D 12035-A	(Pages : 4)	Name

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Reg. No.....

Mathematics

MEC 3C 03-MATHEMATICAL ECONOMICS

(2019—2020 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MEC 3C 03-MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

1.	When	Y''(t) = 10, Y(t) will be:		
	(A)	1.	(B)	0.
	(C)	$5t^2$.	(D)	$5t^2 + tc_1 + C.$
2.	What i	s the degree of $\left(\frac{dy}{dx^2}\right)^6$:		
	(A)	2.	(B)	3.
	(C)	4.	(D)	6.
3.	Curve	that is also known as equal product	curv	re is :
	(A)	Indifference Curve.	(B)	Isoquants.
	(C)	Demand Curve.	(D)	None of the above.
4.	The ord	ler of $I_t = a(y_{t-1} - y_{t-2})$ is:	1	
	(A)	1.	(B)	-1 .
	(C)	2.	(D)	-2 .
5.	When o	$\sigma = 0$, substitution will be:		
	(A)	Possible.	(B)	Sometimes possible.
	(C)	Impossible.	(D)	Cannot say.
6.	The thi	rd stage in the law of variable propo	ortion	a is called :
	(A)	Increasing returns.	(B)	Diminishing returns.
	(C)	Negative returns.	(D)	Proportional return.
7.	Given	$\frac{\partial \mathbf{Q}}{\partial x_1}$, where x_1 is input represents:		
	(A)	APx_1 .	(B)	MPx_1 .
	(C)	MPTS	(D)	MRS.

8.	When the total product is maximum, marginal product will be?								
	(A)	Minimum.	(B)	Zero.					
	(C)	Maximum.	(D)	Negative.					
9.	When d		– P, t	he maximum amount that would be demanded at					
	(A)	1.	(B)	0.					
	(C)	40.	(D)	400.					
10.	Techni	ical relationship between input and	outp	ut is called :					
	(A)	Elasticity.	(B)	Production function.					
	(C)	Input function.	(D)	None of the above.					
11.	Higher	isoquants represents higher:							
	(A)	Profit.	(B)	Output.					
	(C)	Cost.	(D)	None of the above.					
12.	What is	s the degree of $\left(\frac{d^3y}{dx^3}\right)^4 + \left(\frac{d^2y}{dx^2}\right)^6 = 1$.0 - Y						
	(A)	3.	(B)	4.					
	(C)	2.	(D)	6.					
13.	The pro	oducer will be in equilibrium when	:						
	(A)	$MRTS = \frac{Px}{Py}.$	(B)	$MRTS > \frac{Px}{Py}.$					
	(C)	$MRTS < \frac{Px}{Py}.$	(D)	None of the above.					
14.	Harred	model explains ——— growth	of th	e economy.					
G	(A)	Static.	(B)	Dynamic.					
	(C)	Equilibrium.	(D)	Balanced.					

15.	A line	that connects various equilibrium p	oints	of producer is :
	(A)	Isocost line.	(B)	Isoquants.
	(C)	Expansion path.	(D)	Price line.
16.	Cobb D	ouglas production function is of de	gree :	
	(A)	One.	(B)	Two.
	(C)	Three.	(D)	Four.
17.	Iso qua	nts are downward sloping and —	_	— to the origin.
	(A)	Convex.	(B)	Concave.
	(C)	Vertical.	(D)	Horizontal.
18.	What is	s the order of $\frac{d^3y}{dx^3} + \left(x^2Y\right)\frac{d^2y}{dx^2} - 4Y$	·4 = 0	: TH
	(A)	First.	(B)	Second.
	(C)	Third.	(D)	Fourth.
19.	MRTS	is the slope of :		V.
	(A)	Production function.	(B)	Priceline
	(C)	Isocostline.	(D)	Isoquant.
20.	For pro	ducer which is rational stage for p	oduce	er in law of variable proportion:
	(A)	First.	(B)	Second.
	(C)	Third.	(D)	None of the above.
	n.V	LIBA		

\mathbf{D}	1	2	0	3	5
_	_		v	•	$\mathbf{\circ}$

(Pages : 2)

Name.....

Reg. No.....

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MEC 3C 03-MATHEMATICAL ECONOMICS

(2019-2020 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Define difference equation with an example.
- 2. Write down the standard form of a first order linear differential equation. What is the general equation used to solve a first order linear difference equation?
- 3. Distinguish between order and degree of differential equations with example.
- 4. What is Marginal Rate of Technical Substitution?
- 5. Write the first order partial derivatives for the function $q = 5 \text{ K}^{0.4} \text{L}^{0.6}$.
- 6. What do you mean by elasticity of substitution?
- 7. Explain the properties of Cobb-Douglas Production Function.
- 8. What are returns to scale?
- 9. What is Certainty-Equivalent approach?
- 10. Explain Law of Variable Proportions.
- 11. What do you mean by a Decision Tree?
- 12. State briefly the properties of isoquants.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Solve the differential equation $\frac{dy}{dx} + \frac{1}{x}y = x$.
- 14. Solve the difference equation $3y_{x+1} = 3y_{x-7}$.

Turn over

D 12035

- 15. Explain Economic Regions of Production Using Ridge Lines.
- 16. How will you optimize Cobb-Douglas production Function?
- 17. Discuss the Probability Distribution approach.
- 18. What do you mean by solution of a difference equation? Distinguish between general solution and particular solution of differential equations.

2

19. Explain producer's Equilibrium with graphical representation.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.

The question carries 11 marks.

- 20. What do you mean by Investment Appraisal? Explain Various Investment Appraisal methods.
- 21. Discuss how differential equations are used in the area of Economics.

 $(1 \times 11 = 11 \text{ marks})$

Reg. No.....

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MTS 3C 03-MATHEMATICS - 3

(2019-2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least **eight** questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 24.

- 1. Evaluate $\int_{0}^{1} (t\hat{i} + 3t^{2}\hat{j} + 4t^{3}\hat{k}) dt$.
- 2. The position of a moving particle is $\overline{r}(t) = t^2 \hat{i} + t \hat{j} + t^3 \hat{k}$. Find velocity and acceleration of the particle at t = 2.
- 3. If $z = e^{-y} \cos x$ find $\frac{\partial^2 z}{\partial x \partial y}$
- 4. Find the level surface of $F(x,y,z) = x^2 + y^2 + z^2$ passing through (1, 1, 1).
- 5. Evaluate $\int_C x dx$, where C is the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.
- 6. Show that $\operatorname{curl} \vec{r} = \vec{0}$.
- 7. State Green's theorem in the plane.
- 8. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} xyz \, dx \, dy \, dz$
- 9. Write the equation of the circle with centre (1, 2) and radius 4 in the complex plane.

- 10. Find the value of i^{2i} .
- 11. Evaluate $\int_C \frac{Ze^z}{(z-3)} dz$, where C is |z| = 2.
- 12. Evaluate $\int_{C} \frac{dz}{z}$, where C is |z| = 1.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least five questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Use chain rule to find $\frac{dw}{dx}$ at (0,1, 2) for w = xy + yz; $x = \cos x$, $y \sin x$, $z = e^x$.
- 14. Find the directional derivative of $f(x,y) = \sqrt{x^2y + 2y^2z}$ at (-2,2,1) in the direction of the negative
- 15. Find the area lying between the parabola $y = 4x x^2$ and the line y = x using double integrals.
- 16. Use polar coordinates to evaluate $\int_{0}^{2} \int_{x}^{\sqrt{8-x^2}} \frac{1}{5+x^2+y^2} dy dx.$
- 17. Show that $f(z) = (2x^2 + y) + i(y^2 x)$ is not analytic at any point.

 18. Evaluate $\int_C \frac{5z+7}{z^2+2z-3} dz$, where C is the circle |z-2|=2.
- 19. Evaluate $\int \operatorname{Re} z \, dz$ along a line segment from z = 0 to z = 1 + 2i.

 $(5 \times 5 = 25 \text{ marks})$

D 12034

Section C

3

Answer any one question.
The question carries 11 marks.

- 20. Let $\vec{F}(x,y,z) = z\hat{j} + z\hat{k}$ represents the flow of a liquid. Find the flux of \vec{F} through the surface S given by that portion of the plane z = 6 3x 2y in the first octant oriented upward.
- 21. Use triple integrals to find the volume of the solid with in the cylinder $x^2 + y^2 = 9$ and between the planes z = 1 and x + z = 5.

 $(1 \times 11 = 11 \text{ marks})$

D	1	2	0	3	3	-A
	-	_	`	•	•	

(þ	n	Ľ	e.		4	1

Reg. No.....

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MTS 3B 03-CALCULUS OF SINGLE VARIABLE - 2

(2019-2020 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTS 3B 03—CALCULUS OF SINGLE VARIABLE - 2 (Multiple Choice Questions for SDE Candidates)

1.
$$\frac{d}{dn}(\ln kx) =$$

(A) kx.

(B) $\frac{1}{kx}$.

(C) $\frac{1}{x}$.

- (D) $\frac{k}{\ln x}$
- 2. $\sinh x = \frac{-3}{4}$. Then $\cosh x$ is _____
 - $(A) \quad \frac{1}{4}.$

(B) $\frac{5}{4}$

(C) $\frac{4}{5}$.

- (D) $\frac{-3}{5}$
- $3. \quad \frac{d}{dx} \cosh^{-1}\left(x^2\right) = \underline{\hspace{1cm}}$
 - (A) $2x\sinh^{-1}(x^2)$.

 $\frac{2x}{\sqrt{x^2-1}}$

(C) $\frac{x}{x^4-1}$.

- (D) $\frac{2x}{\sqrt{x^4 1}}$
- $4. \quad \lim_{x \to 0} \frac{a^x b^x}{x} = \underline{\hspace{1cm}}$
 - (A) $\ln\left(\frac{a}{b}\right)$

(B) $\ln\left(\frac{b}{a}\right)$.

(C) $\ln(ab)$.

- (D) ∞ .
- $5. \quad \lim_{x \to 0} x \cot x = \underline{\hspace{1cm}}$
 - (A) 0

(B) 1.

(C) x

- (D) 1.
- 6. $a_1 = 2, a_{n+1} = a_{n+3}$. Then $a_2 = ---$.
 - (A) 5.

(B) 3.

(C) 6.

(D) 7.

JF CALLOU

7.
$$a_n = \frac{2n+1}{3n+5}$$
. The $\lim_{n \to \infty} a_n = \frac{1}{2n+1}$

(A) $\frac{1}{5}$.

(C) $\frac{2}{3}$.

$$8. \quad \lim_{n \to \infty} \frac{3^n}{n^2} = \underline{\hspace{1cm}}$$

(A) 3.

(C) 1.

(D)

9. If
$$|r| > 1$$
, $\lim_{n \to \infty} r^n =$

(A) 0.

(B) 1.

(C) ∞.

None of these. (D)

10. Let
$$\{a_n\}$$
 of $\{b_n\}$ is such that $a_n \le b_n$. Then :

- (A) $\sum a_n$ converges if $\sum b_n$ converges. (B) $\sum b_n$ converges if $\sum a_n$ converges.
- (C) $\sum a_n$ converges if $\sum b_n$ diverges. (D) $\sum b_n$ diverges if $\sum a_n$ diverges.

11.
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$
 is:

(A) Converges to 1.

Converges to 0. (B)

(C) Diverges. (D) None of these.

12. If a series converges absolutely for all x. Then its radius of converges if:

Finite. (A)

- (**B**) Infinite.
- (C) Cannot be determined.
- (D) None of these.

13. The series
$$\sum_{n=0}^{\infty} x^n$$
 is:

- Converges absolutely for |x| < 1. (B) Converges for |x| > 1.
- Has radius of converges $\frac{1}{2}$.
- (D) None of these.

14. Find
$$\frac{d^2y}{dx^2}$$
 if $x = \cos t$, $y = \sin t$:

(A) $\csc^2 t$.

(B) $-\csc^2 t$.

(C) $\csc^3 t$.

- (D) $-\csc^3 t$.
- 15. The equation $r^2 = \sin 2\theta$ is symmetric about:
 - (A) x-axis.

(B) y-axis.

(C) Origin.

- (D) The line $\theta = \frac{\pi}{4}$.
- 16. Polar equation of the circle with centre at $\left(-2, \frac{\pi}{2}\right)$ and passing through origin is:
 - (A) $r = -4 \sin \theta$.

(B) $r = 4 \sin \theta$.

(C) $r = 4 \cos \theta$.

(D) $r = -4\cos\theta$

- 17. $\ln\left(e^{x}\right) =$
 - (A) e^x .

(B) x

(C) $\frac{1}{e^x}$

- (D) $\frac{1}{x}$
- 18. $\sum (-1)^n \frac{1}{n}$ is ______.
 - (A) Converges.

- (B) Diverges.
- (C) Absolutely convergent.
- (D) None.
- 19. $y = \operatorname{sech}^2 x + \tanh^2 x \operatorname{then} \frac{dy}{dx} =$
 - (A) $2 \operatorname{sech} x \tanh x$.

(B) 0.

(C) 1.

- (D) $\operatorname{sech}^2 x \tanh x$.
- 20. The series $\sum n^m x^n$ is converged if
 - (A) x > 1 and x = 1 when m < -1.
- (B) x > 1 and x = 1 when m > -1.
- (C) x < 1 and x = 1 when m < -1.
- (D) x < 1 and x = 1 when m > -1.

Reg. No.....

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021

Mathematics

MTS 3B 03—CALCULUS OF SINGLE VARIABLE - 2

(2019-2020 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Determine whether the function $f(x) = x^3 3x + 1$ has an inverse.
- 2. Find the derivatives of (a) $3^{\sqrt{x}}$; (b) $\cos^{-1}(3x)$.
- 3. Find the derivative of $\log \left[\frac{x^2 (2x^2 + 1)^3}{\sqrt{5 x^2}} \right]$ when x = 1.
- 4. Evaluate $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$.
- 5. Find $\lim_{x \to \infty} \frac{\log n}{n}$.
- 6. Determine whether the series converges. If it converges find the sum $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+1}\right)$.
- 7. Use integral test to determine whether $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges or diverges.
- 8. Show that the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges.

- 9. Find the Maclaurin's series of $f(x) = \cos x$.
- 10. Find the radius of convergence and interval of convergence of the power series $\sum_{n=0}^{\infty} n! x^n$.
- 11. Describe the curve represented by $x = 4\cos\theta$ and $y = 3\sin\theta$, $0 \le \theta \le 2\pi$.
- 12. Find the angle between the two planes defined by 3x y + 2z = 1 and 2x + 3y z = 4.
- 13. Find an equation in rectangular co-ordinates for the surface with the cylindrical co-ordinates $r^3 \cos 2\theta z^2 = 4$.
- 14. Find a vector function that describes the curve of intersection of the cylinder $x^2 + y^2 = 4$ and the plane x + y + 2z = 4.
- 15. Evaluate $\int_{0}^{1} r(t) dt \text{ if } r(t) = t^{2}i + \frac{1}{t+1}j + e^{-t}k.$

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer at least five questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Use logarithmic differentiation to find the derivative of $y = 3\sqrt{\frac{x-1}{x^2+1}}$.
- 17. Find the derivative of $y = x^2 \operatorname{sech}^{-1}(3x)$.
- 18. Evaluate $\int_{0}^{1} \log x \, dx$
- 19. Show that the series $\sum_{n=1}^{\infty} \left[\frac{2}{n(n+1)} \frac{4}{3^n} \right]$ is convergent and find its sum.
- 20. Find the tangent lines of $r = \cos 2\theta$ at the origin.

- 21. Find the length of the Cardioid $r = 1 + \cos \theta$.
- 22. Find the parametric equations for the line of intersection of the planes defined by 3x y + 2z = 1 and 2x + 3y z = 4.
- 23. Find the velocity vector, acceleration vector and speed of a particle with position vector:

$$r(t) = \sqrt{t} i + tt^2 j + e^{2t} k, t \ge 0.$$

 $(5 \times 6 = 30 \text{ marks})$

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. (a) Find the derivative of $\sec^{-1}(e^{-2x})$.
 - (b) Evaluate $\lim_{x\to 0} \left(\frac{1}{x}\right)^{\sin x}$
- 25. (a) Find the area S of the surface obtained by revolving the circle $r = \cos \theta$ about the line $\theta = \pi/2$.
 - (b) Show that the surface area of a sphere of radius r is $4\pi r^2$.
- 26. (a) Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent or divergent.
 - (b) Show that sequence $\left\{\frac{2^n}{n!}\right\}$ is convergent and find its limit.
- 27. (a) Find an equation in rectangular co-ordinates for the surface with spherical equation $\rho = 4\cos\phi$.
 - (b) A moving object has an initial position and an initial velocity given by the vectors r(0) = i + 2j + k and v(0) = i + 2k. Its acceleration at time t is a(t) = 6t i + j + 2k. Find its velocity and position at time t.

 $(2 \times 10 = 20 \text{ marks})$

\mathbf{D}	1	1	8	6	1	-A

(Pages : 4)

Nam	ıc
Reg.	No

THIRD SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

ME 3C 03—MATHEMATICAL ECONOMICS

(2014-2018 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

ME 3C 03—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

1.	In the production function $Q = AK^{\alpha}L^{\beta}$, the variable L denotes :							
	(A)	Leisure.	(B)	Less.				
	(C)	Labour.	(D)	Loss.				
2.	Curve	that is also known as equal product	curv	e is:				
	(A)	Indifference curve.	(B)	Isoquants.				
	(C)	Demand Curve.	(D)	None of the above.				
3.	A hom	ogeneous production function with	degre	ee one corresponds :				
	(A)	Constant returns.	(B)	Diminishing returns.				
	(C)	Increasing returns.	(D)	Negative returns.				
4.	Given	$\frac{\partial Q}{\partial x_1}$, where x_1 is input represents :		£25°				
	(A)	APx ₁ .	(B)	MPx_1 .				
	(C)	MRTS.	(D)	MRS.				
5.	When t	the total product is maximum, marg	ginal p	product will be?				
	(A)	Minimum.	(B)	Zero.				
	(C)	Maximum.	(D)	Negative.				
6.	When on the second seco		– P, t	he maximum amount that would be demanded at				
	(A)	1.	(B)	0.				
	(C)	40.	(D)	400.				
7.	Combi	nations of two inputs resulting in e	qual t	otal output is :				
~\	(A)	Isoquant.	(B)	Isocost.				
U	(C)	Indifference curve.	(D)	Priceline.				

- 8. Which of the following shows constant returns to scale?
 - (A) Cobb Douglas production function.(B) CES production function.
 - (C) Both (A) & (B).

- (D) None of the above.
- 9. $\frac{Q}{x_2}$, where x_2 denotes inputs corresponds to :
 - (A) MPx_2 .

(B) MPx_1

(C) APx_2 .

- (D) APx_1
- 10. IN the CES production function $Q\left[\delta C^{-\alpha} + (1-\delta)N^{-\infty}\right] \frac{-\upsilon}{\omega}$ the term C denotes :
 - (A) Constant.

(B) Output

(C) Capital.

- (D) Population
- 11. Which of the following is called product exhaustion theorem?
 - (A) Eulers's theorem.

(B) Cobb-Douglas function.

(C) CES.

- (D) Translog.
- 12. Demand function Q = f(P) if point elasticity $\epsilon = -1$ for all P > 0 will be:
 - (A) CP.

(B) $\frac{c}{p}$

(C) P.

- (D) None of the above.
- 13. What is the order of $\left(\frac{d^2y}{dt^2}\right)^7 + \left(\frac{d^3y}{dt^3}\right)^5 = 100y$
 - (A) 2

(B) 3.

(C) 5.

- (D) 7.
- 14. A line for linear equation should begin from:
 - (A) Origin.

(B) X-axis.

(C) Y-axis.

(D) Any of the above.

- 15. Euler's theorem is valid only if factors are paid reward on the basis of value of:
 - (A) Average product.

(B) Total Product.

(C) Marginal product.

- (D) None of the above.
- 16. The order of $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 25x$ is:
 - (A) First.

(B) Second.

(C) Third.

- (D) None of the above.
- 17. The value of Rs. 100 at 10% interest for two years:
 - (A) 110.

(B) 111.

(C) 121.

- (D) 130.
- 18. Warranted growth rate in the Harved model is:
 - (A) SYt.

(B) $\frac{s}{a-s}$

(C) $\frac{a}{a-s}$

- (D) $\frac{a-s}{a}$
- 19. Functional relationship between input and output is called:
 - (A) Isoquants.

(B) Isocost.

(C) Input function.

- (D) Production function.
- 20. What is the order of $\frac{d^3Y}{dx^3} + (x^2Y)\frac{d^2Y}{dx^2} 4Y^4 = 0$:
 - (A) First

(B) Second.

(C) Third.

(D) Fourth.

n	1	1	8	c	1
v	T	T	O	v	T

(Pages: 3)

Name.....

Reg. No.....

THIRD SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

ME 3C 03-MATHEMATICAL ECONOMICS

(2014-2018 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Write the order and degree of the differential equation $\left(\frac{d^2y}{dt^2}\right)^5 + \left(\frac{d^3y}{dt^3}\right)^4 36y = 0$
- 2. Solve $\frac{dy}{dt} = y + 1$.
- 3. Write the general solution of the difference equation $y_t + \frac{1}{4}y_{t-1} = 0$.
- 4. Mathematically, how will you represent a production function.
- 5. Define the term Marginal product.
- 6. Define Marginal rate of technical substitution.
- 7. State Euler's theorem.
- 8. Check the returns to scale of the production function $Q = A K^{0.3} L^{0.7}$.
- 9. For the production function $P = AL^{\alpha}K^{\beta}$, prove that labour L and capital K are essential factors of production.
- 10. Define the term Pay-back period.
- 11. Write any two advantages of ARR method.
- 12. Write a short note on Decision tree approach.

 $(12 \times 1 = 12 \text{ marks})$

Part B

2

Answer any six questions. Each question carries 3 marks.

- 13. Solve the differential equation $\frac{dy}{dt} = \frac{y^2}{t^2}$.
- 14. Find the demand function Q = f(p) if point elasticity is $\frac{-(5p+2p^2)}{Q}$ and Q = 500 when P = 10.
- 15. Solve the difference equation $y_t = y_{t-1} 25$ given $y_0 = 40$.
- 16. Explain why an Isoquant slopes downward from left to right.
- 17. Define the term Producers equilibrium.
- 18. Write the general form of CES production function.
- 19. Given the production function $Q = AK^{\alpha} \coprod^{\beta}$, find out Marginal productivity of capital (K) and labour (L).
- 20. A project of Rs. 20 lakhs yielded annually a profit of Rs. 4 lakhs after depreciation at 10% and is subject to income tax at 40%. Calculate pay-back period of this project.
- 21. Write any three advantages of NPV method.

 $(6 \times 3 = 18 \text{ marks})$

Part C

Answer any **six** questions. Each question carries 5 marks.

- 22. Show that (12y+7t+6) dy + (7y+4t-9) dt = 0 is exact and hence solve.
- 23. For the following data find the level of income y_t for any period and warranted rate of growth:

$$I_t = 4.2(y_t - y_{t-1})$$
; $s_t = 0.2 y_t$; $y_0 = 5600$.

- 24. Show that the marginal product is always equal to the average product when average product is maximum.
- 25. If P = f(A, B) is a linear homogeneous production function, the Euler's theorem $P = A \frac{\partial P}{\partial A} + B \frac{\partial P}{\partial B}$.
- 26. If the profit rate (price of capital) remains unaltered the ratio of the amount of capital employed per unit of labour shifts from 10:10 to 12:11, given that the rise in wages is 25%. Determine the elasticity of substitution.

- 27. Prove that the expression path of the Cobb-Douglas production function is linear and passes through the origin.
- 28. Prove that for the C.E.S. production function the marginal product is greater than zero.
- 29. Compute the comparative profitability of the two proposals using the method of ARR:

Particulars		Investment Proposal for			
		Machine A	Machine B		
1	Initial cost (Rs.)	2,24,000	60,000		
2	Estimated life (years)	5.5	8		
3	Estimated sails (Rs.)	1,50,000	1,50,000		
4	Costs (Rs.)				
5	Material	50,000	50,000		
6	Labour	1,20,000	60,000		
7	Overheads	24,000	20,000		

30. Write a note on simulation approach.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any two questions.

31. For the data given below, determine (i) The market price P_t in any time period; (ii) The equilibrium price, P_e ; (iii) The stability of time path:

$$\label{eq:Qdt} Q_{dt} = 160 - 0.8 \; P_t \; ; \; Q_{st} = -20 + 0.4 \, P_{t-1} \; ; \; P_0 = 153.$$

- 32. Find the elasticity of substitution for the production function $P = AI^{\alpha}K^{\beta}$ with $\alpha + \beta = 1$.
- 33. Derive producer's equilibrium condition if the production function is P = f(A,B) and the prices of the factors A and B are P_A and P_B respectively.

 $(2 \times 10 = 20 \text{ marks})$

Reg. No.....

THIRD SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

MAT 3C 03-MATHEMATICS

(2014-2018 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A (Objective Type)

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Define ordinary differential equation.
- 2. The solution of the differential equation $y' 1 + y^2$ is _____.
- 3. The degree of the differential equation $\frac{dy}{dx} = -2 \sin x \cos x$ is ______.
- 4. The rank of the matrix $A = \begin{bmatrix} 0 & 2 \\ 0 & 5 \end{bmatrix}$ is ______
- 5. State True or False: The following two matrices are equivalent:

$$\begin{bmatrix} 5 & 5 & -5 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 3 & -3 & 3 & -7 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & -1 & -2 & -4 \\ 2 & 3 & -1 & -1 \\ 3 & 1 & 3 & -2 \\ 3 & -3 & 3 & -7 \end{bmatrix}.$$

- 6. The characteristic matrix of the matrix $\begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$ is ______.
- 7. Find the resultant of the vectors $\mathbf{p} = [4, -2, -3]$, $\mathbf{q} = [8, 8, 1]$, and $\mathbf{u} = [-12, -6, 2]$.
- 8. For the vectors $\mathbf{a} = [1, 3, 2]$, $\mathbf{b} = [2, 0, -5]$, and $\mathbf{c} = [4, -2, 1]$, find $(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.

- 9. The vector function $\mathbf{r}(t) = (4+t)\mathbf{i} + (2+t)\mathbf{j}$ represents
- 10. Let $\bar{r}(t) = 5t^2 \bar{k}$ be the position vector of a moving particle, where $t \ge 0$ is time. Then the acceleration vector of the moving particle is ———.
- 11. If $\bar{v} = e^x (\cos y \mathbf{i} + \sin y \mathbf{j})$ then div $\bar{v} = ---$
- 12. When we say that a vector valued function is conservative?

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Verify that $y = e^{4x}$ is a solution of the differential equation $\frac{dy}{dx} = 4y$.
- 14. Solve the initial value problem 2xy' 3y = 0; y(1) = 4.
- 15. Show that the equation:

$$ydx + xdy = 0$$

is exact and solve it.

- 16. Reduce the matrix $\begin{bmatrix} 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ to its normal form.
- 17. Solve completely the system of equations:

$$x + 3y - 2z = 0$$

$$2x - y + 4z = 0$$

$$x - 11y + 14z = 0.$$

18. Find the eigen values of:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$$

- 19. Prove that $(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'$
- 20. Find $\frac{df}{ds}$ in the direction of the vector 4i + 4j 2k at the point (1, 1, 2) if $f(x, y, z) = x^2 + y^2 z$.

- 21. Show that $\mathbf{F}(x, y) = (\cos y + y \cos x) \mathbf{i} + (\sin x x \sin y) \mathbf{j}$ is a conservative vector field.
- 22. Find the unit tangent vector at a point t to the curve $\mathbf{r} = a \cos t \, \mathbf{i} + a \sin t \, \mathbf{j}$.
- 23. Find unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 24. Verify that $w = x^2 y^2$ satisfies Laplace's equation $\nabla^2 w = 0$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

Answer any **six** questions. Each question carries 5 marks.

- 25. Write in the linear form and then solve sin $2x \frac{dy}{dx} = y + \tan x$.
- 26. Determine the rank of the following matrix, by reducing to echelon form:

$$\begin{bmatrix} 1 & a & b & 0 \\ 0 & c & d & 1 \\ 1 & a & b & 0 \\ 0 & c & d & 1 \end{bmatrix}.$$

27. Show that the system of equations:

$$x + 2y + z = 2$$

$$3x + y - 2z = 1$$

$$4x - 3y - z = 3$$

$$2x + 4y + 2z = 4$$

is consistent and hence solve them.

28. Find the eigen values and the eigen vector corresponding to the largest eigen value of the matrix

$$\begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

29. Using Cayley-Hamilton theorem find the inverse of $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$.

30. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ with

$$\mathbf{F}(r) = 5z\mathbf{i} + xy\mathbf{j} + x^2z\mathbf{k}$$

along the straight - line segment C: ti + tj + tk, $0 \le t \le 1$.

- 31. Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \ dA$ by the divergence theorem where $\mathbf{F} = [x^2, 0, z^2]$ and S is the surface of the box given by the inequalities $|x| \le 1, |y| \le 3, |z| \le 2$.
- 32. Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA \text{ where } \mathbf{F} = \left[e^{2y}, e^{-2z}, e^{2x}\right], \text{ and}$

S:
$$\mathbf{r} = [3 \cos u, 3 \sin u, v], 0 \le u \le \frac{1}{2}\pi, 0 \le v \le 2.$$

33. Apply Green's theorem to evaluate $\oint_C (2x^2 - y^2) dx + (x^2 + y^2) dy$, where C is the boundary of the area enclosed by the x-axis and the upper half off the circle $x^2 + y^2 = a^2$.

$$(6 \times 5 = 30 \text{ marks})$$

Part D

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the orthogonal trajectories of the family of curves $x^2 + y^2 = c^2$.
- 35. Investigate for what values of a, b the system of equations:

$$x + y + 2z = 2$$

$$2x - y + 3z = 10$$

$$5x - y + az = b$$

have unique solution.

36. Calculate the line integral $\oint_C \mathbf{F} \cdot \mathbf{r}'(s) ds$ using Stoke's theorem, where $\mathbf{F} = [-5y, 4x, z]$, and C is the circle $x^2 + y^2 = 4$, z = 1.

 $(2 \times 10 = 20 \text{ marks})$

D	1	1	8	5	9	-A
_	_	-	$\mathbf{\mathcal{O}}$	$\mathbf{\sigma}$	v	

(Pages: 4)

Nam	1e
Reg.	No

THIRD SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

(2014-2018 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

OF CALICU

MAT 3B 03—CALCULUS AND ANALYTIC GEOMETRY (Multiple Choice Questions for SDE Candidates)

1.
$$\int \tan x \, dx = -$$

(A) $\ln |\cos x| + c$.

(B) $\ln |\sec x| + c$.

(C) $\sec^2 x + c$.

(D) $\ln |\sin x| + c$.

$$2. \int a^x dx = \underline{\hspace{1cm}}$$

(A) $\frac{a^x}{\ln a}$.

(B) $a^x \ln a$.

(C) $\frac{\ln a}{a^x}$.

(D) $\frac{a^{x+1}}{x+1}$

3.
$$\coth^{-1} x = \frac{1}{1 + 1}$$

(A) $\frac{1}{\tanh x}$.

(B) $\tanh^{-1}\left(\frac{1}{x}\right)$.

(C) $\coth^{-1}\left(\frac{1}{x}\right)$

(D) $\frac{1}{\tanh^{-1}\left(\frac{1}{x}\right)}$

$$4. \quad \lim_{x \to 0} \frac{\sin x}{x^2} =$$

(A) - 1.

(B) 0.

(C) ∞.

- (D) ∞
- 5. Range of tanh x is
 - (A) [-1,1]

(B) (-1, 1).

(C) $(-\infty, \infty)$.

(D) $(0, \infty)$.

6.
$$\lim_{n \to \infty} \frac{2n}{n+1} = \frac{2n}{n+1}$$

(A) 0.

(B) $\frac{2}{3}$.

(C) 2.

(D) ...

7.
$$\lim_{n \to \infty} x^{\frac{1}{n}} (x > 0) =$$

(A) = 0.

(B) 1.

(C) ∞

- (D) None of these.
- 8. Fourth term of the sequence $\left\{\frac{\left(-1\right)^{n+1}}{2^{n+1}}\right\}$ is:
 - (A) $\frac{1}{2^5}$.

(B) $\frac{-1}{2^5}$.

(C) $\frac{1}{2^4}$.

- (D) $\frac{-1}{2^4}$.
- 9. The radius of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ is ______.
 - (A) 0.

(B) 1

(C) 2.

- (D) ∞.
- 10. Co-efficient of x^2 in the Maclaurin's series expansion of $f(x) = l_n(x+1)$ is:
 - (A) 1.

(B) $-\frac{1}{2}$

(C) $\frac{1}{2}$

- (D) 1.
- 11. Equation of the directrix of the parabola $y^2 = 8x$ is:
 - (A) x = 2.

 $(B) \quad y=2$

(C) x = -2.

- (D) y = -2
- 12. $x^2 + 2xy + y^2 + 2x y + 2 = 0$ represent:
 - (A) Parabola.

(B) Ellipse.

(C) Hyperbola.

- (D) Circle.
- 13. Find $\frac{d^2y}{dx^2}$ if $x = \cos t$, $y = \sin t$:
 - (A) $\csc^2 t$.

(B) $-\csc^2 t$.

(C) $\csc^3 t$.

(D) $-\csc^3 t$.

- 14. The equation $r^2 = \sin 20$ is symmetric about :
 - (A) x-axis.

(B) y-axis.

(C) Origin.

- (D) The line $0 = \frac{\pi}{4}$.
- 15. $\sum (-1)^n \frac{1}{n}$ is ______
 - (A) Converges.

- (B) Diverges.
- (C) Absolutely convergent.
- (D) None.
- $16. \quad \lim_{x \to \infty} \left(\frac{1}{n^2}\right)^{\frac{1}{n}} = ---$
 - (A) 0.

(B) 1.

(C) oo.

- (D) None.
- 17. If f(x) = 5x 4, if x < 2 $\lim_{x \to 2} f(x) = \frac{1}{2(x^2 1)}$, if x > 2
 - (A) 0.

(B) 6.

(C) 14.

- (D) Does not exist
- 18. $y = \sin(\sin x)$. Then $\frac{dy}{dx} \cos(\sin x)\cos x =$
 - (A) 0.

(B) $\cos x$.

(C) $\sin x$.

- (D) 1.
- 19. The function f(x) = |x| is ———.
 - (A) Continuous at x = 0.
- (B) Discontinuous at x = 0.
- (C) Differentiable at x = 0.
- (D) Not differentiable at x = 0.
- 20. The series $\sum n^m x^n$ is converged if ———.
 - (A) x > 1 and x = 1 when m < -1.
- (B) x > 1 and x = 1 when m > -1.
- (C) x < 1 and x = 1 when m < -1.
- (D) x < 1 and x = 1 when m > -1.

(Pages: 4)

Name.....

Reg. No.....

THIRD SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

Mathematics

MAT 3B 03—CALCULUS AND ANALYTIC GEOMETRY

(2014-2018 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all **twelve** questions. Each question carries 1 mark.

- 1. Find the eccentricity of the hyperbola $9x^2 16y^2 = 144$.
- 2. Find $\lim_{n \to \infty} \frac{4 7n^6}{n^6 + 3}$.
- 3. The inverse function of $\ln(x)$, x > 0 is
- 4. If $f(x) = x^3 2$, find the value of $\frac{df^{-1}}{dx}$ at x = f(2) = 6.
- 5. Find a formula for the n^{th} term of the sequence 1, -4, 9, -16, 25,
- 6. The centre-to-focus distance in the case of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
- 7. Write a parametrization of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- $8. \quad \lim_{n \to \infty} \frac{\ln n}{n} = \dots$

- 9. Give an example of a conditionally convergence sequence.
- 10. Define a harmonic series.

11. If
$$\log_a x = \frac{\ln(x)}{k}$$
, then $k =$

12. The polar equation of the circle $x^2 + y^2 = 25$ is

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find the focus of the parabola $x^2 = 100 y$.
- 14. Find $\lim_{x\to 0^+} x \cot x$.
- 15. Find $\lim_{n\to\infty} \frac{\cos n}{n}$.
- 16. State non-decreasing sequence theorem.
- 17. For what values of x do the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ converge?
- 18. Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^2}$
- 19. Determine the conic section from the equation $3x^2 6xy + 3y^2 + 2x 7 = 0$.
- 20. Identify the geometric figure in the cartesian plane represented by the polar equation $r \cos(\theta \pi/3) = 2$.
- 21. Test the convergence of $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

- 22. For what values of x do $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$ converge?
- 23. Write the formula for finding the area using polar co-ordinates.
- 24. Find the polar equation of the hyperbola with eccentricity 3/2 and directrix at x = 2.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any **six** questions.

Each question carries 5 marks.

- 25. Using the deflation of natural logarithm, prove that $\ln(xy) = \ln x + \ln y$
- 26. Evaluate $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x}\right)$.
- 27. Find a formula for the n^{th} partial sum of the series $2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots + \frac{2}{3^{n-1}}$ and use it to find the serie's sum if the series converges.
- 28. Use integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1.
- 29. Show that the point $(2, 3\pi/4)$ lies on the curve $r = 2 \sin 2\theta$.
- 30. Find the Maclaurin series for the function $f(x) = \sinh x$.
- 31. Find the radius and interval of convergence of the series $\sum_{n=0}^{\infty} (-1)^n (4x+1)^n.$
- 32. Calculate the value of e with an error less than 10^{-6}
- 33. Draw the curve represented by the parametric equations $x = \cos t$, $y = -\sin t$, $t \in [0, \pi]$.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the area of the surface generated by revolving the right handed loop of the lemniscate $r^2 = \cos 2\theta$ about y-axis.
- 35. Find the Taylor series generated by f(x) = 1/x at a = 2. Where if anywhere, does the series converges to 1/x?
- 36. a) The x and y axes are rotated through an angle of $\pi/4$ radians about the origin. Find the converted equation of the hyperbola 2xy = 9 in the new co-ordinates.
 - b) Evaluate $\lim_{x \to \left(\frac{\pi}{2}\right)^{-1}} \frac{\sec x}{1 + \tan x}$.

 $(2 \times 10 = 20 \text{ marks})$

Reg. No.....

THIRD SEMESTER (CUCBCSS—UG) DEGREE [SPECIAL] EXAMINATION NOVEMBER 2019

Mathematics

MAT 3C 03-MATHEMATICS

Time: Three Hours Maximum: 80 Marks

Part A (Objective Type)

Answer all the twelve questions. Each question carries 1 mark.

- 1. Define differential equation.
- The order of the differential equation $\frac{dy}{dx} = \sin x$ is
- 4. The rank of the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$ is ______.
- 5. State True or False: The following two matrices are equivalent:

$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 3 & -3 & 3 & -7 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & -1 & -2 & -4 \\ 2 & 3 & -1 & -1 \\ 3 & 1 & 3 & -2 \\ 3 & -3 & 3 & -7 \end{bmatrix}.$$

- 6. The characteristic matrix of the matrix $\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ is ______.
- 7. Let a = 3i 2j + k, b = 3j, and c = 4i + j k. Then (a + b) + c = -----.
- 8. For the vectors $\mathbf{a} = [1, 3, 2]$, $\mathbf{b} = [2, 0, -5]$ and $\mathbf{c} = [4, -2, 1]$, find $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$.

- 9. The vector function $\mathbf{r}(t) = 3 \cos t \, \mathbf{i} 4 \sin t \, \mathbf{j} \, (0 \le t \le 2\pi)$ represents ———.
- 10. Let $\mathbf{r}(t) = 4t^2 \mathbf{k}$ be the position vector of a moving particle, where $t \ge 0$ is time. The the acceleration vector of the moving particle is ______.
- 11. If $\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then div $\mathbf{v} = ---$.
- 12. When we say that a vector valued function is irrotational?

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any nine questions. Each question carries 2 marks.

- 13. Verify that $y = e^{3x}$ is a solution of the differential equation $\frac{dy}{dx} = 3y$.
- 14. Solve the initial value problem $\frac{dy}{dx} y \tan 2x = 0$: y(0) = 2.
- 15. Show that the equation:

$$(1 + 4xy + 2y^2) dx + (1 + 4xy + 2x^2) dy = 0$$

is exact and solve it.

- 16. Reduce the matrix $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ to its normal form.
- 17. Solve completely the system of equations:

$$x + 3y - 2z = 0$$

$$2x - y + 4z = 0$$

$$11v + 14 = 0$$

18. Find the eigen values of :

- 19. Prove that $(\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'$.
- 20. What is the maximum possible $\frac{df}{ds}$ at the point (1, 4, 2), if $f(x, y, z) = x^2 + y^2 z$.
- 21. Show that $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$ is a conservative vector field.
- 22. Find the unit tangent vector to the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$ at the point t = 2.
- 23. Find unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3).
- 24. Verify that $w = x^2 y^2$ satisfies Laplace's equation $\nabla^2 w = 0$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

Answer any six questions. Each question carries 5 marks.

- 25. Solve the linear differential equation $y' y = e^{2x}$
- 26. Determine the rank of the following matrix, by reducing to echelon form

$$\begin{bmatrix} 1 & a & b & 0 \\ 0 & c & d & 1 \\ 1 & a & b & 0 \\ 0 & c & d & 1 \end{bmatrix}.$$

27. Test the following system of equations for consistency and solve it, if it is consistent.

$$x + y + z = 0$$

$$x + y + 2z = 5$$

$$3x + y + z = 8$$

28. Find the eigen values and the eigen vector corresponding to the largest eigen value of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & -1 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

29. Using Cayley-Hamilton theorem, find the inverse of :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

- 30. If $\mathbf{F} = (3x^2 + 6y) \mathbf{i} 14 yz \mathbf{j} + 20 xz^2 \mathbf{k}$, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve from (0, 0, 0) to (1, 1, 1) with parametric form x = t, $y = t^2$, $z = t^3$.
- 31. Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ by the divergence theorem where $\mathbf{F} = [x^2, 0, z^2]$ and S is the surface of the box given by the inequalities $|x| \le 1, |y| \le 3, |z| \le 2$.
- 32. Evaluate the flux integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} dA$ where $\mathbf{F} = [3x^2, y^2, 0]$, and

$$S: \mathbf{r} = [u, v, 2u + 3v], 0 \le u \le 2, -1 \le u \le 1.$$

33. Verify Green's theorem in the plane for $\oint_C (xydx + x^2dy)$, where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x.

$$(6 \times 5 = 30 \text{ m wks})$$

Part D

Answer any two questions. Each question carries 10 marks.

- 34. Solve $\frac{dy}{dx} + x \sin^2 y = x^3 \cos^2 y$.
- 35. Investigate for what values of a, b the system of equations:

$$x + y + 2z = 2$$

$$2x - y + 3z = 10$$

$$5x - y + az = b$$

have no solution.

36. Verify $\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dA = \oint_{C} \mathbf{F} \cdot \mathbf{r}'(s) ds$ where $\mathbf{F} = [z^{2}, 5x, 0]$, S is the square $0 \le x \le 1$, $0 \le y \le 1$, z = 1 and C is the boundary of S.

$$(2 \times 10 = 20 \text{ marks})$$

Reg. No.....

THIRD SEMESTER (CUCBCSS—UG) [SPECIAL] DEGREE EXAMINATION NOVEMBER 2019

Mathematics

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

Time: Three Hours Maximum: 80 Marks

Part A

Answer all the **twelve** questions. Each question carries 1 mark.

- 1. Write the parametric equations of the circle $x^2 + y^2 = 1$.
- 2. Find the Taylor series for $f(x) = e^x$ at x = 0.
- 3. Find the foci of the hyperbola $\frac{y^2}{4} \frac{x^2}{5} = 1$.
- 4. Evaluate $\int_{0}^{\pi} \frac{\sin t}{2 \cos t} dt.$
- 5. Examine whether $xy y^2 5y + 1 = 0$ represents a parabola, ellipse or hyperbola.
- 6. Prove that $e^{x + \ln 2} = 2 e^x$.
- 7. Evaluate $\frac{d}{dt} \left(\tanh \sqrt{1+t^2} \right)$.
- 8. Examine whether $\sum_{n=1}^{\infty} \frac{n+1}{n}$ converges or diverges.
- 9. Find the Taylor polynomial of order zero generated by $f(x) = \frac{1}{x}$ at a = 2.

- 10. Find the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 11. State Leibniz's Theorem for an alternating series.
- 12. Evaluate $\int_{0}^{\pi/2} e^{\sin x} \cos x \, dx.$

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any nine questions.

Each question carries 2 marks.

- 13. Find $\frac{dy}{dx}$ if $y = x^x$, x > 0.
- 14. Prove that the alternating series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 converges.

- 15. Examine whether $x^2 + xy + y^2 1 = 0$ represents a parabola, ellipse or hyperbola.
- 16. Show that $\ln x$ grows slower than x as $x \to \infty$.
- 17. Evaluate $\int_{-\pi/2}^{\pi/2} \frac{4 \cos \theta}{3 + 2 \sin \theta} d\theta.$
- 18. Find the Taylor series for $f(x) = e^x$ at x = 0.
- 19. Graph the set of points whose polar co-ordinates satisfy the conditions $1 \le r \le 2$ and $0 \le \theta \le \pi/2$.
- 20. For what values of x do the series $\sum_{n=0}^{\infty} n! x^n$ converges.

- 21. Evaluate $\lim_{x \to 0} \frac{x \sin x}{x^3}$.
- 22. Define absolute convergence.
- 23. Examine whether $\sum_{n=1}^{\infty} (-1)^{n+1}$ converges or diverges.
- 24. Find y if $\ln y = 3t + 5$.

 $(9 \times 2 = 18 \text{ marks})$

Part C

Answer any six questions.

Each question carries 5 marks.

- 25. Find the directrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$
- 26. Find the Maclaurin's series for $f(x) = \sin 3x$.
- 27. Find $\lim_{x \to \infty} x^{\frac{1}{x}}$
- 28. Graph the curve $r = 1 \cos \theta$.
- 29. Evaluate $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$.
- 30. Find the tangent to the right-hand hyperbola branch $x = \sec t$, $y = \tan t$, $-\frac{\pi}{2} < t < \pi/2$ at the point $(\sqrt{2}, 1)$ where $t = \frac{\pi}{4}$.

31. Using Integral test show that the p-series

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots$$
 converges if $p > 1$ and diverges if $p < 1$.

- 32. Find the centroid of the first quadrant of the astroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.
- 33. Find the length of the Cardioid $r = 1 \cos \theta$.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 10 marks.

- 34. Find the length of the astroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.
- 35. Show that the Maclaurin's series for $\sin x$ converges to $\sin x$ for all x.
- 36. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

 $(2 \times 10 = 20 \text{ marks})$