an elementary matrix.
 - (b) Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ using Row operations.
- 25. (a) Let V be a vector space and \bar{u} a vector in V and K a scalar. Then show that :
 - (a) $0 \overline{u} = 0$; and
 - (b) $(-1)\overline{u} = -\overline{u}$.
 - (b) Show that the vectors $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .
- 26. (a) Consider the basis $B = [u_1, u_2]$ and $B' = [u_1^1, u_2^1]$ for R^2 where $u_1 = (2, 2), u_2 = (4, -1)$ $u_1' = (1, 3), u_2' = (-1, -1)$
 - (i) Find the transition matrix B' to B.
 - (ii) Find the transition matrix B to B'.
 - (b) Find the reflection of the vector x = (1, 5) about the line through the origin that makes an angle of $\frac{\pi}{6}$ with the x-axis.
- 27. When you can say that a square matrix A is diagonalizable? If A is an $n \times n$ matrix, show that the following statements are equivalent:
 - (a) A is diagonalizable; and
 - (b) A has n linearly independent eigen vectors.

 $(2 \times 10 = 20 \text{ marks})$

	221	O	A
U	441	O	-A

(Pages: 4)

Name	••••
	••••

Reg. No.....

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

ME 4C 04—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

ME 4C 04—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

1.	The lir	n log model and log lin model are —		— in parameters.
	(A)	Non-linear.	(B)	Linear.
	(C)	Functional.	(D)	Dependent.
2.		— is a growth model.		
	(A)	A linear trend model.	(B)	Lin log model.
	(C)	Log lin model.	(D)	None of the above.
3.	Keyne	s postulated ———— relationshi	p betv	veen income and consumption.
	(A)	Negative.	(B)	Positive.
	(C)	Non-linear.	(D)	Infinite.
4.	In the I	Keynesian linear consumption fund	tion Y	$Y = \beta_1 + \beta_2 X$, β_1 is:
	(A)	Slope coefficient.	(B)	Intercept coefficient.
	(C)	Output coefficient.	(D)	None of the above.
5.	The var	riable appearing on the right side o	f the e	equality sign is called :
	(A)	Independent variable.	(B)	Explanatory variable.
	(C)	All of the above.	(D)	None of the above.
6.	A math	ematical model assumes ————	- relat	ionship between variables.
	(A)	Inexact.	(B)	Exact.
	(C)	Probable.	(D)	None of the above.
7.	Regress	sion analysis is concerned with :		
	(A)	Study of the dependence on one va	ariable	e on the other.
	(B)	Predicting the average value.		
	(C)	Predicting the population mean.		
	(D)	All of the above.		

			Ū	a variables.
8.	Regress	ion analysis is concerned with ——		– relationship among variables.
	(A)	Statistical.	(B)	Functional.
	(C)	Deterministic.	(D)	None of the above.
9.	Correla	tion theory is based on the assump	tion o	f :
	(A)	Randomness of variables.	(B)	Conditional mean.
	(C)	Random errors.	(D)	Specification.
10.	The law	of universal regression was first i	ntrod	uced by:
	(A)	Irwing Fisher.	(B)	Laspayer.
	(C)	Francis Galton.	(D)	Pearson.
11.	An expe	ected value is the same as:		O
	(A)	Average value.	(B)	Standard deviation.
	(C)	Dispersion.	(D)	None of the above.
12.	The reg	gression line or curve passes throug	gh·	23
	(A)	Origin.	(B)	Vertical axis.
	(C)	Horizontal axis.	(D)	Conditional means.
13.	"The de	escriptions be kept as simple as pos	sible ı	intil proved inadequate" corresponds to:
	(A)	Occam's razor.	(B)	Index numbers.
	(C)	Regression.	(D)	Correlation.
14.		ost popular method of constructing	samı	ole regression function in the regression analysis
	is:		(1 D.)	Comonalizadore
	(A)	Method of OLS.	(B)	Generalised squares.
	(C)	1	(D)	None of the above.
15.	Homos	cedasticity means ———— for di		
	(A)	Equal mean.	(B)	Equal variance.
	(C)	Zero mean.	(D)	None of the above.

16.	Econo	mic theory makes statements that a	re mo	suy:
	(A)	Quantitative.	(B)	Qualitative.
	(C)	Positive.	(D)	None of the above.
17.	Heteros	scedasticity implies :		
	(A)	Equal spread.	(B)	Unequal spread.
	(C)	Equal mean.	(D)	Equal variance.
18.	The nu	merical value of coefficient of deter	mina	tion lies between :
	(A)	-1 and 1.	(B)	0 and 1.
	(C)	$-\infty$ to $+\infty$.	(D)	-∞ to 1.
19.	The rej	ecting of a true hypothesis is called	:	tion lies between: 0 and 1. $-\infty$ to 1.
	(A)	Type I error.	(B)	Type II error.
	(C)	Standard error.	(D)	Point estimation.
20.	The acc	epting of a false hypothesis is calle	d :	05,
	(A)	Type I error.	(B)	Type II error.
	(C)	Standard error.	(D)	Point estimation.
		HMKLIBRARY		

2218	(Pages : 3)	Name

Reg.	No
neg.	110

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

ME 4C 04—MATHEMATICAL ECONOMICS

Time: Three Hours Maximum: 80 Marks

Part A

Answer all the twelve questions. Each question carries 1 mark.

- 1. What are the two types of econometrics?
- 2. Give an example of an economic model.
- 3. What is the conditional expectation function or the population regression function?
- 4. State Gauss-Markov Theorem.
- 5. What is the maximum value of the co-efficient of determination?
- 6. Define correlation co-efficient.
- 7. What are the two branches of classical theory of statistical inference?
- 8. What is the mean and variance of a standard normal variable?
- 9. Define 'confidence interval'.
- 10. What is type I error?
- 11. Give an example of a regression model that not linear in the variables.
- 12. What is Logarithmic Reciprocal Model?

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **six** questions in two **or** three sentences. Each question carries 3 marks.

- 13. Write a short note on Keynesian consumption function.
- 14. What is the difference between the population and sample regression functions? Illustrate with an example.

2 C 2218

- 15. Given $E(u_i|X_i) = 0$, show that $E(Y_i|X_i) = \beta_2 + \beta_2 X_i$.
- 16. Show that the mean value of the estimated $Y = \hat{Y}_i$ is equal to the mean value of the actual Y in a sample : $\{(x_i, y_i): i = 1, 2, ..., n\}$.
- 17. What are the classical normal linear regression model assumption for μ_i .
- 18. Under the normality assumption find the 100 (1 α) % confidence interval for regression co-efficient β_2
- 19. Write a short note on Testing of hypothesis.
- 20. What are the three main features of reciprocal models?
- 21. Find the elasticity of the log linear regression model ln Y = β_1 + β_2 ln X.

 $(6 \times 3 = 18 \text{ marks})$

Part C

Answer any **six** questions from the following. Each question carries 5 marks.

- 22. Write any five properties of coefficient of correlation.
- 23. Show that the least-squares estimator $\hat{\beta}_2$ is linear.
- 24. Show that $\hat{\sigma}^2$ is an unbiased estimator of true σ^2 .
- 25. What are the 5 important properties of OLS Estimators under the Normality Assumption on u_i .
- 26. Briefly discuss about maximum likelihood estimation of Two variable regression model.
- 27. Find the Confidence Intervals for Regression Co-efficients β_1 .
- 28. Consider the following regression model: $1/Y_i = \beta_1 + \beta_2(1/X_i) + u_i$.
 - (a) Is this a linear regression model? Why? Why not?
 - (b) How would you estimate this model?
 - (c) What is the behavior of Y as X tends to infinity?
 - (d) Can you give an example where such a model may be appropriate?

- 29. How to measure the growth rate using the LogLin model?
- 30. What is Log Linear regression model? How to measure elasticity using this model?

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions from the following.

Each question carries 10 marks.

- 31. Discuss various steps involved in the traditional econometric methodology.
- 32. Write the 10 Assumptions made in the classical linear regression model.
- 33. In the following table, you are given the ranks of 10 students in midterm and final examinations in mathematics. Compute Spearmans co-efficient of rank correlation and interpret it.

Midterm	1	3	7	10	9 5	4	8	2	6
Final	3	2	8	7	9 5 9 6	5	10	1	4

34. Why do we employ the normality assumption on μ_i .

 $(2 \times 10 = 20 \text{ marks})$

	221	7
U		. t

(Pages: 4)

Reg. No.....

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 4C 04-MATHEMATICS

Time: Three Hours

Maximum : 80 Marks

Part A

Answer all the twelve questions.

Each question carries 1 mark.

- 1. What do you mean by a non-linear differential equation?
- 2. What are the steps for finding general solution of a non-homogeneous equation y'' + ay' + by = r(x).
- 3. Find Wronskian of $y_1(x) = e^{-2x}$ and $y_2(x) = e^{-3x}$.
- 4. What is L[1]?
- 5. Define periodic function.
- 6. What is unit step function?
- 7. State Convolution theorem.
- 8. Define and give an example of an even function.
- 9. Give one dimensional wave equation.
- 10. Write the formula for Runge Kutta method.
- 11. Give formula for Euler method
- 12. Give a formula for an error for Simpson's rule.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find the particular integral for $y'' 4y' + 3y = 10e^{-2x}$.
- 14. Solve $(D^2 2D + 3)y = x^3 + \sin x$.
- 15. Find $W\left[e^{\lambda_1 x}, e^{\lambda_2 x}\right]$.
- 16. If $L^{-1}(f(s)) = F(t)$ then show that $L^{-1}(f(s-a)) = e^{at} F(t)$.
- 17. Show that the Laplace transform is a linear operation.
- 18. Find $L[t^2 \cos t]$.
- 19. Using convolution property, find $L^{-1}\left[\frac{1}{s^2(s-a)}\right]$
- 20. Find the Fourier series of $f(x) = x^2$, when -1 < x < 1 with period 2.
- 21. Show that $u = \cos 4t \sin 2x$ is a solution of the wave equation.
- 22. Apply Picard's iteration upto 3 steps to solve $y' = 1 + y^2$ and y(0) = 1.
- 23. Compute $\int_{0}^{1} x^{2} dx$ by the rectangular rule with h = 0.5.
- 24. Solve $\int_{1}^{2} \frac{1}{x} dx$ by Trapezoidal rule with n = 4 and compare the estimate with the exact value of the integral.

Part C

Answer any six questions.

Each question carries 5 marks.

25. Solve
$$x^2 y'' + 7xy' + 13y = 0$$
.

26. Solve the non-homogeneous equation
$$y'' - 4y' + 3y = 10e^{-2x}$$
.

27. Obtain the Fourier cosine series representation of
$$f(x) = e^x$$
, $x \in [0, \pi]$.

28. Find the inverse transform of
$$\frac{s^3 - 4s^2 + 4}{s^2 \left(s^2 - 3s + 2\right)}$$

29. Solve
$$u_x + u_y = 2(x + y)u$$
.

30. Express the function
$$f(x) = x^2$$
, when $-1 < x < 1$ as a Fourier series with period 2.

31. Solve the integral equation
$$y = 1 - \int_{0}^{t} (t - \tau) y(\tau) d\tau$$
.

32. Find an approximate value of
$$\log_e 5$$
 by calculating $\int_0^5 \frac{dx}{4x+5}$ by Simpson's rule of integration.

33. Solve by Picard's method
$$y' - xy = 1$$
, given $y = 0$ when $x = 2$. Also find $y(2.05)$ correct to four places of decimal.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions.

Each question carries 10 marks.

34. (a) Solve
$$x^2y'' - 4xy' + 6y = 21x^{-4}$$
.

(b) Solve
$$(D^2 - 2D + 1)y = 3x^{3/2}e^x$$
.

Find the solution of the wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

corresponding to the triangular initial deflection

$$f(x) = \begin{cases} \frac{2k}{l}x, & \text{when } 0 < x < \frac{l}{2} \\ \frac{2k}{l}(l-x), & \text{when } \frac{l}{2} < x < l \end{cases}$$

36. Find the Fourier series of $f(x) = \begin{cases} 2, -2 \le x < 0 \\ x, 0 \le x < 2 \text{ in } (-2, 2). \end{cases}$.2 in (-2,

 $(2 \times 10 = 20 \text{ marks})$

C 2216-A	
----------	--

Pa	ges		4)
	262	-	4,

Name	••••••
Reg. No	

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 4B 04—THEORY OF EQUATION, MATRICES AND VECTOR CALCULUS (Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20

Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 4B 04—THEORY OF EQUATION, MATRICES AND VECTOR CALCULUS (Multiple Choice Questions for SDE Candidates)

- 1. The rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ is :
 - (A) 0.

(B) 1.

(C) 2.

- (D) 3.
- 2. The rank of the matrix $\begin{bmatrix} 1 & 3 & 4 & 2 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ is :
 - (A) 3.

(B) 4×3

(C) 2.

- (D) 1
- 3. Rank of the matrix $A = \begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ -1 & -3 & -4 & -3 \end{bmatrix}$ is
 - (A) 1.

(B) 2.

(C) 3.

- (D) 4
- 4. The points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) are collinear if and only if the rank of the matrix $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$ is :
 - (A) < 3.

(B) ≤ 3 .

(C) > 3.

- (D) ≥ 3 .
- 5. If a matrix A has a non-zero mirror of order r, then:
 - (A) $\rho(A) = r$.

(B) $\rho(A) \ge r$.

(C) $\rho(A) < r$.

(D) $\rho(A) \leq r$.

- 6. Which of the following is false:
 - (A) $\rho(A+B) \leq \rho(A) + \rho(B)$.
 - (B) $\rho(A') = \rho(A)$.
 - (C) $\rho(A+B) = \rho(A) + \rho(B) 4$, if A and B are matrices of rank z.
 - (D) $\rho(A-B) \leq \rho(A)\rho(B)$.
- 7. Rank (AA') = -----
 - (A) Rank A.

(B) Rank A'.

OF CALICUT

(C) 1.

- (D) None.
- 8. Rank $\left(AA^{\theta}\right) =$ ______.
 - (A) Rank A^{θ} .

(B) Rank A

(C) Rank A'.

- (D) None.
- 9. The system AX = 0 in n unknowns has a non-trivial solution if:
 - (A) $\rho(A) > n$.

(B) $\rho(A) = n$

(C) $\rho(A) < n$.

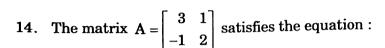
- (D) None of these.
- 10. A system of M homogeneous linear equations AX = 0 in n unknown has only trivial solution if:
 - (A) m=n.

(B) $m \neq n$.

(C) $\rho(A) = m$.

- (D) $\rho(\mathbf{A}) = n$.
- 11. The system of equations x+2y+z=9 can be expressed as:

$$2x + y + 3z = 7$$


(A)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

(B)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 7 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

(C)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 7 \end{bmatrix}.$$

(D) None.

			4	C 2216-A	
12.	. If A is a square matrix of order n and λ is a scalar, then the characteristic polynomial of A is obtained by expanding the determinant.				
		λ Α .	(B)	λ Α .	
	(C)	$ \lambda A - I_n $.	(D)	$ \mathbf{A} - \lambda \mathbf{I}_n $.	
13.	13. The characteristic roots of Skew-Hermitian matrix are either:				
	(A)	Real or zero.	(B)	Real or non-zero.	
	(C)	Pure imaginary or zero.	(D)	Pure imaginary non-zero.	

(A)
$$A^2 + 5A + 7I = 0$$
.

(B)
$$A^2 + 5A - 7I = 0$$
.
(D) $A^2 - 5A + 7I = 0$.

(C)
$$A^2 - 5A - 7I = 0$$
.

(D)
$$A^2 - 5A + 7I = 0$$

15. The product of all the characteristic roots of a square matrix A is equal to:

$$(A)$$
 0.

16. If eigen value of matrix A is λ , then eigen value of $P^{-1}AP$ is :

(A) 1.

(C) $\frac{1}{\lambda}$.

(D)

17. A polynomial equation in x of degree n always have :

(A) n distinct roots.

(B) n real roots.

(C) n complex roots.

None. **(D)**

18. A zero of the polynomial $x^3 + 2x - i$ equals :

(B) 1.

None. (D)

19. If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\alpha\beta + \beta\gamma + \gamma\alpha$ equals:

(A)
$$\frac{-p}{q}$$
.

(B)
$$-p$$
.

(C) q.

(D)
$$-q$$
.

20. A polynomial equation whose roots are 3 times those of the equation $2x^3 - 5x^2 + 7 = 0$ is:

(A)
$$3x^3 - 15x^2 + 21 = 0$$
.

(B)
$$2x^3 - 15x^2 + 189 = 0$$
.

(C)
$$2x^3 + 15x^2 - 189 = 0$$
.

(D) None.

22	10
44.	10

(Pages: 4)

Nam	e	••••••	***********

Reg. No.....

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2021

Mathematics

MAT 4B 04—THEORY OF EQUATION, MATRICES AND VECTOR CALCULUS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. If α, β, γ are the roots of $2x^3 + 3x^2 x 1 = 0$. Find the equation whose roots are $\alpha^2, \beta^2, \gamma^2$.
- 2. State Descarte's rule of signs.
- 3. Find a cubic equation, two of whose roots are given by 1, 3 + 2i.
- 4. What do you mean by reciprocal equation of first type? Give example.
- 5. What is the rank of the identity matrix of order 101?
- 6. If $A = [a_{i,j}]$ is an $m \times n$ matrix and $a_{i,j} = 7$ for all i,j then rank of A is ______.
- 7. A system of m homogeneous linear equations in n unknowns has only trivial solution if ----.
- 8. For what values of a the system of equations ax + y = 1, x + 2y = 3, 2x + 3y = 5 are consistent.
- 9. If the number of variables in a non-homogeneous system AX = B is n then the system possesses a unique solution if ————.
- 10. Find the parametric equation of a line through P(1,1,1) and parallel to the z-axis.
- 11. Find the unit tangent vector of the helix $r(t) = (\cos t + t \sin t)i + (\sin t t \cos t j)j + tk, t > 0$.
- 12. Write equations relating spherical and cylindrical co-ordinates.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions.

Each question carries 2 marks.

- 13. Solve $6x^3 11x^2 3x + 2 = 0$. Given that the roots are in harmonic progression.
- 14. Find the equation whose roots are the roots of $x^3 + 3x^2 2x 4 = 0$ increased by 5.
- 15. If α, β, γ are the roots of $x^3 + qx + r = 0$. Find the equation whose roots are $(\beta \alpha)^2, (\gamma \alpha)^2, (\alpha \beta)^2$.
- 16. If $A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$. Find A^{-1} .
- 17. Prove that the characteristic roots of Hermitian matrix are real.
- 18. If α is an eigen value of a non-singular matrix A, prove that $\frac{|A|}{\alpha}$ is an eigen value of adj A.
- 19. Show that the product of characteristic roots of a square matrix of order n is equal to the determinant of the matrix.
- 20. Find the value of a for which r(A) = 3 where $A = \begin{pmatrix} 2 & 4 & 4 \\ 3 & 1 & 2 \\ 1 & 0 & a \end{pmatrix}$.
- 21. Find the velocity and acceleration vectors of $r(t) = (t+1)i + (t^2-1)j + 2tk$ at t=1.
- 22. Find the rectangular co-ordinates of the centre of the sphere $r^2 + z^2 = 4r \cos \theta + 6r \sin \theta + 2z$.
- 23. Evaluate $\int_0^{\pi} (\cos ti + j 2tk) dt$.
- 24. Find the principal unit normal for the circular motion $r(t) = (\cos 2t) i + (\sin 2t) j$.

Part C (Short Essay)

Answer any six questions.

Each question carries 5 marks.

25. If
$$\alpha$$
, β , γ are the roots of $x^3 - x - 1 = 0$. Find the equation whose roots are $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$, $\frac{1+\gamma}{1-\gamma}$.

26. Solve the equation
$$x^2 - 12x - 65 = 0$$
 by Cardan's method.

27. Solve
$$x^3 + 6x^2 + 3x + 18 = 0$$
,

29. Find the rank of
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{pmatrix}.$$

30. Using matrix method solve:

$$2x - y + 3z = 9$$
$$x + y + z = 6$$
$$x - y + z = 2.$$

31. Find the point in which the line
$$x = 1 + 2t$$
, $y = 1 + 5t$, $z = 3t$ intersects the plane $x + y + z = 2$.

32. Find the distance from the point
$$S(2,1,3)$$
 to the line $x=2+2t$, $y=-1+6t$, $z=3$.

33. Find the eigen values and eigen vectors of
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$$

Part D

Answer any **two** questions. Each question carries 10 marks.

- 34. Solve the equation $6x^5 41x^4 + 97x^3 97x^2 + 41x 6 = 0$.
- 35. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & 3 & 5 \\ 3 & 1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$ and hence evaluate A^{-1} .
- Find the binormal vector and torsion for the space curve $r(t) = \left(\frac{t^3}{3}\right)i + \left(\frac{t^2}{2}\right)$. CHINKLIBRARY UNIVESITY

 $(2 \times 10 = 20 \text{ marks})$