C 82461	61
---------	----

(Pages: 2)

Name	••••
Reg. No	

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, SEPTEMBER 2020

(CBCSS-UG)

Statistics

STA 2C 03—REGRESSION ANALYSIS AND TIME SERIES

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Use of Calculator and Statistical tables are permitted.

Part A (Short Answer Type Questions)

Each question carries 2 marks.

Maximum marks that can be scored from this part is 20.

- 1. Define correlation analysis.
- 2. Describe positive and negative correlation.
- 3. What is a Scatter diagram?
- 4. Write the general expressions of regression lines x on y and y on x.
- 5. If the regression coefficient X on Y is 0.8, variance of X is 9 and V(Y) is 4, find the coefficient of correlation between X and Y.
- 6. The regression line Y on X is 2x 3y + 5 = 0. Identify the regression coefficient Y on X.
- 7. Explain, why the regression coefficients are always of same sign.
- 8. Define non-linear regression.
- 9. What are normal equations?
- 10. Define time series.
- 11. Define secular trend.
- 12. Define irregular variation in time series.

Part B (Short Essay/Paragraph Type Questions)

Each question carries 5 marks.

Maximum marks that can be scored from this part is 30.

- 13. Distinguish between qualitative and quantitative data. Give suitable examples.
- 14. If the ranks of 5 students in Mathematics and English are (1, 5), (2, 4), (3, 3), (4, 2) and (5, 1). Calculate the rank correlation coefficient.
- 15. The lines of regression X on Y and Y on X are $X = 0.3125 \ Y + 35 \ and \ Y = 0.8X + 18$. Use appropriate regression line to estimate Y when X = 4 and X when Y = 5.

- 16. Explain the method of fitting of regression equation of the form y = ax + b using the data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- 17. Explain the method of fittin of regression equation of the form $y = ax^b$ using the data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- 18. Explain the method of semi-average to measure trend in a time series.
- 19. Explain seasonal and cyclical variation in time series. Give example.

Part C (Essay Type Questions)

Answer any **one** question.

The question carries 10 marks.

Maximum marks that can be scored from this part is 10.

20. Calculate Pearson's coefficient of correlation using the following data:

X 2 4 5 6 8 11 Y: 18 12 10 8 7 5

21. Using Least Square method, fit a straight line to the following time series data:—

Year (X) 2012 2013 2014 2015 2016 2017 2018
Units of sale (Y) : 125 128 133 135 140 141 143

C 82460 (Pages: 2) Name	••••••
-------------------------	--------

Rog	No
neg.	110

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Statistics

STA 2C 02—REGRESSION ANALYSIS AND PROBABILITY THEORY

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Each question carries 2 marks.

Maximum marks that can be scored from this part is 20.

- 1. Define Karl Pearson's correlation coefficient.
- 2. Distinguish between Positive and Negative correlation.
- 3. If sum of the product of the deviation of the variables X and Y from their means is zero, find the product moment correlation coefficient.
- 4. State any two properties of regression coefficients.
- 5. If COV (X, Y) = -30 and the regression coefficient of Y on X is -0.3, find the variance of X.
- 6. Define partial and multiple correlations.
- 7. Define equally likely the mutually exclusive events.
- 8. Give classical definiton of probability.
- 9. State addition theorem of probability for three events.
- 10. If X and Y are two independent event, then P(A/B) = ----.
- 11. Define random variable.
- 12. The p.m.f., of a random variable \hat{X} if f(x) = kx, x = 1,2,3,4,5. Find the value of k.

Section B

Each question carries 5 marks.

Maximum marks that can be scored from this part is 30.

- 13. What is meant by correlation? Explain different methods of measuring correlation.
- 14. Explain the difference between correlation and regression analysis.
- 15. Explain frequency approach to probability. What are its merits over classical approach?

16. From the following data compute correlation between X and Y:

	X series	Y series
No. of items	15	15
Mean	25	18
Sum of squares of deviation from mean	136	138

and the sum of product of deviations of X and Y from their respective means is 122.

- 17. If $r_{12} = 0.77$, $r_{13} = 0.72$ and $r_{23} = 0.52$, find the partial correlation coefficient $r_{12.3}$ and multiple correlation coefficient $R_{1.23}$.
- 18. A town has two doctors A and B operating independently. If the probability that doctor A is available is 0.9 and that for B is 0.8. What is the probability that at least one doctor is available when needed?
- 19. A bag contains 10 balls, two of which are red, three blue and five black. Three balls are drawn at random from the bag. What is the probability that:
 - (i) Three balls are of different colours.
 - (ii) Two balls are of the same colour.

Section C

Answer any one question and carries 10 marks.

20. A random variable X has the following probability mass function:

Values of X ... -2 -1 0 1 2 3 Probability ... 0.1 k 0.2 2k 0.3 k

- (i) Find the value of k.
- (ii) Find P (X > 0) and P $(X \le 2)$
- (iii) Find distribution function of X.
- 21. Ten competitiors in a musical contest were ranked by three judges. A, B and C in the following order:

Rank by A : 1 6 5 10 3 2 4 9 7 8
Rank by B : 3 5 8 4 7 10 2 1 6 9
Rank by C : 6 4 9 8 1 2 3 10 5 7

Using rank correlation method, discuss which pair of judges has nearest approach to common taste in music.

16. From the following data compute correlation between X and Y:

	X series	Y series
No. of items	15	15
Mean	25	18
Sum of squares of deviation from mean	136	138

and the sum of product of deviations of X and Y from their respective means is 122.

- 17. If $r_{12} = 0.77$, $r_{13} = 0.72$ and $r_{23} = 0.52$, find the partial correlation coefficient $r_{12.3}$ and multiple correlation coefficient $R_{1.23}$.
- 18. A town has two doctors A and B operating independently. If the probability that doctor A is available is 0.9 and that for B is 0.8. What is the probability that at least one doctor is available when needed?
- 19. A bag contains 10 balls, two of which are red, three blue and five black. Three balls are drawn at random from the bag. What is the probability that:
 - (i) Three balls are of different colours.
 - (ii) Two balls are of the same colour.

Section C

Answer any one question and carries 10 marks.

20. A random variable X has the following probability mass function:

Values of X ... -2 -1 0 1 2 3 Probability ... 0.1 k 0.2 2k 0.3 k

- (i) Find the value of k.
- (ii) Find P (X > 0) and P(X \leq 2)
- (iii) Find distribution function of X.
- 21. Ten competitiors in a musical contest were ranked by three judges. A, B and C in the following order:

Rank by A : 1 6 5 10 3 2 4 9 7 8

Rank by B : 3 5 8 4 7 10 2 1 6 9

Rank by C : 6 4 9 8 1 2 3 10 5 7

Using rank correlation method, discuss which pair of judges has nearest approach to common taste in music.

	0	0 4	=	O	$-\mathbf{A}$
U	O	4 4	J	J	-/1

(Pages: 4)

Name
Reg. No

SECOND SEMESTER B.A/B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS—UG)

Statistics

STA 2C 02—PROBABILITY THEORY

(2019 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 kinutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

STA 2C 02-PROBABILITY THEORY

(Multiple Choice Questions for SDE Candidates)

1.	Mangoes numbered 1 through 18 are placed in a bag for delivery. Two mangoes are drawn out of
	the bag without replacement. Find the probability such that all the mangoes have even numbers
	on them?

(A)	43.7	0%
(α)	40.1	70.

(B) 34 %.

(C) 6.8 %.

(D) 9.3 %.

2. Two t-shirts are drawn at random in succession without replacement from a drawer containing 5 red t-shirts and 8 white t-shirts. Find the probabilities of all the possible outcomes.

(B) 13,

(C) 40.

(D) 346.

3. A random variable X can take only two values, 2 and 4 i.e., P(2) = 0.45 and P(4) = 0.97. What is the Expected value of X?

(B) 2.9

(C) 4.78.

(D) 5.32

4. Three boys and four girls sit in a row with all arrangements equally likely. Let x be the probability that no two boys sit next to each other. What is x?

$$(A) \quad \frac{1}{7}.$$

(B) $\frac{2}{7}$

(C)
$$\frac{3}{7}$$

(D) $\frac{4}{7}$

5. If X is A discrete random variable and f(x) is the probability of X, then the expected value of this random variable is equal to:

(A)
$$\sum f(x)$$
.

(B) $\sum [x+f(x)].$

(C)
$$\sum f(x) + x.$$

(D) $\sum x f(x)$.

6. Which of the following is not possible in probability distribution?

$$(A) \quad p(x) \ge 0.$$

(B) $\sum p(x) = 1$

(C)
$$\sum xp(x)=2.$$

(D) p(x) = -0.5.

7. A discrete probability distribution may be represented by:

(B) Graph.

(C) Mathematical equation.

(D) All of the above.

- 8. A fair die is rolled. Probability of getting even face or face more than 4 is:
 - (A) 1/3.

(B) 2/3.

(C) 1/2.

- (D) 5/6.
- 9. If A and B are two not-independent events, then the probability that both A and B will happen together is:
 - (A) $P(A \cup B) = P(A)P(B/A)$.
- (B) $P(A \cup B) = P(A)P(R)$.
- (C) $P(A \cup B) = P(A) + P(B)$. (D) $P(A \cup B) = P(A)$.
- A random variable is said to be ______ if its range set is either finite or countably infinite.
 - (A) Continuous.

(B) Discrete.

Both (A) and (B).

- (D) None of these.
- A continuous random variable follows a standard normal distribution if its probability distribution function is given by:
 - (A) $f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{z^2}{2}}, -\infty < z < \infty.$ (B) $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, -\infty < z < \infty.$ (C) $f(x) = \frac{1}{2\pi} e^{\frac{z^2}{2}}, -\infty < z < \infty.$ (D) $f(x) = \frac{1}{2\pi} e^{-\frac{z^2}{2}}, -\infty < z < \infty.$
- If we have observations with respective frequencies f_1, f_2, \dots, f_n , then its arithmetic mean is given by:
 - (A) $\frac{1}{N} \sum_{i=1}^{n} f_i (X_i \bar{X})^2$. (C) $\frac{1}{N} \sum_{i=1}^{n} f_i X_i$.

- (D) None of these.
- 13. Let X be a random variable with the following probability distribution. Find $E(X^2)$:

6

P(X = x)

1/6

1/2 1/3

(A) 11/2.

93/2.

9

(C) 44/2.

(D) 209.

	(C)	- 0.1.				(D)	None	of these).		
	(A)	0.				(B)	0.3.				
		P (X)	:	0.1	0.2	0.	3	k	3 <i>k</i>		
		x	:	- 2	- 1	0)	1	2		
20.	Given	below is tl	he prob	ability dis	tribution	of X.	What i	s E(X)	?		
	(C)	33/16.				(D)	None	of these	.		
	(A)	16/16.				(B)	32/16				
19.		be the nur	mber of	heads obt	ained in	four t	osses o	f a fair	coin. Fin	d E (X)	:
		$a \cdot V(X)$		31			$a \cdot V$				
		$a^2 \cdot V$ (2		OAK		(B)	$a^2 \cdot V$	(X) + b	2		
10.	·	ŕ			10				•		
18.	V (a¥	(+ b) =			71.	71,					
	(C)	E[X-1	$E(X)]^2$		4	(D)	None	of these	.		
	(A)	$\mathbf{E}\left[\mathbf{X}-\mathbf{I}\right]$	$E\left(X^2\right)$	•		(B)	$E(X^2$)-[E($X)]^2$.		
17.	Which	of the fol	lowing	is not the	variance	of X		\wedge			
		μ_4/μ_2^2 -				(D)	None	of these	OF C		
		μ_4/μ_2^2 -				(B)	μ_4/μ_2^2	3 < 0	. , (`אנ ^י	
16.	A curv	ve is said t	o be lep	otokurtic ii	f:					N	
	(C)	РХ, Υ ≠ (0.			(D)	cov (X	ζ, Υ) = () .	.(
		V (X +		_					V (X) + V		
15.		nd Y are i	` ,	•				·	,	,	•
		E (X)+	` ,	– E (X, Y)) .			•	/) – E (X)·E (Y	·).
	(A)) + E (Y	?).		
14.	If X aı	nd Y are t	wo rand	dom varia	bles, ther	ь E (Х	ζ + Y) i	s:			

(Pages : 2)	Name
	(Pages : 2)

Reg.	No	 	

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Statistics

STA 2C 02—PROBABILITY THEORY

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Use of Calculator and Statistical tables are permitted.

Part A (Short Answer Type Questions)

Each question carries 2 marks.

Maximum marks that can be scored from this part is 20.

- 1. Define sample space, event of a random experiment.
- 2. Explain mutually exclusive and exhaustive events.
- 3. If P(A) = 0.6, $P(A \cup B) = 0.8$, find P(B) when A and B are independent.
- 4. Define P(A/B), where A and B are two events. Also state the multiplication theorem on probability.
- 5. Differentiate discrete and continuous random variables.
- 6. Find k, if $f(x) = kx^2$, for 0 < x < 1 is a probability density function of X.
- 7. For a random variable X with possible values 1, 2 and 3, identify with reason, the values F(0.5) and F(3.2) where F is the distribution function of X.
- 8. Define Mathematical expectation of a discrete random variable X. Also show that, for a random variable X, $[E(X)]^2 \le E(X^2)$ if the expectations exist.
- 9. If $M_X(t)$ is the m.g.f. of X, identify the m.g.f. of 2X 5.
- 10. Find the characteristic function of X, where P(X = x) = 0.5; for x = 0.1.
- 11. Express coefficient of correlation between two random variables X and Y in terms of expectations.
- 12. If the joint p.d.f. of X and Y is f(x, y) = 1, for 0 < x < 1; 0 < y < 1, find P(X > 0.2/Y > 0.6).

Part B (Short Essay/Paragraph Type Questions)

Each question carries 5 marks.

Maximum marks that can be scored from this part is 30.

- 13. For two events A and B, P(A) = 0.4, P(B) = 0.3, $P(A \cap B) = 0.2$. Find (i) P(At least one of A and B to happen); (ii) P(Exactly one of A and B to happen).
- 14. For two events A and B, prove that $P(A \cup B)/C = P(A/C) + P(B/C) P(A \cap B/C)$.

- 15. Identify the distribution function of X and sketch its graph when the possible values of X are -1, 0, 1 and 2 with respective probabilities 0.2, 0.35, 0.4 and 0.05.
- 16. Given the p.d.f. of X as f(x) = 1, for 0 < x < 1. Find the p.d.f. of $Y = -\log_e X$.
- 17. Given the p.d.f. of X as $f(x) = e^{-x}$, for $0 < x < \infty$. Find the m.g.f. of X and hence the variance of X using m.g.f.
- 18. The first three raw moments of X are λ , $\lambda^2 + \lambda$ and $\lambda^3 + 3\lambda^2 + \lambda$. Obtain the coefficient of skewness of X and identify the condition for symmetry.
- 19. State and prove Cauchy-Schwartz inequality for two random variables X and Y.

Part C (Essay Type Questions)

Answer any one question.

The question carries 10 marks.

Maximum marks that can be scored from this part is 10.

- 20. State and prove Bayes' theorem. Result of a survey from a college consists of 40 % boys and 60% girls on a recently released film, reveals that 35 % of the boys like the film but 30 % of the girls not like the film. A randomly selected student from this college likes the film. What is the probability that the student is a girl?
- 21. (a) State and prove the multiplication theorem on expectation for the two random variables X and Y.
 - (b) If the joint p.d.f. of (X, Y) is f(x, y) = cxy, for 0 < x < y < 1.
 - (i) Find the value of c; (ii) Verify whether X and Y are independent.

	82458
\mathbf{C}	04400

(Pages: 2)

Nan	ne	
-		

Reg. No.....

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Statistics

STA 2B 02—BIVARIATE RANDOM VARIABLE AND PROBABILITY DISTRIBUTIONS

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Use of Calculator and Statistical tables are permitted.

Part A (Short Answer Type Questions)

Each question carries 2 marks.

Maximum marks that can be scored from this part is 25.

- 1. Define Mathematical expectation. If $X \ge 0$, show that $E(X) \ge 0$.
- 2. For any random variable X, where E(X) exists, show that the first central moment is zero.
- 3. Define moment generating function of a random variable X.
- 4. Obtain the characteristic function of a Bernoulli random variable.
- 5. Define joint probability mass function of two discrete random variables X and Y.
- 6. Obtain the joint distribution function of X and Y where the joint p.d.f. is given by f(x,y) = 1, 0 < x < 1, 0 < y < 1.
- 7. Find c, if f(x, y) = c(x + y), x = 0,1; y = 1,2 is a joint p.m.f. of (X, Y).
- 8. For a random variable X, if V(X) = 4, find V(X 4).
- 9. For two random variables X and Y show that Cov(aX,bY) = abCov(X,Y), a and b are constants.
- 10. Define Binomial distribution.
- 11. Obtain the mean of a random variable denoting the number of failures before the first success in a random experiment with only two outcomes success and failure with a constant probability of success p in each trial.
- 12. If X follows discrete uniform distribution over [1, 2, 3, ... n], find E(X).
- 13. If the mean of a random variable X following Poisson distribution is 5, find P(X > 0).
- 14. Define hyper geometric distribution.
- 15. State Weak Law of Large Numbers.

Part B (Short Essay/Paragraph Type Questions)

Each question carries 5 marks.

Maximum marks that can be scored from this part is 35.

- 16. Prove that E(aX + b) = aE(X) + b, for a random variable X and for the constants a and b. Hence deduce that the Mathematical expectation of a constant is the constant itself.
- 17. State and prove Cauchy-Schwartz inequality.
- 18. The p.d.f. of X is $f(x) = e^{-x}$ for x > 0. Obtain the m.g.f., and first raw moment of X.
- 19. If $f(x, y) = \frac{x + y}{18}$, x, y = 0,1,2 is a joint p.m.f. of (X, Y). Find E (X/Y = 1).
- 20. Find the m.g.f. of X following Poisson distribution with parameter λ and hence state and prove the additive property of Poisson distribution.
- 21. One man decided to continue a game until his 6th success. The probability of success in any trial of the game is 0.4. Calculate the probability that he will have to play 10 trials.
- 22. Prove that the conditional distribution of X given Y = y of two independent random variables X and Y following Poisson distributions is binomial distribution.
- 23. State and prove Chebycheve's inequality.

Part C (Essay Type Questions)

Answer any **two** questions.

Each question carries 10 marks.

Maximum marks that can be scored from this part is 20.

- 24. State and prove the addition and multiplication theorems on expectation for two random variables X and Y.
- 25. Given the joint p.d.f. of two random variables X and Y as, $f(x,y) = \begin{cases} k, & \text{for } 0 < x < y < 1 \\ 0, & \text{otherwise.} \end{cases}$ Find (i) k; (ii) coefficient of correlation between X and Y.
- 26. If $\mu_{r-1}, \mu_r + \mu_{r+1}$ respectively be the $(r-1)^{\text{th}}$, r^{th} and $(r+1)^{\text{th}}$ central moment of a random variable X following binomial distribution with parameters n and p show that $\mu_{r+1} = pq \left[\frac{d}{dp} \mu_r + nr \mu_{r-1} \right]$. Obtain the coefficient of skewness β_1 and prove that the distribution becomes symmetric when p=0.5.
- 27. Find the mean and variance of a random variable X following geometric distribution with parameter p. Also state and prove the lack of memory property of this distribution.