n	92	46	n.	_A
_	~~	TU	v.	

(Pages: 6)

Name	
Reg. No	

FIFTH SEMESTER U.G. DEGREE (SPECIAL) EXAMINATION NOVEMBER 2020

(CUCBCSS—UG)

Mathematics

MAT 5B 08—DIFFERENTIAL EQUATIONS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 5B 08—DIFFERENTIAL EQUATIONS

(Multiple Choice Questions for SDE Candidates)

Which of the following is a linear differential equation?

(A)
$$y'' + (y')^2 = \sin x.$$

(B)
$$(y')^2 + 3y = e^x$$
.

(C)
$$y'' + 3y' + y = 0$$
.

(D)
$$(y')^2 + (y')^3 + c^x = 0$$
.

2. Which of the following is a separable differential equation?

$$(A) \quad \frac{dy}{dx} = \frac{x^2}{1 - y^2}.$$

(B)
$$\frac{dy}{dx} = \frac{x+y}{x-y}.$$

(C)
$$\frac{dy}{dx} + (\sin x) y = e^x.$$

(D)
$$\left(\frac{dy}{dx}\right)^2 + (\sin x) y = 0.$$

3. The general solution of the differential equation $2x(3x+y-ye^{-x^2})dx+(x^2+3y^2+e^{-x^2})dy=0$:
(A) $x^2y + ye^{-x^2} + 2x^3 + y^3 = C$.
(B) $x^2y^2 + ye^{x^2} + 2x + y^2 = C$.
(C) $xy + ye^{-x^2} + y^2 = C$.
(D) $xy^2 + y + 2x^3e^{-x^2} + y^3 = C$. is:

(A)
$$x^2y + ye^{-x^2} + 2x^3 + y^3 = C$$

B)
$$x^2y^2 + ye^{x^2} + 2x + y^2 = C$$
.

(C)
$$xy + ye^{-x^2} + y^2 = C$$
.

(D)
$$xy^2 + y + 2x^3e^{-x^2} + y^3 = C$$
.

Which of the following is an initial value problem?

(A)
$$y' + y = 0$$
, $y(0) = y'(0) = 0$.
(B) $y' + y = 0$, $y(0) = y(1) = 0$.
(C) $y'' + y = 0$, $y(0) = 0$, $y(1) = 1$.
(D) $y''' + y = 0$, $y(0) = 0$, $y(2) = 4$.

(B)
$$y' + y = 0, y(0) = y(1) = 0.$$

(C)
$$y'' + y = 0$$
, $y(0) = 0$, $y(1) = 1$.

(D)
$$y''' + y = 0$$
, $y(0) = 0$, $y(2) = 4$.

5. Which of the following is a boundary value problem:

(A)
$$y' + y = 0$$
, $y(0) = 1$, $y'(0) = 0$.
(B) $y'' + 5y = 0$, $y(0) = 1$, $y'(0) = 3$.

(B)
$$y'' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 3$

(C)
$$x^2y'' + xy' + y = 0$$
, $y(0) = 0$, $y(1) = 2$.

(D)
$$y''' + y'' + y = 0$$
, $y(0) = y'(0) = y''(0) = 0$.

- 6. The general solution of the differential equation $y' = \cos x$ is:
 - (A) $y = \sin x$.

(B) $y = \cos x$.

(C) $y = C \sin x$.

- (D) $y = \sin(x) + C$.
- 7. If $\frac{1}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right)$ is a function of x only, then an integrating factor of Mdx + Ndy = 0 is:
 - (A) $\mu(x) = \exp\left[\int \frac{1}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x}\right) dx\right]$. (B) $\mu(x) = \exp\left[\int \frac{1}{N} \left(\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x}\right) dx\right]$.
 - (C) $\mu(x) = \int \frac{1}{N} \left(\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} \right) dx$. (D) $\mu(x) = \int \frac{1}{N} \left(\frac{\partial M}{\partial x} \frac{\partial N}{\partial y} \right) dx$.
- 8. If $\frac{1}{M} \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y} \right)$ is a function of y only, then an integrating factor of the differential equation Mdx + Ndy = 0 is:
 - (A) $\mu(x) = \exp\left[\int \frac{1}{M} \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}\right) dy\right]$. (B) $\mu(x) = \exp\left[\int \frac{1}{M} \left(\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y}\right) dy\right]$. (C) $\mu(x) = \int \frac{1}{M} \left(\frac{\partial N}{\partial x} \frac{\partial M}{\partial y}\right) dy$. (D) $\mu(x) = \int \frac{1}{M} \left(\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y}\right) dy$.
- An integrating factor of the differential equation $\frac{dx}{dy} + P(x) = Q(x)$ is:

(D) $_{\rho}\int (P+Q)dx$

10. A mathematical model of an object falling in the atmosphere near the surface of earth is given by:

(A)
$$m \frac{dv}{dt} = mg - rv$$
.

(B)
$$m\frac{d^2v}{dt^2} = mg - rv.$$

(C)
$$\frac{dv}{dt} = mg$$
.

- (D) None of these.
- 11. The differential equation y'' 5y' + 6y = 0 has:
 - (A) Two linearly independent solutions.
 - (B) Three linearly independent solutions.
 - (C) Four linearly independent solutions.
 - (D) Infinite number of linearly independent solution.
- 12. The general solution of the differential equation $(D^2 4D + 4) y = 0$ is:

(A)
$$(c_0 + c_1 x) e^{2x}$$

(B)
$$(c_0 - c_1 x) e^{2x}$$

(C)
$$c_1 e^x c_2 e^{-2x}$$

(D)
$$c_1 e^{2x} + c_2 e^{2x}$$
.

13. The characteristic roots of the differential equation $(D^2 - 2D) y = 4x^2 + 2x + 3$ are:

(A)
$$\lambda = 0, \lambda = -2$$

(B)
$$\lambda = 1, \lambda = 3.$$

(C)
$$\lambda = 0, \lambda = 2.$$

(D)
$$\lambda = 1, \lambda = -2.$$

14. The Laplace transform of the unit step function $u_{(t-a)}$ is:

$$(A)$$
 e^{-as}

(B)
$$e^{-as}/s$$
.

(C)
$$e^{as}/s$$

(D)
$$e^{-as}/s^2$$
.

15. If $\mathcal{L}\left\{f\left(t\right)\right\} = F\left(s\right)$, then $\mathcal{L}\left\{f\left(at\right)\right\} =$

(A) $\frac{1}{a} F(s/a)$.

(B) F(s/a).

(C) F(a/s).

(D) F(s).

 $16. \quad \int_0^\infty \frac{\sin t}{t} dt =$

 $(A) \quad \frac{\pi}{4}.$

(B) $\frac{\pi}{8}$

(C) $\frac{\pi}{2}$.

(D) None of these.

17. The Laplace transform of the function whose graph shown below is:

 $(A) \quad \frac{k}{s^2} \left(1 - e^{-s} \right).$

(B) $\frac{k}{s} \left(1 - e^{-s}\right)$.

(C) $\frac{1}{s}\left(1-e^{-s}\right)$.

(D) None of these.

18. $\mathcal{L}\{\sin hat\}=$

 $(A) \quad \frac{a}{s^2 - a^2}.$

 $(B) \quad \frac{a}{s^2 + a^2}$

(C) $\frac{s}{s^2 - a^2}$

 $(D) \quad \frac{s}{s^2 + a^2}$

19.
$$\mathcal{L}\left\{t^{n}\right\} =$$

(A)
$$\frac{n!}{s^n}$$

(B)
$$\frac{(n+1)!}{s^n}$$
.

(C)
$$\frac{n!}{s^n+1}$$

(D)
$$\frac{1}{s^n}$$
.

20. The solution to the problem:

$$\alpha^2 u_{xx} = u_{tt}, 0 \le x \le L$$

$$\begin{cases} u(0,t) = 0 \\ u(L,t) = 0 \end{cases}$$

$$\begin{cases} u(0,t) = 0 \\ u(L,t) = 0 \end{cases} \qquad \begin{cases} u(x,0) = f(x) \\ u_t(x,0) = 0 \end{cases} \text{ is given by}$$

(A)
$$u(x, t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{n\pi t}{L}\right)$$
.

(A)
$$u(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi t}{L}\right) \cos\left(\frac{n\pi t}{L}\right)$$
.
(B) $u(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi t}{L}\right) \cos\left(\frac{n\pi x}{L}\right)$.
(C) $u(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right)$.
(D) $u(x,t) = \sum_{n=1}^{\infty} b_n \cos\left(\frac{n\pi x}{L}\right)$.

(C)
$$u(x,t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{L}\right)$$

(D)
$$u(x,t) = \sum_{n=1}^{\infty} b_n \cos\left(\frac{n\pi x}{L}\right)$$

\mathbf{D}	924	59	-A

(Pages : 4)

Name	
Reg. No	

FIFTH SEMESTER U.G. (CUCBCSS-UG) DEGREE [SPECIAL] EXAMINATION, NOVEMBER 2020

Mathematics

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS
(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 5B 07—BASIC MATHEMATICAL ANALYSIS

(Multiple Choice Questions for SDE Candidates)

1. If
$$A_n = \{n, n+1, n+2, \ldots\}$$
, then, $\bigcap_{n=1}^{\infty} A_n = \ldots$

(A) 1.

(B) Ø.

(C) ∞.

(D) n.

2. If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ which of the following is not a member of $A \times B$.

(A) (1,4).

(B) (2, 5).

(C) (3, 4).

(D) (4, 3).

3. Which of the following subset of A × A defines a function on A = $\{x \in \mathbb{R} : -1 \le x \le 1\}$.

(A) $C = \{(x, y) : x^2 + y^2 = 1\}.$

(B) $C = \{(x, y) : x + y^2 = 1\}.$

(C) $C = \{(x, y) : x^2 + y = 1\}.$

(D) None of these.

4. Which of the following set is not countable?

(A) $\{1, 2, \ldots, n\}$.

(B) The set N of natural numbers.

(C) The set Q of rational numbers.

(D) The interval (0, 1).

5. The number of injections from $S = \{1, 2\}$ to $T = \{a, b, c\}$ is ______

(A) 2.

(B) 4.

(C) 6.

(D) 8.

6. If $a \in \mathbb{R}$ such that, $0 \le a < \varepsilon$ for every $\varepsilon > 0$ then,:

(A) a > 0.

(B) $a \neq 0$.

(C) a = 0.

(D) None of these.

7. The binary representation of 3/8 is,:

(A) 0.0111111....

(B) 0.0101000.....

(C) 0.1011111....

(D) 0.0101111.....

8. If 0 < b < 1, $\lim_{n \to \infty} (b^n)$ equal to:

(A) 0.

(B) 1.

(C) b.

(D) o

9. Limit of the sequence $\left(\frac{3n+2}{2n+1}\right)$ is ———

(A) 3.

(B) 1/2.

(C) 2.

(D) 3/2.

(A) 10.

(B) 50.

(C) 100. (D) 101.

11. Which of the following is false?

- If (x_n) is a convergent sequence then $\binom{2}{x_n}$ is convergent.
- (B) If (x_n) is a convergent sequence, and $x_n \ge 0$ for every n, then $(\sqrt{x_n})$ is convergent.
- (C) If $\binom{2}{x_n}$ is a convergent sequence then (x_n) is convergent.
- (D) If (x_n) is a convergent sequence then $\binom{3}{x_n}$ is convergent.

12. If 0 < a < b, then $\lim \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ is:

(A) b.

(C) a+b.

13. The limit of the sequence defined inductively by, $x_1 = 1$ and $x_{n+1} = 2 + \frac{1}{x_n}$ is:

14. Which of the following sequences with n^{th} term x_n diverges?

$$(A) \quad x_n = 1 - \frac{\left(-1\right)^n}{n}$$

(B)
$$x_n = \frac{1 - (-1)^n}{n}$$
.

(A)
$$x_n = 1 - \frac{(-1)^n}{n}$$
.
(C) $x_n = 1 - (-1)^n + \frac{1}{n}$.

(D)
$$x_n = \frac{(-1)^n (n+1)}{n^2+1}$$
.

- 15. Which of the following statement is not true about closed sets?
 - (A) Arbitrary union of closed sets is closed.
 - (B) Arbitrary intersection of closed sets is closed.
 - (C) If $X = (x_n)$ is a sequence of elements in a closed set F, then $\lim X$ belongs to F.
 - (D) A subset of R is closed if and only if it contains all of its cluster points.
- 16. Which of the following statements is not true about Cantor set?
 - (A) Cantor set is closed.
 - (B) Cantor set is uncountable..
 - (C) he compliment of Cantor set in [0, 1] has length 1.
 - (D) Cantor set has non-empty open intervals as subsets.
- 17. If z = (x, y) is a complex number its inverse z^{-1} is:

(A)
$$\left(\frac{x}{\left(x^2+y^2\right)}, \frac{y}{\left(x^2+y^2\right)}\right)$$

(B)
$$\left(\frac{x}{\left(x^2+y^2\right)^2,\left(x^2+y^2\right)}\right)$$

(C)
$$\left(\frac{y}{\left(x^2+y^2\right)}, \frac{x}{\left(x^2+y^2\right)}\right)$$

(D)
$$\left(\frac{y}{\left(x^2+y^2\right)}, \frac{-x}{\left(x^2+y^2\right)}\right)$$

- 18 $(1-i)^4$ is equal to
 - (A) 4.

(B) 4i.

(C) -4.

(D) -4i.

- 19. If = $\frac{-2}{1+\sqrt{3}i}$, then Arg z is:
 - (A) $\frac{\pi}{3}$

(B) $-\frac{\pi}{3}$

(C) $\frac{2\pi}{3}$

(D) $-\frac{2\pi}{3}$

- 20. $e^{i\theta}$ is equal to:
 - (A) $\sqrt{2}$

(B) $-\sqrt{2}$

(C) 1.

(D) -1.

D 92458 - <i>A</i>	ł
---------------------------	---

(Pages: 4)

Nam	ıe
Reg.	No

FIFTH SEMESTER U.G. (CUCBCSS—UG) DEGREE [SPECIAL] EXAMINATION, NOVEMBER 2020

Mathematics

MAT 5B 06—ABSTRACT ALGEBRA

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 5B 06-ABSTRACT ALGEBRA

(Multiple Choice Questions for SDE Candidates)

- 1. Which of the following defines a binary operation on Z^+ ?
 - (A) a * b = a b.
 - (B) a * b = c, where c is the smallest integer greater than both a and b.
 - (C) a * b = c, where c is at least 5 more than a + b.
 - (D) a * b = c, where c is the largest integer less than the product of a and b.
- 2. If b and c are the inverses of some element a in a group G then:
 - (A) b = c.

- (B) $b \neq c$
- (C) b = kc for some $k \in N$.
- (D) None of these.
- 3. On Q, which of the following does not define a binary operation?
 - (A) a * b = |a| b.

(B) $a * b = (a - b)^2$.

(C) $a * b = + \sqrt{ab}$.

- (D) None of these.
- 4. Let * be the binary operation defined on Q^+ as a * b ab/2. Then inverse of the element a is :
 - (A) 2a.

(B) 4/a

(C) a^2 .

- (D) None of these.
- 5. Which of the following are true?
 - (1) A group may have more than one identity element.
 - (2) Any two groups of three elements are isomorphic.
 - (3) Every group of at most three elements is abelian.
 - (A) 2 and 3.

(B) 1 and 2.

(C) 1 and 3.

- (D) All.
- 6. Let $G = \{1, -1, i, -i\}$ where, be a set of four elements. Which of the following is a binary operation on G? (1) a * b = a + b. (2) a * b a.b.
 - (A) Only 1.

(B) Only 2.

(C) Both.

(D) None of these.

3

7.	In a group G.	$(a * b)^2 = a^2$	b^2 for all $a, b \in$	G	. This statement is:
----	---------------	-------------------	--------------------------	---	----------------------

- (A) Always true.
- (B) True if G is finite.
- (C) True if G is a multiplicative group.
- (D) True if G is abelian.

8. If a group G is of order 31, then which of the following is false?

(A) G is abelian.

- (B) G is cyclic.
- (C) G is abelian but not cyclic.
- (D) Both abelian and cyclic.

9. The Klein 4-group is isomorphic to ----

(A) $Z_2 \times Z_4$.

(B) $Z_2 \times Z_2$

(C) Z_4 .

(D) None of these.

10. Order of (2, 2) in
$$\mathbb{Z}_4 \times \mathbb{Z}_6$$
 is ————

(A) 2

(B)

(C) 4.

(D) 12

11. Which of the following is true?

- (A) Every cyclic group has a unique generator.
- (B) In a cyclic group, every element is a generator.
- (C) Every cyclic group has at least two generators.
- (D) None of these.

(A) Z_2 .

(B) (Z, +).

(C) Klein-4 group.

(D) None of these.

13. Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$
. Then σ^6 equals:

(A)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

(D) None of these.

14. The product (1 3 6) (2 4) of two permutation is:

(A)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 6 & 2 & 5 & 1 \end{pmatrix}$$
.

(B)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}$$
.

(C)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 6 & 1 & 4 \end{pmatrix}$$

(D)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 4 & 6 & 1 \end{pmatrix}$$
.

15. Which of the following is true?

- (A) Every function is a permutation if and only if it is one to one.
- (B) The symmetric group S3 is cyclic.
- (C) The symmetric group Sn is not cyclic for any n.
- (D) Every function from a finite set onto itself must be one to one.

16. Which of the following is an even permutation?

(A)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 5 & 1 & 6 & 2 & 1 & 8 \end{pmatrix}$$
. (B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 5 & 3 & 7 & 8 & 6 \end{pmatrix}$.

(B)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 5 & 3 & 7 & 8 & 6 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 3 & 5 & 2 & 6 & 8 & 7 \end{pmatrix}$$
. (D) None of these.

17. What is the largest possible order of a cyclic subgroup of $Z_{12} \times Z_{15}$?

(A) 60.

(B) 30.

(C) 180.

(D) None of these.

18. In a non-abelian group the element a has order 108. Then the order of a 12 is:

(A) 54.

(B) 27.

(C) 18.

(D) 9.

19. f is a homomorphism $f:(R, +) \rightarrow (Z, x)$ such that f(2) = 3. Then f(6) I is:

(A) 16.

(B) 9.

(C) 18.

(D) 27.

20. Which of the following is not true?

- (A) Every subgroup of every group has left cosets.
- (B) A subgroup of a group is a left coset of itself.
- (C) An is of index 2 in Sn for n > 1.
- (D) None of these.

) 2	4	5	7	-2	ľ
) 2) 24	9245	92457	92457- <i>P</i>

(Pages: 4)

Name	•••••
Dan Ma	•

FIFTH SEMESTER U.G. DEGREE [SPECIAL] EXAMINATION NOVEMBER 2020

(CUCBCSS—UG)

Mathematics

MAT 5B 05-VECTOR CALCULUS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 5B 05-VECTOR CALCULUS

(Multiple Choice Questions for SDE Candidates)

- 1. The angle between the vectors a = [1, 2, 3] and b = [0, -2, 1] is:
 - (A) $\cos^{-1} \frac{1}{\sqrt{60}}$.

(B) $\cos^{-1} \frac{-1}{\sqrt{70}}$

(C) $\cos^{-1} \frac{1}{\sqrt{70}}$.

- (D) $\cos^{-1} \frac{1}{\sqrt{80}}$.
- 2. The straight line through the point (1,3) in the x y plane and perpendicular to the straight line x - 2y + 2 = 0 is:
 - (A) 3x y = 2.

(C) 2x + y = 5.

- (B) x + y = 1. (D) 2x y = 5.
- The parametric equations for the line through (-3, 2, -3) and (1, -1, 4) are:

 - (A) x = 1 + 4t, y = -1 3t, z = 4 + 7t. (B) x = 2 + 4t, y = -2 3t, z = -4 + 7t.

 - (C) x = 3 + 4t, y = 8 3t, z = 5 + 7t. (D) x = 1 4t, y = -1 + 3t, z = -4 7t.
- 4. The point of intersection of the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1 + t and the plane 3x + 2y + 6z = 6 is:
 - (A) (1,1,2).

(C) $\left(\frac{2}{3}, 2, 0\right)$.

- 5. If $r(t) = \sin ti + e^{-t} y + 3k$, then $\frac{dr}{dt}$ is:
 - (A) $\sin ti + 3k$.

(B) $\cos ti + e^{-t}i + 3k$

- (D) $\sin ti e^{-t}i$
- 6. The domain of the function $f(x, y, z) = xy \ln(z)$:
 - (A) Entire Space

(B) $\{(x, y, z) : xyz \neq 0\}$

(C) Half space z > 0.

- (D) Hald space z < 0.
- Which of the following holds for the function $f(x, y) = \frac{4x^6y^2}{x^{12} + v^4}$?
 - (A) $\lim_{(x, y) \to (0, 0)} f(x, y)$ exists.
- (B) $\lim_{(x,y)\to(0,0)} f(x,y)$ doesn't exists.
- (C) $\lim_{(x, y) \to (0, 0)} f(x, y) = 0.$
- (D) None of these.

8.	Let $f(x, y) = x - y$ and $g(z, y) = e^z$ be two continuous functions. Then the composition function	on
	$g(f(x,y)) = e^{x-y}$ is:	

(A) Discontinuous.

- (B) Continuous.
- (C) Continuous at origin.
- (D) None of these.
- 9. The function f(x, y) = xy has a:
 - (A) Local maximum.
 - (B) Local minimum.
 - (C) Both local maximum and minimum.
 - (D) No local extreme values.
- 10. The minimum value that the function f(x, y) = xy takes on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ is:
 - (A) 2.

(B) - 2

(C) 4.

- (D) 4
- 11. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. The points on the ellipse that lies closest to the origin are:
 - (A) (1,0,0) and (0,0,1).
- (B) (0,1,0) and (0,0,1).
- (C) (1,0,0) and (0,1,0).
- (D) (1,0,0) and (0,1,1).
- 12. What is the value of $\iint xydxdy$ over the first guadrant of the circle $x^2 + y^2 = a^2$?
 - (A) $\frac{a^2}{4}$.

(B) $\frac{a^2}{8}$

(C) $\frac{a^4}{4}$

- (D) $\frac{a^4}{8}$
- 13. A coil spring lies along the helix $r(t) = (\cos 4t) I + (\sin 4t) j + k$, $0 \le t \le 2\pi$. The spring's density is a constant, $\delta = 1$. Then the radius of gyration of the spring about the z-axis is:
 - (A) 1.

(B) 2.

(C) 3.

- (D) 4.
- 14. The gradient field of f(x, y, z) xyz is:
 - (A) yzi + xzj + xyk.

(B) xyi + xzj + yzk.

(C) xzi + yzj + xyk.

(D) None of these.

15. If
$$\nabla \emptyset = (y + y^2 + z^2)i + (x + z + 2xy)j + (y + 2xz)k$$
 and $\emptyset (1, 1, 1) = 3$, then what is \emptyset ?

(A) $xz + xy + yz^2 - 1$.

(B) $xz + yz + xz^2$.

(C) $xy^2 + xz^2 - 1$.

- (D) $xy + xy^2 + xz^2 + yz 1$.
- 16. Which among the following is the work done in moving a particle once round a circle C in the xy-plane. Given the circle has centre at the origin and radius 3 and the force field is given by $\mathbf{F} = (2x y + z)i + (x + y z^2)j + (3x 2y + 4z)k.$
 - (A) 8π.

(B) 80π .

(C) 88π.

- (D) 18π.
- 17. If $F = (3x^2 + 6y)j 14yzj + 20xz^2k$, then the value of $\int_C F \cdot dr$ where C is a curve from
 - (0,0,0) to (1,1,1) with parametric from x = t, $y = t^2$, $z = t^3$ is:
 - (A) 13.

(B) 7

(C) 5.

- (D) 11.
- 18. If r^{\wedge} is the unit vector in the direction of r and r = |r|, then $\operatorname{div}(r^{\wedge})$ is:
 - (A) $\frac{r}{2}$.

(B) 1

(C) zr.

(D) $\frac{z}{r}$

- 19. Vector product is:
 - (A) Commutative.

(B) Anticommutative.

(C) Associative.

- (D) Not distributive wet vector addition.
- 20. If F,G are differentiable vector functions and Ø is a differentiable scalar function. Then:
 - (A) $\operatorname{curl}(\mathbf{F} \times \mathbf{G}) = (\operatorname{grad} \varnothing) \times \mathbf{F} + \varnothing \operatorname{curl}(\mathbf{F}).$
 - (B) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = -\mathbf{F} \operatorname{curl} \mathbf{G} + g \operatorname{curl} \mathbf{F}$.
 - (C) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = (\mathbf{G}, \nabla) \mathbf{F} (\mathbf{F} \nabla) \mathbf{G} + \mathbf{F} \operatorname{div} \mathbf{G} \mathbf{G} \operatorname{div} \mathbf{F}$.
 - (D) $\operatorname{curl}(\mathbf{F} \times \mathbf{G}) = \mathbf{F} \operatorname{curl} \mathbf{G} \mathbf{G} \operatorname{curl} \mathbf{F}$.