C 82424

(Pages: 2)

Name					
Reg. No					

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Electronics

ELE 2C 02—ELECTRONIC CIRCUITS

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Answer all questions. 2 marks for each question.

- 1. What is Q-point?
- 2. What is the purpose of biasing a transistor?
- 3. What is Zener breakdown?
- 4. Define negative feedback.
- 5. Define sensitivity.
- 6. What are barkhausen conditions for oscillation?
- 7. What is ripple factor of a rectifier?
- 8. Differentiate between a stable and monostable multivibrator.
- 9. What are the applications of rectifier?
- 10. What is class A power amplifier?
- 11. When the regulation by a Zener diode is with a varying input voltage, what happens to the voltage drop across the resistance? Justify.
- 12. A transistor has an I_C of 100mA and I_B of 0.5mA. What is the value of α_{dc} ?

Section B

Answer all questions.
5 marks for each question.

- 13. Draw the block diagram and explain the principle and working of SMPS.
- 14. Explain the working of bridge rectifier with necessary diagrams.

15. Find the emitter, base and collector voltages and currents for the given circuit. Use β = 50 and V_{BE} = 0.8V, independent of current.

- 16. What is a feedback amplifier? What are the two types of feedbacks to an amplifier? Explain with suitable diagrams.
- 17. With suitable diagram explain the working of a crystal oscillator.
- 18. Write a short note on RC Phase shift Oscillator.
- 19. What is the use of filter circuits? Give a brief description on the basic types of RC filters.

Section C

Answer any one question. 10 marks for each question.

- 20. Explain in brief different biasing circuits of BJT with necessary diagrams and equations.
- List out some important features of 555 Timer. Briefly explain the operation of 555 timer as Astable
 and Monostable multivibrator with relevant diagrams.

	OO	423
U	04	4 <i>2</i> 0

(Pages: 2)

Nam	e
Reg.	No

SECOND SEMESTER B.A./B.Sc. DEGREE EXAMINATION, APRIL 2020

(CBCSS-UG)

Electronics

ELE 2B 02—ELECTRONIC CIRCUITS

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Answer questions up to 20 marks. 2 marks for each question.

- 1. What is the importance of PIV in rectifier?
- 2. In an NPN silicon transistor, α = 0.995, I_E = 10mA and leakage current I_{CBO} = 0.5 μ A. Determine I_{CBO} .
- 3. What are the advantages of push-pull amplifier?
- 4. What is ripple factor of a rectifier?
- 5. Differentiate between a stable and monostable multivibrator.
- 6. What are the Feedback Amplifier Topologies?
- 7. What is a differentiator circuit?
- 8. Draw a simple passive RC Low Pass Filter circuit and plot the frequency response of 1st-order Low Pass Filter.
- 9. Define positive feedback.
- 10. Define negative feedback.
- 11. Define sensitivity.
- 12. What are barkhausen conditions for oscillation?

Section R

Answer questions up to 30 marks. 5 marks for each question.

13. An a.c. supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10.1. Find (1) the output d.c. voltage and (ii) the peak inverse voltage. Assume the diode to be ideal.

- 14. Explain the working of zener voltage regulator.
- 15. Write a short note on class A amplifiers.
- 16. Give a brief description of the voltage divider transistor biasing. Derive the expressions for $V_C V_B I_C$ and I_B .
- 17. Draw the circuit diagram and explain the working principle of complementary symmetry pushpull amplifier.
- 18. What is the purpose of a Schmitt trigger? How does it work?
- 19. Draw the circuit diagram and explain the working of a monostable multivibrator using BJT.

Section C

Answer any one question.

The question carries 10 marks.

- With the help of suitable circuit diagrams and waveforms explain different types of clamping circuits.
- 21. Write a short note on:
 - (i) Colpitts Oscillator.
 - (ii) Hartley Oscillator.

\mathbf{D}	4	3	5	0	4

(Pages: 2)

Reg. No....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

(SSE)

Electronics and Computer Science

E 204 T—DIGITAL INTEGRATED CIRCUITS

(1999/2000 Admissions)

Time: Three Hours Maximum: 75 Marks

Answer any five questions.
All questions carry equal marks.

- 1. (a) Fill in the blanks:
 - (i) $(8045)_{10} = (\underline{})_2$
 - (ii) $(101110)_2 = (\underline{})_{10}$

 - (iv) $(1011 0101)_2 = (\underline{})_2$

(8 marks)

(b) Simplify the following Boolean function and implement using gates:-

$$f(A, B, C, D) = \sum (1, 2, 6, 9, 10, 14) + \sum_{d} (4, 7, 8, 11, 12).$$

(7 marks)

2. (a) Compare TTL and CMOS logic families.

(6 marks)

(b) Explain the characteristics and applications of ECL.(c) What is meant by active pull of a TTL?

(4 marks)

3. (a) What is propagation delay? How can it be eliminated?

(5 marks)

(b) Explain how flip flops can be used as a memory element?

- (5 marks)
- (c) Distinguish between edge triggering and level triggering that are used with flip flops.

(5 marks)

- 4. (a) Explain with suitable circuit diagram the working of a universal shift register. (9 marks)
 - (b) Compare the merits and demerits of synchronous and asynchronous counters. (6 marks)
- 5. (a) Design a synchronous mod-12 counter using JK flip-flop.

(8 marks)

(b) With the help of logical diagrams and truth table explain the working of half adder and full adder.

(7 marks)

6. (a) With diagrams, explain any one type of A/D converter.

- (7 marks)
- (b) What are modems? Distinguish between synchronous and asynchronous modems.

(8 marks)

7. (a) With neat logical diagram, explain the working of 2 to 4 decoder.

- (7 marks)
- (b) Explain with logical diagram how two 4:1 Muxs can be converted to an 8:1 Mux.

(8 marks)

- 8. Write short note on any three:
 - (a) CMOS logic gates.
 - (b) T and D flip flops.
 - (c) Ripple counters.
 - (d) Decimal to binary encoder.
 - (e) D/A converters.

 $(3 \times 5 = 15 \text{ marks})$